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Integration of protein context improves 
protein‑based COVID‑19 patient stratification
Jinlong Gao1,2†, Jiale He1,2†, Fangfei Zhang1,2†, Qi Xiao1,2, Xue Cai1,2, Xiao Yi1,2, Siqi Zheng1,2, Ying Zhang3, 
Donglian Wang3, Guangjun Zhu3, Jing Wang3, Bo Shen3, Markus Ralser4,5, Tiannan Guo1,2* and Yi Zhu1,2* 

Abstract 

Background:  Classification of disease severity is crucial for the management of COVID-19. Several studies have 
shown that individual proteins can be used to classify the severity of COVID-19. Here, we aimed to investigate 
whether integrating four types of protein context data, namely, protein complexes, stoichiometric ratios, pathways 
and network degrees will improve the severity classification of COVID-19.

Methods:  We performed machine learning based on three previously published datasets. The first was a SWATH 
(sequential window acquisition of all theoretical fragment ion spectra) MS (mass spectrometry) based proteomic 
dataset. The second was a TMTpro 16plex labeled shotgun proteomics dataset. The third was a SWATH dataset of an 
independent patient cohort.

Results:  Besides twelve proteins, machine learning also prioritized two complexes, one stoichiometric ratio, five 
pathways, and five network degrees, resulting a 25-feature panel. As a result, a model based on the 25 features led to 
effective classification of severe cases with an AUC of 0.965, outperforming the models with proteins only. Comple-
ment component C9, transthyretin (TTR) and TTR-RBP (transthyretin-retinol binding protein) complex, the stoichio-
metric ratio of SAA2 (serum amyloid A proteins 2)/YLPM1 (YLP Motif Containing 1), and the network degree of SIRT7 
(Sirtuin 7) and A2M (alpha-2-macroglobulin) were highlighted as potential markers by this classifier. This classifier was 
further validated with a TMT-based proteomic data set from the same cohort (test dataset 1) and an independent 
SWATH-based proteomic data set from Germany (test dataset 2), reaching an AUC of 0.900 and 0.908, respectively. 
Machine learning models integrating protein context information achieved higher AUCs than models with only one 
feature type.

Conclusion:  Our results show that the integration of protein context including protein complexes, stoichiometric 
ratios, pathways, network degrees, and proteins improves phenotype prediction.
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Background
COVID-19 caused by SARS-CoV-2 remains an ongo-
ing pandemic [1]. Distinguishing severe and non-severe 
cases is crucial since only the severe cases require spe-
cial treatment such as artificial ventilation [2]. Proteins 
from COVID-19 patients’ serum or plasma have been 
utilized to develop severity classifiers. In a TMT-based 
serum proteomics and metabolomics study, 118 sera 
samples from 65 COVID-19 patients and 53 controls 
were analyzed, resulting in a severity classifier based 
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on characteristic proteins and metabolites [3]. Based 
on blood samples from early hospitalized cases, Mess-
ner et  al. built a classifier including 27 proteins for the 
prediction of COVID-19 severity [4]. A longitudinal 
cohort from hospitalized COVID-19 patients identified 
a distinct proteomic trajectory associated with mortal-
ity in blood samples [5]. Another longitudinal cohort 
established an immune biomarker panel to gauge the 
severity of COVID-19 [6]. Demichev et  al. presented a 
prognostic map of COVID-19 by linking clinical param-
eters to plasma proteomes [7] and established a prot-
eomic survival predictor to distinguish severe cases [8]. A 
plasma-based proteomics study reported multiple modu-
lated blood proteins of recovered COVID-19 patients 
3 months after discharge [9]. Using the serum proteom-
ics of COVID-19 patients with samples from different 
disease stages, Zhang et  al. monitored disease progres-
sion and predicted viral nucleic acid positivity during 
COVID-19 [10].

However, all the above-mentioned protein classifiers 
for COVID-19 are based on individual biomolecules, 
mainly proteins, ignoring the fact that no protein func-
tions in an isolated manner. As the ultimate effectors of 
diseases, protein complexes regulate many core biologi-
cal processes. For example, mitochondrial complexes, 
such as the mitochondrial ribosomal small subunit, res-
piratory chain complex I and the mitochondrial pyruvate 
dehydrogenase complex, are involved in energy produc-
tion and found to be highly conserved but dysregulated 
in diseases such as cancers [11]. Several tools for analyz-
ing the protein complex features have been reported in 
recent years, including NetProt and Fuzzy-FishNET [12, 
13]. PCprophet is a machine learning based software for 
identifying protein complex [14]. Protein stoichiometric 
ratios in a complex are also important since they are self-
normalized and relatively conserved [15]. In addition, 
protein network degree is the number of edges connected 
to a protein in a network that includes all proteins in the 
matrix. Network degree reflects expression associations 
with other proteins [16]. In an in vitro cell culture experi-
ment, 332 high-confidence protein–protein interactions 
between SARS-CoV-2 and host proteins were identified 
using affinity purification mass spectrometry, screening 
out two sets of pharmacological agents [17]. However, 
this study is limited to in vitro cell line culture, hence not 
directly transferrable to human plasma collected from 
patients with COVID-19.

As discussed above, although some studies have strati-
fied COVID-19 severity based on protein levels, no pro-
tein functions in an isolated manner, and the information 
obtained from protein quantification alone may not be 
comprehensive. Besides the abundance, multidimen-
sional information of proteins, including but not limited 

to protein complexes, protein topology, post transla-
tional modifications, etc., are essential to understand 
the disease biology. In this study, we tried to investigate 
the aspect of protein complex using several COVID-19 
datasets. We performed machine learning based on three 
previously published datasets [3, 4, 10]. The first was the 
training dataset, which was the MS data matrix generated 
using 20 min SWATH [10], containing 331 proteins, and 
these samples were obtained prior to the onset of disease 
severity. The second was the test dataset 1, which was the 
MS data matrix using 35 min TMTpro 16plex DDA pro-
teomics [3], containing 894 proteins. The third was the 
test dataset 2, a MS data matrix analyzed by 5 min fast 
flow SWATH [4], containing 229 proteins. Via this way, 
we evaluated the feasibility to utilize protein context 
information, including protein complexes, stoichiometric 
ratios in a complex, protein pathways and degree of pro-
tein networks, besides proteins, as key features to classify 
severe COVID-19 cases. The results showed that protein 
context could be exploited as integrative biomarkers for 
the stratification of COVID-19.

Methods
Patients and samples
The training set for this study consisted of 54 sera sam-
ples from 40 Chinese patients with COVID-19 (25 
non-severe and 15 severe, according to the Chinese Gov-
ernment Diagnosis and Treatment Guideline 5th ver-
sion), which were quantified using SWATH MS based 
proteomics [10]. Its performance was subsequently eval-
uated in two test datasets. One was a TMTpro 16plex 
dataset from our previous publication [3], containing 21 
samples from 21 Chinese patients (6 non-severe and 15 
severe). The other was the SWATH data set of 102 sera 
samples from 31 German patients with COVID-19 [4].

Serum sample collection, peptide preparation, and MS 
data acquisition
Regarding to the training set, the procedures for serum 
sample collection, peptides preparation and SWATH 
acquisition for the training set have been described in our 
previous study [10]. Briefly, these samples were collected 
from 40 patients with COVID-19 in stage 1, namely, the 
nucleic acid positive stage in the first 48 h after admission 
[10]. Most patients had only one blood test, while some 
of them had two blood tests as recorded in the medical 
history. In total, there were 54 sera samples collected 
from 40 patients.

Regarding to the test sets, the first test set used 35 min 
TMTpro 16plex proteomics. For each patient, the serum 
sample was obtained within 48  h after hospital admis-
sion [3]. The second test set used 5  min SWATH MS 
proteomics, and the samples were obtained from early 
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hospitalized patients (nearly 1–2  days after hospital 
admission) [4]. The details of serum sample collection, 
peptide preparation and MS data acquisition in the two 
test sets have been described in the previously published 
studies [3, 4], respectively.

Three proteomic data sets
The training set consisted of 54 sera samples from 40 
Chinese COVID-19 patients, and resulted in a MS data 
matrix generated using 20 min SWATH, containing 331 
proteins and 3474 peptides [10]. The test set 1 included 
21 sera samples from 21 Chinese COVID-19 patients [3], 
and 894 proteins and 7747 peptides were identified from 
the MS data matrix using 35 min TMTpro 16plex DDA 
proteomics. The test set 2 contained 102 sera samples 
from 31 early hospitalized German patients, analyzed by 
5 min fast flow SWATH [4], and the resultant data matrix 
included 229 proteins and 3000 peptides.

The generation of protein complex, pathways, 
and stoichiometric ratios
The proteins in the training set of this study were from 
the dataset of previously published literature [10]. Sub-
sequent features, including complexes, pathways, stoi-
chiometric ratios and network degree, were all generated 
based on these proteins. Complexes were obtained from 
CORUM [18] and BioPlex Explorer 3.0 [19] using all 
proteins in the training cohort. Pathways were acquired 
by G:profiler (version e99_eg46_p14_f929183, database 
updated on 07/02/2020) from all proteins in the training 
cohort. The expression values of complexes and pathways 
were the sum of the Z-scores of proteins in complexes 
and pathways. The determination of Z-score was per-
formed using the scale function of R package. In addition, 
stoichiometric ratios are the ratio of any two proteins in a 
complex. The values of stoichiometric ratios in a complex 
are the ratio of the two proteins treated with Z-score.

The generation of network degree
The network degrees, which shows the degree to which 
one protein is related to another, were also generated 
based on proteins from dataset published before [10]. 
The value of a protein’s network degree is the sum of 
all its edge values. The edges mean the protein–protein 
expression associations, and the calculation of protein–
protein association is based on a reference that calculates 
gene–gene association [20]. Briefly, the protein–pro-
tein association was determined by statistical independ-
ence of two proteins. The threshold for significant level 
was set as 0.01. If the normalized statistic of an equation 
was greater than the significant level, null hypothesis 
that proteins x and y are independent to each other were 

rejected, and the edge for x and y was equal to 1, other-
wise it was equal to 0.

The screening of differential features
The differential expression of proteins and other four 
features between severe cases and non-severe cases was 
determined using R package Limma (version 3.44) by fit-
ting a linear model. Features with a p value < 0.05 were 
considered as differential features. It should be noted that 
although the adjustment of p values based on multiple 
hypothesis correction can avoid type-1 errors, the risk of 
introducing type-2 errors is also increased, eliminating 
some potentially differential proteins. Especially, when 
the sample size and number of proteins are not too large, 
there were few differential proteins left after p value 
adjustment, which was not enough for subsequent ran-
dom forest machine learning model. Therefore, based on 
actual situation, multiple hypothesis correction was not 
performed in this study.

The input variables and process of random forest machine 
learning
We used five categories of variables as the input for the 
machine learning model, including proteins, complexes, 
pathways, stoichiometric ratios in a complex, and net-
work degrees. The values of all differential features were 
normalized by Z-score for machine learning. The output 
predictor of the machine learning model was the non-
severe or severe disease type, and we built a random for-
est machine learning model for the binary classification 
task. The random forest model was based on an R pack-
age random forest (version 4.6-14) with 5000 trees and 5 
nodes as the minimum size of terminal nodes, while the 
type of prediction was chosen to be probabilistic. The 
best features were selected by 100 times random for-
est machine learning. Ten-fold cross validation was per-
formed for each training process of the machine learning 
model. Receiver Operator Curve (ROC) was estimated by 
predicting results of the cross-validation using R package 
pROC (version 1.15.3).

Data visualization
PCAs were plotted using R package PCA. Heatmaps were 
plotted by R package heatmap (version 1.0.12). Density 
plots were performed by Kernel Density Estimation, a 
base function of R (version 4.0.0) (a Gaussian kernel with 
default bandwidth was used).

Results
Three sera proteomics data sets for modeling and testing
Three independently obtained proteomic data sets 
of sera from COVID-19 patients were utilized in 
this study (Fig.  1). The training data set was a matrix 
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containing the relative expression of 331 proteins in 54 
sera samples from 40 patients (25 non-severe and 15 
severe) with 21.7% missing values. The mean age of the 
patients was 51.1 years and the mean body mass index 
(BMI) was 23.9. Severe patients exhibited a higher BMI 
(p < 0.01) and a higher incidence of hypertension and 
diabetes than the non-severe cases (Table 1 and Addi-
tional file  2: Table  S1). In addition, two test datasets 
were included. The first is the TMTpro 16plex data set 
from our previous publication [3], containing a rela-
tive expression of 894 proteins in 21 sera samples from 
21 patients (6 non-severe and 15 severe). The other is 
a 5-min gradient SWATH data containing the relative 
expression of 229 proteins in 102 sera samples from 
31 German patients with 12.2% missing values [4]. The 
details of the protein matrix are summarized in Table 2.  

Extraction of protein context features
We established a few protein context features including 
protein complexes, protein stoichiometric ratios in a pro-
tein complex, pathways, proteins and network degrees. A 
total of 868 features were obtained based on the quanti-
fication of 331 proteins (Additional file 3: Table S2). For 
protein complexes, two databases, namely BioPlex and 
CORUM, were utilized to retrieve the complex entities 
based on the 331 proteins. This led to identification of 
27 potentially functional protein complexes from Bio-
Plex, a database of human protein–protein interactions 
based on affinity purification mass spectrometry (AP-
MS) [19]. In addition, 16 protein complexes were identi-
fied from the CORUM database, a manually curated and 
experimentally characterized protein complexes reposi-
tory [18]. Therefore, BioPlex and CORUM together led 

Fig. 1  Study overview. In general, 331 proteins were identified from 54 serum samples of COVID-19 patients. Subsequently, five kinds of 868 
features were derived from these proteins. The top 25 differential features were selected for the machine learning model, which was further 
validated in two test datasets
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to 43 protein complexes (Additional file 4: Table S3). For 
each protein complex, we computed the ratio of each 
protein pair, leading to 105 protein ratios (Additional 
file 4: Table S3). Subsequently, 58 pathway features were 
enriched by 71 differentially expressed proteins (Limma, 
adjust p < 0.05) between severe and non-severe patients 
by G:profiler [21]. Thus, we compiled a feature list con-
taining 43 complexes, 71 differentially expressed proteins 
and 58 enriched pathways (Additional file  4: Table  S3), 
which were utilized as input features for machine learn-
ing to stratify COVID-19 patients. Additionally, protein 

network degrees, which reveal the co-expression rela-
tionships with other proteins [16], were also applied as 
one type of feature. A total of 331 protein degrees were 
obtained as features (Additional file 3: Table S2). Finally, 
we focused on differential features between severe and 
non-severe patients using limma (p value < 0.05). A total 
of 192 differential features were obtained, including 7 
complexes, 16 protein stoichiometry ratios, 27 pathways, 
71 proteins, and 71 protein network degrees (Additional 
file 5: Table S4).

Classification of severe patients using machine learning
As shown in Fig.  2A, all the 192 identified features by 
Limma were ranked by log-scaled p values. To further 
identify biomarkers for the classification of severe cases, 
a random forest machine learning model based on the 
above-mentioned features was applied to the training 
cohort. The fit of the model was evaluated by the area 
under the curve (AUC) (Fig. 2A). The best classifier con-
tained the top twenty-five features, including two com-
plexes, one stoichiometric ratio, five pathways, twelve 
proteins, and five network degrees (Fig.  2B, Additional 
file 1: Fig. S1). The changes of the top 25 features in sera 

Table 1  Information of 40 patients in the training set and all total patients

**p < 0.01, study severe vs study non severe
# p < 0.05 and ##p < 0.01, all severe vs all non-severe

Study total (40) Study non-
severe (25)

Study severe (15) All total (144) All non-severe (108) All severe (36)

Sex (male/female) 17/23 8/17 9/6 77/67 57/51 20/16

Age 51.1 ± 17.3 48 ± 18.9 56.3 ± 13.1 47.6 ± 14.6 45 ± 14.2 55.5 ± 12.8##

BMI 23.9 ± 3.3 22.7 ± 3.2 26.1 ± 2.1** 24.2 ± 3.1 23.9 ± 3.2 25.5 ± 2.3##

Onset admission 7.5 ± 4.4 7.5 ± 4.7 7.4 ± 4.1 7 ± 4.2 6.8 ± 3.9 7.9 ± 4.9

Admission discharge 27.5 ± 8.9 27.6 ± 10 27.2 ± 7 21.6 ± 9.4 20.5 ± 9.7 24.7 ± 7.8#

Symptoms (%)

 Fever 27 (67) 12 (48) 15 (100)** 104 (72.2) 70 (64.8) 34 (94.4)##

 Pharyngalgia 6 (15) 5 (20) 1 (6.7) 17 (11.8) 15(13.9) 2 (5.6)

 Cough 18 (45) 12 (48) 6 (40) 65 (45.1) 47(43.5) 18 (50)

 Expectoration 10 (25) 7 (28) 3 (20) 26 (18.1) 19(17.6) 7 (19.4)

 Fatigue 2 (5) 1 (4) 1 (6.7) 16 (11.1) 10 (9.3) 6 (16.7)

 Headache 4 (10) 2 (8) 2 (13.3) 16 (11.1) 9 (8.3) 7 (19.4)

 Diarrhea 1 (2.5) 0 (0) 1 (6.7) 6 (4.2) 3 (2.8) 3 (8.3)

 Chest tightness 4 (10) 2 (8) 2 (13.3) 11 (7.6) 7 (6.5) 4 (11.1)

Comorbidity (%)

 Hypertension 8 (20) 4 (16) 4 (26.7) 22 (15.3) 14 (13) 8 (22.2)

 Diabetes 6 (15) 2 (8) 4 (26.7) 14 (9.7) 9 (8.3) 5 (13.9)

 Hyperlipidemia 2 (5) 1 (4) 1 (6.7) 3 (2.1) 2 (1.9) 1 (2.8)

 Cardiovascular disease 1 (2.5) 0 (0) 1 (6.7) 3 (2.1) 1 (0.9) 2 (5.6)

 Kidney disease 1 (2.5) 0 (0) 1 (6.7) 2 (1.4) 1 (0.9) 1 (2.8)

 Digestive system 3 (7.5) 2 (8) 1 (6.7) 7 (4.9) 6 (5.6) 1 (2.8)

Table 2  Summary of the dataset used for this study

Patients 
(non-
severe/
severe)

Samples MS 
Method

Proteins Missing (%)

Training 40 (25/15) 54 20 min 
SWATH

331 21.7

Test 1 21 (6/15) 21 TMTpro 
16plex

894 35.5

Test 2 31 (12/19) 102 5 min 
SWATH

229 12.2
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Fig. 2  The selected features for classifying COVID-19. A All Identified features ranked by log p value; B The top 25 features identified; C The heatmap 
of top 25 features in the training set
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Fig. 3  The performance of the machine learning model. A The PCA map of the training set and test sets using all features; B The comparison of 
AUC between the model with five types of features and the model with only one type of feature in the training set, test set 1, and the test set 2
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of severe cases (Chinese SWATH cohort) are visualized 
in a heatmap (Fig. 2C).

As shown in Fig.  3A, severe and non-severe cases in 
training set and two independent test sets were not well 
separated when all features were used. However, by using 
the top 25 features, the severe and non-severe cases in the 
training set and two test sets can be well distinguished. 
We next tested this model in an independent TMT-based 
proteomic data set containing 6 non-severe and 15 severe 
cases (Test set 1). The model achieved an AUC of 0.900 in 
this dataset (Fig. 3B). It should be noted that not all the 
top 25 features were used in test sets due to some missing 
features. Actually, 18 features, including two complexes, 
five pathways, nine proteins, and two network degrees, 
were identified in the test data set 1. Next, this classi-
fier was further evaluated using another independent 
SWATH data set from 12 non-severe and 19 severe Ger-
man patients (Test set 2) [4]. In total, 16 features, includ-
ing two complexes, five pathways, eight proteins, and one 
network degree were identified in the test data set 2, lead-
ing to an AUC of 0.908 (Fig. 3B). The AUC results reveal 
that, besides proteins, protein complexes, stoichiometric 
ratios, pathways and protein degrees could be potential 
biomarkers for stratification of COVID-19 patients.

To validate whether the selected features were opti-
mal for our classifier, we built 200 models with random 
features and validated them with the TMT data set and 
the SWATH-based German cohort dataset. The median 
AUC of these models is 0.756, which is significantly lower 
than the AUC of the model with top 25 features (0.900), 
indicating the superiority of our selected features.

Modeling with only one type of feature
To explore whether the machine learning models with 
five different types of features are superior to the mod-
els with only one type of feature, we trained models with 
only one type of feature and tested them with the TMT-
based proteomics data set (test set 1) and the SWATH-
based German cohort data set (test set 2). As shown in 
Fig. 3B, for the training set and test set 2, the AUC values 
for the model with all five types of features were 0.965 
and 0.908, respectively, which were better than the AUC 
of the model only with proteins as the feature (0.949 and 
0.883, respectively). For test set 1, the model with all 
types of features reached an AUC of 0.900, which was 
slightly lower than that of the model only with proteins. 
This may be because that test set 1 is based on the TMT-
tagging data acquisition mode, which is different from 
the SWATH data of the training data set and test set 2. 
In addition, the difference in sample size may have also 
contributed.

The AUC for the model with only the protein network 
degree as features reached 0.932, 0.667, and 0.467 in the 

training set and the two test sets, respectively, indicat-
ing that it performs well in the training set, but not in the 
two test sets (Fig. 3B). Similar observation was found in 
the model with only the protein complex ratio as a fea-
ture (Fig. 3B). In addition, in the training set and two test 
sets, the AUC values of the model with five types of fea-
tures were all better than those of the models with only 
complex or pathway. These findings together consolidate 
the benefit of integrating multiple model features for 
COVID-19 patient stratification.

Discussion
The highlight of this study is that we integrated five types 
of features including protein complexes, protein stoi-
chiometric ratios, pathways, network degrees, and pro-
teins, rather than using purely individual proteins, to 
build machine learning models for disease classification. 
Twenty-five predictive markers were identified to strat-
ify COVID-19. Our work demonstrates that integrating 
protein expression levels with protein context improves 
COVID-19 patient stratification.

The 25 features highlighted by our analysis are all asso-
ciated with the pathogenesis of COVID-19. As shown in 
Fig. 4, after the SARS-CoV-2 enters the alveolar, the mac-
rophages subsequently phagocytose the virus and release 
cytokines, resulting in the release of acute phase proteins 
(APPs) from the liver [22]. These APPs stimulate the 
complement system response [23]. However, in severe 
cases, the complement system reacts abnormally, which 
can potentially trigger a cytokine storm [24, 25]. On one 
hand, cytokine storm leads to multi-organ damages, such 
as damages to the liver and testis [26]. On the other hand, 
more macrophages are recruited from the peripheral 
blood to the lungs, causing alveolar macrophage infiltra-
tion, lung damage, and respiratory failure [27].

Several studies have reported predictive blood mark-
ers for severe cases, such as ITIH4 [28, 29], M-CSF, CCL3 
and CCL4 [30], as well as CMAs [31]. Studies utiliz-
ing MS-based proteomics also have found that proteins 
associated with complement system, acute phase protein 
response, inflammation system, macrophage dysregu-
lation, antibody response, and coagulation system are 
altered in severe COVID-19 cases [3, 4, 7, 9, 32], which 
have also been confirmed by other proteomic approaches 
[33–35]. In this study, we found a complex, two pathways, 
seven proteins and one network degree are involved in 
the complement system, acute phase proteins and inflam-
mation, including “SAA1, SAA2, YLPM1”, “complement 
activation”, “acute-phase response”, IGHG3, SAA1, SAA2, 
IGLV1-47, C9, ITIH4, C4BPA and IGHV3-73 (Additional 
file  1: Fig. S1). In addition, one pathway (phagocytosis, 
engulfment) associated with macrophage dysregula-
tion was identified as a key feature. Our data uncovered 
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previously hidden COVID-19-associated proteome con-
text information.

Our study also identified other molecular features in 
severe patients. Several transport proteins were upregu-
lated. Vitamin D-binding protein (GC) enhances the 
activity of C5a in the complement system [36], which 
may induce cytokine storms. MyRIP, another transport 
protein, participates in melanosomes and produces pig-
mented melanin to skins [37]. The upregulation of MyRIP 
may be related to skin hyperpigmentation in severe 
patients [38]. Transthyretin (TTR) is a marker for inflam-
mation and a negative acute-phase reactant. Reduced 
TTR has been reported to be associated with acute-phase 
response induced by inflammation, and TTR is also a 

malnutrition marker, suggesting nutritional disorders in 
severe cases [39]. TTR-RBP complex consists of TTR and 
retinol-binding protein 4 (RBP4), and the upregulation of 
TTR-RBP complex suggests an improved inflammation 
state [40]. In this study, both TTR and TTR-RBP com-
plexes decreased in the sera of severe cases, suggesting a 
more intense acute response and inflammatory state.

Notably, some proteins associated with the comple-
ment system were also altered in severe cases. Abnor-
mal response of complement system can trigger cytokine 
storm, which can further develop into severe cases [24, 
41]. Carvelli et al. found that C5 was the main effector of 
abnormal complement system, and blockade of C5 could 
prevent excessive lung inflammation [42]. Complement 

Fig. 4  The biological interpretation of the top 25 features. MAC, membrane attack complex. Red border, upregulation; green boarder, 
downregulation
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protein C3 was also associated with fatal outcome of 
COVID-19 [25]. Different from previous studies, we 
found that C9, another protein in the complement sys-
tem, was elevated in severe cases, suggesting that it may 
also be a marker or potential therapeutic target. In addi-
tion, GC, which activates the activity of C5 [36], was 
also upregulated. C4BPA associated with C4 activity was 
abnormally expressed [43] (Fig. 4). In addition to changes 
in proteins associated with complement system, RPIA 
was downregulated in severe cases, which may indicate 
an impaired glucose metabolism and liver damage. The 
Tudor domain-containing protein 1 (TDRD1), which 
plays a central role in spermatogenesis [44], was also 
downregulated, which may contribute to impaired testis 
functions observed in severe cases [26].

In addition to proteins, other types of protein context 
feature further shed light on the mechanism of severe 
COVID-19 cases. Cytolysis pathway is induced after 
viral infection and serves as a clearance mechanism for 
infected cells [45]. The alteration of the phosphatidylcho-
line binding pathway may contribute to the inflammatory 
process [46]. The increased ratio of SAA2/YLPM1 in the 
"SAA2, SAA1, YLPM1" complex in severe cases may be 
due to upregulation of SAA2 (sera amyloid A-2 protein) 
and downregulation of YLPM1 (YLP motif-containing 
protein 1, Additional file 1: Fig. S1), revealing an acute-
phase response and an enhanced repair of inflammation-
induced telomere shortening [47]. The network degree 
changes of some proteins were associated with cytokine 
storm. Immunoglobulin heavy variable 3-73 (IGHV3-73) 
participates in antigen recognition [48]. MTTP stimu-
lates phosphatidylcholine transport [49]. Alpha-2-mac-
roglobulin (A2M) influences cytokines signaling [50], 
and SIRT7 suppresses inflammation [51]. Since network 
degree suggests the co-expression associations with other 
proteins, the network degree changes of these proteins 
also uncorvered systematic molecular changes in severe 
cases. Our study showed that the predictive result of the 
model with five different features was better than that of 
the model with one single feature (Fig.  3B), suggesting 
the benefits of integrating multiple protein context in dis-
ease prediction and stratification.

Some limitations of this study should be noted. There 
were missing features in the two test sets. Seven fea-
tures were not included in the TMT data, and nine fea-
tures were excluded in the German cohort data. Median 
value of all the valued features were used to impute these 
missing features. The sample size of the training set is 
limited. Nevertheless, the model achieved satisfactory 
AUCs in these independent tests. Neither these limita-
tions compromise the major conclusion of this study 
that integrating protein context information improves 
COVID-19 severity classification. Moreover, the protein 

complex information was obtained from cellular com-
plexes, meaning that not all the complexes are necessarily 
formed in the serum, which needs to be verified by future 
research. Finally, building ratios may create an overfitting 
danger, but this can be avoided by building models with 
other types of features together.

Conclusion
Protein complexes, stoichiometric ratios, pathways and 
network degrees could be used as biomarkers to iden-
tify severe cases. Our present study confirms some of 
the previously reported molecular changes and identifies 
some new features that may contribute to understand the 
pathogenesis of COVID-19.
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