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Paradoxical effects of arsenic in the lungs
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Abstract

High levels (> 100 ug/L) of arsenic are known to cause lung cancer; however, whether low (≤ 10 ug/L) and
medium (10 to 100 ug/L) doses of arsenic will cause lung cancer or other lung diseases, and whether arsenic has
dose-dependent or threshold effects, remains unknown. Summarizing the results of previous studies, we infer that
low- and medium-concentration arsenic cause lung diseases in a dose-dependent manner. Arsenic trioxide (ATO) is
recognized as a chemotherapeutic drug for acute promyelocytic leukemia (APL), also having a significant effect on
lung cancer. The anti-lung cancer mechanisms of ATO include inhibition of proliferation, promotion of apoptosis,
anti-angiogenesis, and inhibition of tumor metastasis. In this review, we summarized the role of arsenic in lung
disease from both pathogenic and therapeutic perspectives. Understanding the paradoxical effects of arsenic in the
lungs may provide some ideas for further research on the occurrence and treatment of lung diseases.
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Introduction
Arsenic, an important environmental contaminant, exists
all over the world in the form of inorganic arsenic com-
pounds. The most common forms are arsenite and arsen-
ate [1]. Arsenic influences people via water, air, and food.
Water is the main source of arsenic exposure [2]. Despite
World Health Organization (WHO) stipulations relating
to arsenic concentration in water (< 10 μg/L), according
to surveys, there are still over 200 million people world-
wide exposed to excessive arsenic-contaminated ground-
water [3].
The lung is one of the main target organs. A high con-

centration of arsenic exposure is closely related to lung
cancer, as has been confirmed by epidemiological statis-
tical analysis in China [4], the USA [5], Italy [6], and Chile
[7]. The mortality rate among those exposed to high doses
(> 100 μg/L) of arsenic was higher than unexposed people
after stopping exposure for 30–40 years [8, 9]. However,
whether low (≤ 10 μg/L) to medium concentrations of ar-
senic exposure can cause cancer remains controversial,

and whether its toxicity is dose dependent is still un-
known. Most studies reported that low to medium (10–
100 μg/L) concentrations of arsenic exposure is related to
cancers [10]. Low doses, even those less than 10 μg/L, can
increase the risk of cancer and mortality from chronic dis-
ease [6]; thus, The Netherlands is committed to reducing
the concentration in tap water to 1 μg/L [11], but there re-
main many others of different opinions: their studies show
that arsenic concentrations below 100–150 μg/L will not
increase the risk of lung cancer [12]. There is still no con-
clusion as to whether low to medium concentrations of
arsenic are carcinogenic due to limitations of the epi-
demiological research to date. In addition, there are many
other studies that show arsenic exposure is closely related
to lung diseases besides lung cancer, such as pneumonia
[13], bronchiectasis [14], asthma [15], and so on.
Interestingly, arsenic, especially As2O3, plays an im-

portant role in the treatment of a variety of tumors, in-
cluding lung cancer [16], intestinal cancer [17], and
especially in leukemia [18], with therapeutic effects that
have been widely recognized [19], and several review pa-
pers on the therapeutic role of As2O3 in tumors have
been published, covering subjects such as curing APL
[20], treating myelodysplastic syndromes, and relapsed/
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refractory multiple myeloma [21, 22]. As2O3 plays a
therapeutic role not only in hematologic diseases but
also in solid tumors [23], although there is no compre-
hensive summary of As2O3 and its efficacy in the treat-
ment of lung diseases.
Thus, what role does arsenic play in lung diseases?

This review summarized the pathogenic and therapeutic
effects in the treatment of lung diseases induced by ar-
senic under low to medium concentration doses. A dis-
cussion of the paradoxical effect of arsenic at the same
time may have great significance for the occurrence and
treatment of lung diseases.

Pathogenic effects
As is known, a high concentration of arsenic is toxic and
pathogenic, especially in the lungs. Most research re-
ports show that the incidence and mortality of lung can-
cer in high-arsenic exposure groups are significantly
higher than those in the general population or the low
arsenic exposure group [24–26]; however, whether low-
level arsenic exposure is pathogenic, and whether there
is a threshold for arsenic pathogenicity or a dose-
response relationship remain to be explored. Besides, in-
organic forms of arsenic can be converted into mono-
methylarsonic acid (MMA) and dimethylarsinic acid
(DMA) through methylation-type metabolism in the hu-
man body; different forms of arsenic may affect the oc-
currence of lung diseases in different ways. Therefore,
the study of arsenic metabolism may help to understand
the role of arsenic in pathogenicity and may provide
clues as to the pathogenic mechanism of action of
arsenic.

Epidemiology of arsenic and lung cancer
Arsenic can increase the risk of lung cancer, especially at
high concentrations. The relationship between arsenic
and lung disease was first found because of the wide-
spread use of arsenic in industries [27]. Subsequently,
more epidemiological evidence relates exposure to ar-
senic to lung cancer [28–30]. Minerals and tobacco, even
water and foodstuffs, contain appreciable amounts of ar-
senic [31], making it necessary to study the relationship
between arsenic and lung cancer from an epidemio-
logical perspective. At high concentrations, the higher
the exposure concentration, the greater the risk of lung
cancer [25, 32, 33]. After the WHO set the maximum
arsenic concentration in water at 10 μg/L, various re-
gions have adjusted their allowable concentration of ar-
senic in water. The risk of lung cancer in high arsenic
concentration decreased after intervention [34–37];
therefore, we believe that high arsenic exposure is re-
lated to the occurrence of lung cancer. As for medium-
and low-concentration arsenic exposure, the results
seem to differ. Do medium and low concentrations of

arsenic affect the incidence of lung cancer? We sought
and analyzed studies on the relationship between low to
medium concentrations of arsenic and lung cancer
(Table 1).
As shown previously, the results vary: five studies

show that arsenic exposure at low to medium concentra-
tions is related to the occurrence of lung cancer, while
the other four consider it unrelated. Through the ana-
lysis of the results, the lifetime lung cancer risks were
assessed in different age groups, with arsenic exposure
at concentrations from 7.61 to 9.25 μg/L. The result
showed that the lifetime risk of lung cancer was 3.54 ×
10−5 and the lung cancer burden was 1.20 × 10−5 per
person-year (ppy) [38]. Under the average arsenic con-
centration of 19.3 μg/L, the mortality risk of lung cancer
was found to be 2.61 in men and 2.09 in women [6].
Though there are differences between the sexes, the risk
ratios differ significantly compared with the non-
exposed group, that is, low to medium-concentration ar-
senic exposure is related to the occurrence and mortality
increase of lung cancer. In addition, there are several
studies devoted to exploring the dose-dependent nature
of the relationship between arsenic exposure and lung
cancer. With the increase of arsenic exposure concentra-
tion, the incidence and mortality of lung cancer are also
increasing. A case-control study found that lung cancer
odds ratios (ORs) and 95% confidence intervals (CIs) for
the groups exposed to 10–29 μg/L, 30–49 μg/L, and 50–
199 μg/L arsenic were 1.60 (0.50–5.30), 3.90 (1.20–
12.30), and 5.20 (2.30–11.70) respectively [7]. Similarly,
studies in the USA and northern Chile have also found
that the incidence of lung cancer increases with increas-
ing arsenic exposure levels [37, 39]. Besides, we found
that the occurrence of lung cancer is different across
genders. Some studies have shown that the risk of lung
cancer and the burden of disease in men are higher than
in women [6, 43], indicating that there may be gender
differences in the carcinogenic risk of arsenic exposure.
In addition to the five epidemiological studies that found
the exposure to low to medium concentrations of ar-
senic is related to lung cancer, we analyzed the other
four studies that are unrelated. A study in north-eastern
Taiwan found that the relative risk (RR) of lung cancer
was 1.10 (95% CI: 0.74–1.63) and 0.99 (95% CI: 0.59–
1.68) after arsenic exposure concentration of 10–49.9
μg/L and 50–99.9 μg/L, respectively, suggesting that
there is no significant correlation between low to
medium concentration arsenic exposure and lung cancer
[41]. In this study, a total of 178 newly diagnosed lung
cancer cases were identified. After adjusting for variables
including age, gender, years of schooling, cigarette smok-
ing status, and habitual alcohol consumption, different
histological types show different RR. In squamous cell
carcinomas, the RR was 0.53 and 1.32, whereas in other
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types, the RR in the 50–99.9 μg/L group was lower than
that in the 10–49.9 μg/L group, so those lung cancers
caused by arsenic may be related to specific tumor histo-
logical types. Besides, the residents involved in this study
were followed for 11 years, and although lacking in stat-
istical precision, the risk of lung cancer increased with
the exposure time, which means that the exposure
period is also a vital factor requiring evaluation. While
in another study, the standardized mortality ratio (SMR)
was 0.9 in some parts of the USA, where the concentra-
tion of arsenic in drinking water was between 3–59 μg/
L. Studying this article, we found that the RR was 1.00,
1.0, and 0.98/0.97 (males and females) with a median ar-
senic exposure concentration of 3.0 μg/L, 3.1–9.9 μg/L,
and 10–59.9 μg/L, respectively, that is, the arsenic in
underground water is unrelated to mortality as a result
of lung cancer [12]. We did also find that in this study,
the authors only adjusted for age and ethnicity. Cigarette
smoking and occupational exposure also played a signifi-
cant role in the occurrence of lung cancer. Considering
that RR is around 1.0, we believe that further adjust-
ments to factors related to lung cancer such as cigarette
smoking may obtain more accurate results. Similarly, in
the other two studies, they both think that arsenic in
low to medium concentrations is unrelated to lung can-
cer, but we found that the lack of data of early exposure
in a mobile population, the insufficient number of sam-
ples, and short exposure time may have a significant in-
fluence on the results. In overview, the first five research
projects mentioned above show that it is clear that lung
cancer risk increased with the increasing concentration
of arsenic exposure, especially in Chile. In central Italy,
the mean concentration of arsenic exposure is 19.3 ug/L,
but the hazard ratio (HR) is over 2. Compared with
other results under a similar concentration, the risk of
lung cancer is higher. Exploring the difference further,
we noticed that the average exposure time is 39.5 years

in central Italy, far exceeding the exposure time in the
other four studies. Therefore, we believe that not only
the dose, but also the duration, affects the occurrence of
lung cancer caused by arsenic. Upon inclusion of more
people, the longer the observation, the closer to reality
the modeling: if accurate concentration detection is diffi-
cult, then longer data collection is even more difficult. In
the last four studies that considered arsenic exposure to
be unrelated to the risk of lung cancer, the exposure
time was about 10 years, which is far from enough com-
pared to other studies lasting nearly 40 years. Therefore,
the analysis of arsenic exposure and the risk of lung can-
cer may need a longer follow-up. In summary, we have
more reason to believe that low to medium concentra-
tions of arsenic are related to the occurrence of lung
cancer. Arsenic exposure time and other bias factors also
affected the risk of lung cancer. Further research is ne-
cessary to provide a more accurate understanding of the
relationship between low- to medium-level arsenic ex-
posure and lung cancer.

Epidemiology of arsenic and lung non-malignant diseases
Except for lung cancer, arsenic exposure may also play
an important role in other non-malignant diseases of the
lungs. Large-scale population studies have found that ar-
senic is closely related to lung function [44]: in the low
to medium dose range, its harmful effects are obvious,
the higher the arsenic concentration, the lower the
forced expiratory volume in 1 s (FEV1) and the forced
vital capacity (FVC) [44]. Chronic arsenic exposure
caused obstructive lung damage, and the severity of that
damage increased with increasing arsenic exposure [6,
45]. In Bengal, compared with the normal skin group,
the skin lesions caused by high levels of arsenic in the
occurrence of chronic cough and chronic bronchitis
were more numerous and more severe [46]. In early
childhood, exposure to arsenic can increase the mortality

Table 1 Studies of the low to medium arsenic water concentration exposure and lung cancer risk

Country/region Arsenic concentration
(μg/L)

Evaluation index Outcome Conclusion

North-west China [38] 7.61–9.25 Lifetime lung cancer risks 3.54 × 10−5 Related

Central Italy [6] 19.3 (mean) HR Lung cancer (HR = 2.6 male; HR = 2.09 female) Related

The USA [37] 6.91–13.32
> 13.32

RR 0.94 (0.51–1.72)
1.82 (1.00–3.31)

Related

Northern Chile [39] < 11, 11–90, 91-335 OR (95% CI) 1.00, 1.27 (0.81–1.98), 2.00 (1.24–3.24) Related

Northern Chile [7] 10-29, 30–49, 50–199 OR (95% CI) 1.60 (0.50–5.30), 3.90 (1.20–12.30), 5.20 (2.30–11.70) Related

The USA [12] 3-59 SMR 0.9 Unrelated

The USA [40] 10, 11–84, > 85 RR (95% CI) 1.00,0.75 (0.45–1.25), 0.84 (0.41–1.72) Unrelated

North-eastern Taiwan [41] 10–49.9, 50–99.9 RR (95% CI) 1.10 (0.74–1.63)
0.99 (0.59–1.68)

Unrelated

Bangladesh [42] 0–10, 11–50, 51–100 RR (95% CI) 1.00, 0.90 (0.62–1.33), 1.10 (0.62–1.96) Unrelated

SMR, standardized mortality ratio; OR, odds ratio; CI, confidence interval; RR, relative risk; HR, hazard ratio
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of bronchiectasis [47]. The studies suggested that ar-
senic exposure may play an important role in non-
malignant lung disease, though the reports remain
limited: it is necessary to study the relationship be-
tween, and dose dependence of, arsenic and non-
malignant lung diseases.

Current research on arsenic and lung cancer
Epidemiological studies differ as to whether low to
medium concentrations of arsenic are pathogenic, so
many people focus on animals and cells. Merrick et al.
found that, the incidences of lung cancer in the 50 ppb
and 500 ppb groups of lifetime arsenic exposure in CD1
mice were 51% and 54%, respectively, which were signifi-
cantly higher than that in the control group (22%) [48].
Wang et al. proved that arsenic can induce human lung
epithelial cell malignant transformation [49]. Subse-
quently, under the exposure to arsenic at concentrations
of between 0.5 and 2.5 μM and for times ranging from
13 weeks to 26 weeks, many other researchers also
found that lung epithelial cells transformed successfully.
Studies have shown that the regulation of cell prolifera-
tion, apoptosis, angiogenesis, and metastasis play im-
portant roles in malignant transformation [49–58]. In
addition, the inhibition of deoxyribonucleic acid (DNA)
damage repair, DNA methylation, and oxidative stress
are also involved in carcinogenesis [58–63]. As men-
tioned above, tumorigenesis is a complex process: in ani-
mal models, arsenic exposure was found to disrupt
immune function, and epithelial barrier function [64,
65]. Genetic analysis after intrauterine exposure of mice
found that the level of genes related to lung immunity
and mucociliary function changed significantly [66].
These changes may be factors initiating tumorigenesis,
but there is still a long way from these changes to the
occurrence of lung cancer, and the gaps between the
two parts are the key points of carcinogenesis in arsenic
exposure. Significant changes were found in cell models.
Low concentrations of arsenite can induce cell prolifera-
tion, which can promote the cell cycle from G1 to S
phase, and upregulate the expression of cyclin D1
through activation of the c-Jun N-terminal kinase
(JNK1/c-Jun) pathway in human embryonic lung fibro-
blast (HELF) cell lines [67]. Similarly, in BEAS-2B, low
concentrations of arsenite are involved in the malignant
transformation of cells by upregulating cyclin D, which
was mediated by the p52-Bcl3 complex [68]. MicroRNA
(miRNA) also was found to regulate cell proliferation.
Inhibition of miR-222 and miR-301a can decrease the
proliferation rates of arsenic-transformed (As-T) cells, in
which phosphatase and tensin homolog (PTEN) and
interleukin 6 and signal transducer and activator of tran-
scription 3 (IL-6/STAT3) signaling are involved, respect-
ively [50, 53]. In As-T cells, reactive oxygen species

(ROS) levels are low and have apoptotic resistance. In-
creasing ROS by inhibiting catalase can restore the
apoptosis ability of arsenic-transformed BEAS-2B [69].
Further research showed that high levels of nuclear fac-
tor, erythroid 2 like 2 (Nrf2), upregulated the expression
of antioxidant proteins catalase and superoxide dismut-
ase, and anti-apoptotic proteins Bcl-2 and Bcl-xl, which
reduced ROS production and enhanced the resistance to
apoptosis in arsenic-transformed BEAS-2B cells [53, 70].
In addition, under arsenic exposure, IL-6 can regulate
Mcl-1 by STAT3 and mediate the binding of Mcl-1 and
Beclin 1 to inhibit apoptosis [71]. In angiogenesis, ROS
upregulated by arsenic can upregulate the expression of
hypoxia-inducible factor 1 (HIF-1) and vascular endo-
thelial growth factor (VEGF) by activating AKT and
mitogen-activated protein kinase (ERK1/2) signaling
pathways [72]. Under arsenic exposure, HIF-1α accumu-
lated in a dose- and concentration-dependent manner
depending on the degree of protein stability, and affected
the unanchored growth of transformed cells by mediat-
ing glycolysis [73]. Meanwhile, HIF-2α participated in
arsenic-induced human bronchial epithelial (HBE) cell
transformation by regulating IL-6 and IL-8 [74], and by
regulating Twist1 and Bmi1 in epithelial–mesenchymal
transition (EMT). Among them, Bmi1 was thought to be
related to the maintenance of stem cells mediated by ar-
senite [75]; However, some studies found arsenic accu-
mulation induced by inhibiting ubiquitination of HIF-2,
which participates in the malignant transformation of
arsenic-induced cells by inhibiting P53 protein [76].
Those changes are all related to the metastasis of the
tumor. Arsenic inhibits DNA repair by suppressing the
expression of related genes and inhibiting the base exci-
sion repair (BER) and nucleotide excision repair (NER),
which is commonly seen in the combined effect of ar-
senic and other carcinogens, such as benzo[a]pyrene
diol epoxide (BPDE), radon and solar ultraviolet radi-
ation [77–81]. DNA methylation that can control
gene expression is involved in the occurrence of lung
cancer. In A/J mice, arsenic exposure decreased the
expression of Ras association domain family member
1 (RASSF1A) by hyper-methylating its promoter re-
gion [82]. Similarly, DNA methylation changes were
observed in mice exposed to AS for 90 days by
whole-genome DNA methylation and gene expression
analysis [83]. Except for DNA methylation, arsenic
can induce oxidative stress; accordingly, the related
oxidant and enzyme, including glutathione (GSH) and
gamma-glutamylcysteine synthetase (gamma-GCS),
were changed [84]. Although there are few studies of
those mechanisms, there is no doubt that these mech-
anisms have broadened our thinking and further re-
search is necessary to enable a deeper understanding
of the pathogenic effects of arsenic.
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Current research on arsenic and lung non-malignant
diseases
Arsenic also plays an important role in non-malignant
lung diseases. It can impair ATP-mediated Ca2+ signal-
ing mechanisms and wound repair through reducing
P2Y and P2X receptor function, destroying the innate
immunity of airway epithelial cells at concentrations of
10 ppb or 25 ppb [85]. The destruction of innate im-
mune defenses can increase the systemic transport of in-
haled pathogens and small molecules, resulting in the
increased possibility of viral and bacterial infection in
mice after early exposure to arsenic [86, 87]. Besides, for
the offspring of C57BL/6 mice after intrauterine expos-
ure to 100 μg/L arsenic, lung tissue genetic analysis
shows significant changes in lung development, immun-
ity, and mucociliary function [66], in which lung inflam-
mation and autophagy are involved in the damage of the
epithelial barrier and may increase the risk of infection
[86, 87]. The relationship between arsenic and lung non-
malignant diseases is close. Arsenic may increase the oc-
currence of diseases by destroying the innate immune
system and affecting lung development. The inflamma-
tion and autophagy may mediate the occurrence of can-
cer, but the mechanism of lung disease caused by
arsenic exposure is uncertain, especially in non-
tumorous lung diseases. Further exploration of the
mechanism is significant. Due to the limited research
into non-tumorous lung diseases under exposure to ar-
senic, we sought articles on other diseases related to ar-
senic exposure, which may provide clues to the
relationship between lung disease and arsenic. Arsenic
can induce atherosclerosis by upregulating monocyte
chemoattractant protein-1 (MCP-1), and tumor necrosis
factor α, IL-6 [88, 89]. Arsenic-induced hypertension can
be explained by increasing calcium sensitization and vas-
cular endothelial dysfunction [90]. Chronic arsenic ex-
posure can cause malignant transformation of liver
epithelium cells, and preneoplastic lesions, including fi-
brosis, and cirrhosis can also occur, impairing the repair
of DNA damage, hyperproliferation, and DNA methyla-
tion, all of which may cause the aforementioned diseases
[91–94]. Renal diseases [95] and neurological disorders
[96] can also be induced by chronic arsenic exposure. In
summary, arsenic is a pollutant that can affect many or-
gans, and the various organs of the body are intercon-
nected, work together, and have similarities, which may
be useful for us in our analysis of the relationship be-
tween lung diseases and arsenic.

Arsenic metabolism and lung diseases
To further understand how arsenic is pathogenic, the
metabolism of arsenic has to be mentioned. Arsenic ex-
ists as inorganic arsenic (iAS) in nature and often accu-
mulates in the human body in various forms after being

metabolized. We used to find that the methylation of ar-
senic is a detoxification process, but recent research indi-
cates that this may be a toxic process [97]. The recognized
pathway for arsenic metabolism is that iAs (III) is methyl-
ated by arsenic-3-methyltransferase (AS3MT), using s-
adenosylmethionine (SAM) as a methyl donor to form
monomethylarsonic acid (MMAsV); MMAV is reduced to
monomethyl arsenous form (MMAsIII), which is then
methylated by AS3MT to form dimethylarsinic acid
(DMAsV). DMAsV can be excreted in urine [98] (Fig. 1).
In the female Kunming mouse model, the measure-

ment of the distribution of arsenic in different tissues
after a single injection of arsenite found that iAS is the
most abundant in the liver and kidney, while the con-
centration of DMA in the lung and bladder is maximal
[99]; therefore, the distribution of iAS and its methylated
metabolites may be tissue specific. Similarly, the main
metabolite in the lung was found to be DMA [100]. The
adult female B6C3F1 mouse model also implied that
after a single exposure to arsenate, the percentage of
DMA in the lung was the highest, and increased with re-
peated exposure [101], so DMA may play an essential
role in the lungs. Studies have shown that DMA can in-
duce DNA damage, cytotoxicity, chromosomal abnor-
malities, apoptosis, and gene mutations by inducing
oxidative stress [102–104], and its reductive metabolites
have been proven to be genotoxic and tumorigenic
[105]. In the study of other non-malignant diseases of
the lungs, it was found that under the influence of low-
dose arsenic exposure, neither iAS nor DMA could
change the cytokine secretion induced by Pseudomonas
aeruginosa. In contrast, MMA increased the secretion of
IL-8, IL-6, and chemokine ligand 2 (CXCL2) induced by
Pseudomonas aeruginosa. These results indicate that
MMA may negatively affect the innate immune response
of human bronchial epithelial cells to Pseudomonas aer-
uginosa [106]; therefore, we speculate that the two main
metabolites of sodium arsenite, MMA and DMA, may
play an important role in the development of various
diseases in the lungs. To further understand how arsenic
works, and what role it plays in the occurrence and de-
velopment of lung diseases, we need to understand it
from a more comprehensive perspective.

Therapeutic effect
Arsenic, as a traditional Chinese medicine, has a long
history of more than 2000 years in China. Arsenic triox-
ide (ATO), as a chemotherapeutic drug, has been ap-
proved for use in relapsed and refractory acute
promyelocytic leukemia by the Food and Drug Adminis-
tration [107]. In addition to leukemia, arsenic is also
used in solid tumors, especially in cases of lung cancer
[108]; as for other non-malignant lung diseases, arsenic
may also play an important role [109–112]. We are
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going to elucidate those relationships between ATO and
lung diseases.

ATO and lung cancer
In lung cancer, ATO can play an anti-cancer effect by
inhibiting cell proliferation [113], inducing apoptosis
[114] and anti-angiogenesis [115], and inhibiting tumor
metastasis [116], as shown in Fig. 2.
The anticancer mechanisms of ATO involve inhibiting

cell proliferation, inducing apoptosis and anti-
angiogenesis, and inhibiting tumor metastasis. ATO can
inhibit proliferation by downregulating cyclin-dependent
protein kinase (CDC2) and cyclinB1, causing cell cycle
arrest. ATO treatment can affect mitochondrial function,
regulate related molecules, promote the formation of
apoptotic bodies, and cause cell apoptosis. ATO can
affect CXCRT and RNDI by inhibiting NFAT and cal-
cineurin, thereby inhibiting tumor metastasis. ATO can
induce anti-angiogenesis by affecting key molecules of
angiogenesis including MMPs and VEGF.

ATO and cell proliferation
Cells are an important part of basic experiments, and
much research thereon is based on cell experiments.
There is no doubt that ATO can inhibit cell prolifera-
tion. In the Calu-6 cell model, ATO treatment downreg-
ulated CDC2 and cyclinB1, thereby regulating the G2
phase and causing cell cycle arrest [117]. In the SW900
xenograft model, the dose of ATO 7.5 mg/kg can signifi-
cantly suppress tumor growth compared with the con-
trol group [118]. Under the same ATO exposure, the
H358 xenograft model confirmed this result; further-
more, the downregulation of thymidylate synthetase
(TYMS) protein expression may be associated therewith
[119]. Research on the effect of inhibiting cell prolifera-
tion in the lungs is limited, but in addition to lung can-
cer, ATO has been found to inhibit cell proliferation in
other diseases. In HepG2 cells, ATO and sorafenib act
together to downregulate the expression of cyclin D1,
leading to cell arrest at the G0/G1 phase [120]. In Bcr-
Abl-positive leukemic cells, ATO and cisplatin can syn-
ergistically suppress cell proliferation by inhibiting Myc
expression through their influence on ROS generation
[121]. In inhibiting proliferative aspects of breast cancer

cells, human myelodysplastic syndrome cells [122], and
prostate cancer cells [123], ATO can also work alone or
in conjunction with other drugs, which may provide new
ideas for further studies of the role of arsenic in lung
cancer.

ATO and apoptosis
In the A549 cell line, ATO treatment revealed
apoptosis-related morphological changes including chro-
matin concentration and formation of apoptotic bodies:
the apoptosis-related markers caspase 3 and Bcl-2 were
found to change after ATO treatment, and E2F tran-
scription factor 1 (E2F1) may regulate this process [114,
124]. Besides, apoptosis inhibitory gene survival [125]
and mitochondrial membrane potential loss [117] were
proven to play an important role in ATO-induced apop-
tosis in the A549 cell model, as well as in the H1355 cell
line. ATO was demonstrated to downregulate survivin
through the activation of JNK and p38 [126]. In the
HI841 cell line, it was further found that GSH and Bcl-2
were downregulated by ATO treatment, which pro-
moted the mitochondrial release of apoptosis-inducing
factor (AIF) and SMAC, finally inducing apoptosis [127].
At the same time, ATO also promotes the expression of
BACH1 through regulating the level of miR-155, thereby
inhibiting the expression of NQO1 and heme oxygenase
1 (HO-1), and inducing cell death [128]. Apoptosis, as
an important form of death, plays an important role in
the process of tumor treatment and further studies in
this way are warranted. How ATO exerts its anti-tumor
effect in the apoptosis aspect is of great significance to
strengthening its anti-tumor efficacy and reducing drug
resistance.

ATO and anti-angiogenesis
In terms of anti-angiogenesis, the small cell lung cancer
(SCLC) xenograft model shows that ATO can signifi-
cantly inhibit its angiogenesis, reduce its vascular dens-
ity, and disrupt the morphological development of its
blood vessels. The NCI-H69 cell line model found that
ATO treatment can downregulate delta-like canonical
Notch ligand 4 (DII4), Notch1, and Hes1, proving that
ATO may inhibit notch signaling pathways by targeting
Notch1, thus exerting anti-angiogenic effects in SCLC

Fig. 1 Arsenic metabolism pathway in the human body. 1. iAs (III) is methylated by arsenic-3-methyltransferase (AS3MT), using s-
adenosylmethionine (SAM) as a methyl donor to form monomethylarsonic acid (MMAsV). 2. MMAV is reduced to monomethyl arsonous form
(MMAsIII), which is then methylated by AS3MT to form dimethylarsinic acid (DMAsV)
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[16]. In addition to affecting the notch signaling pathway,
studies in A549 and human umbilical vein endothelial
cells (HUVECs) cell lines found that ATO is also involved
in other key signals that regulate angiogenesis, including
matrix metalloproteinase (MMP)-2, MMP-9, platelet-
derived growth factor (PDGF)-BB/PDGF receptor-β,
VEGF-A/VEGF receptor 2, and basic fibroblast growth
factor (FGF)/FGF receptor-1 [115]. In vivo experiments

further confirmed the expression of VEGF-A in ATO
transplantable tumor models [129]. Angiogenesis plays an
important role in tumorigenesis and development of tu-
mors. Clinically, anti-angiogenic drugs have been proven
to exert anti-tumor effects and these have been put into
use; therefore, further revealing the mechanism of ATO in
inhibiting angiogenesis is of significance to our under-
standing of the anti-tumor effects of arsenic.

Fig. 2 The anti-cancer mechanisms of ATO
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ATO and tumor metastasis
HUVECs and human SCLC cell line NCI-H446 have
shown that ATO can inhibit the proliferation and migra-
tion of endothelial cells. Exploring its mechanism, ATO
was found to inhibit the expression of calcineurin,
NFAT, and its downstream target genes CXCR7 and
Rho family GTPase 1 (RND1), while upregulating the
regulator of calcineurin 1 (DSCR1), that is, ATO may in-
hibit the metastasis of the SCLC by blocking the calcium
protein nuclear factor in the activated T cell signaling
pathway [116]. Current studies have focused on cell
lines; in vivo experiments remain limited, and in short,
the evidence of ATO-induced anti-tumor metastasis re-
mains insufficient. Metastasis is a complex process, re-
cent research is incomplete, especially that focusing on
arsenic and its role(s) in inhibiting tumor metastasis.
Whether arsenic can really play an anti-tumor metastasis
function and has clinical significance still needs further
research. From laboratory to clinical use, there remains
much to be understood.

ATO and lung non-malignant diseases
In addition to the important role of ATO in lung tu-
mors, ATO also plays an important role in other non-
malignant diseases of the lungs. In the pulmonary fibro-
sis (PF) rat model, ATO inhibits rat PF by upregulating
miR-98 and inhibiting its downstream Stat3. Cell experi-
ments further showed that As2O3 can prevent lung
interstitial thickening and inhibit type I collagen and hy-
droxyproline, thereby preventing the development of PF
[109]. In the female BALB/c mouse asthma model, ATO
can reduce the severity of asthma attacks. Exploring the
mechanism of action thereof may be related to the apop-
tosis of CD+T cells involved in the ER stress-C/EBP
homologous protein pathway [110]. In the model of c
immunization, ATO reduces airway responsiveness, air-
way inflammation, and mucus hyperplasia. Further stud-
ies have shown that ATO can cause mitochondrial
dysfunction, Ca2+-overload, and promote caspase-12 ac-
tivation, that is, ATO may have important significance
in the treatment of asthma [111]. It is also found in the
OVA-immunized mouse model that As2O3 reduces the
occurrence of airway hyperresponsiveness (AHR) and
cell infiltration into the airway by downregulating the
expression of eosinophils. In vitro experiments have fur-
ther shown that ATO can significantly inhibit the secre-
tion of eosinophil chemokine when it induces a certain
apoptosis in primary lung cells [112].
Sodium arsenite and ATO play different roles in lung

diseases, but what caused the difference remains un-
known. Analysis of cell proliferation, cell cycle distribu-
tion, oxidative stress, genetic damage, and apoptotic
index of the A549 cell line exposed to sodium arsenite
and ATO show that As2O3 was more cytotoxic than

NaAsO2. As2O3 is more effective than NaAsO2 in arrest-
ing cells in the G2/M phase. As2O3 is more capable of
inducing DNA damage and chromosome breakage than
NaAsO2 and is more genotoxic. Compared with As2O3,
NaAsO2 significantly increased the ROS-level in cells
[130]. This result is significant to our understanding of
the different roles of arsenic in lung diseases, but further
research is necessary to determine how arsenic actually
affects lung diseases.

Conclusions and perspectives
The role of arsenic in the pathogenesis and treatment of
the lungs is of great interest, but exactly how arsenic
plays a role in the lungs, and why there is such a big dif-
ference, is unclear, making further clarification of how
arsenic causes and treats the disease may be useful for
understanding the occurrence of lung diseases. We
found that there are still many unclear aspects of our
knowledge concerning the role of arsenic in lung dis-
eases: further research is thus needed. Some researchers
believe that arsenic does not directly play a role in
pathogenic diseases but enhances the carcinogenic ef-
fects of other carcinogenic factors [131]. Arsenic may
also work synergistically with other pollutants, causing
cancer [132]. Arsenite and benzo[α] can work together
to alter metabolism and upregulate glycolysis and oxida-
tive phosphorylation [133]. To elucidate the mechanism
of arsenic pathogenicity, animal or cell experiments are
often required, but studies have shown that it is difficult
to induce tumors after exposure to iAs in rodents, so it
may be necessary to explore other, more suitable animal
models [134].
ATO treatment is mainly focused on leukemia, and

studies on solid tumors are limited. Published research
shows that ATO can induce apoptosis of hepatocellular
carcinoma (HCC) cells through the generation of ROS
[135]. In esophageal carcinoma cells, ATO can induce
apoptosis by disrupting the morphology and function
thereof [136]. In ovarian carcinoma cells, ATO may in-
duce apoptosis by inhibiting topoisomerase II [137]. All
the research reviewed provides novel directions for sub-
sequent studies of the relationship between lung and
ATO, but these remain in the laboratory stage, especially
with respect to those involving non-malignant lung dis-
eases. Some studies have shown that ATO may increase
the sensitivity of radiochemotherapy [138, 139]. Mean-
while, ATO can also increase the therapeutic effects of
other drugs, including cisplatin, sulindac sulfide, and the
like. The combined effects of ATO and other drugs can
influence the cell cycle, apoptosis, and inhibit metastasis
[108, 138, 140–142]. Although ATO has been proven to
exert anti-cancer effects alone or in combination with
other drugs, the specific mechanism of action thereof re-
mains unclear, making it necessary to continue studying
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the therapeutic effect and mechanism of ATO on lung
diseases. In short, further exploration of the relationship
between arsenic and the lungs is of great significance for
understanding the occurrence of lung diseases and the
treatment of lung diseases.
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