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Abstract 

Acute Myeloid Leukemia (AML) affects 20,000 patients in the US annually with a five-year survival rate of approxi‑
mately 25%. One reason for the low survival rate is the high prevalence of clonal evolution that gives rise to heteroge‑
neous sub-populations of leukemic cells with diverse mutation spectra, which eventually leads to disease relapse. This 
genetic heterogeneity drives the activation of complex signaling pathways that is reflected at the protein level. This 
diversity makes it difficult to treat AML with targeted therapy, requiring custom patient treatment protocols tailored 
to each individual’s leukemia. Toward this end, the Beat AML research program prospectively collected genomic and 
transcriptomic data from over 1000 AML patients and carried out ex vivo drug sensitivity assays to identify genomic 
signatures that could predict patient-specific drug responses. However, there are inherent weaknesses in using only 
genetic and transcriptomic measurements as surrogates of drug response, particularly the absence of direct informa‑
tion about phosphorylation-mediated signal transduction. As a member of the Clinical Proteomic Tumor Analysis 
Consortium, we have extended the molecular characterization of this cohort by collecting proteomic and phos‑
phoproteomic measurements from a subset of these patient samples (38 in total) to evaluate the hypothesis that 
proteomic signatures can improve the ability to predict response to 26 drugs in AML ex vivo samples. In this work we 
describe our systematic, multi-omic approach to evaluate proteomic signatures of drug response and compare pro‑
tein levels to other markers of drug response such as mutational patterns. We explore the nuances of this approach 
using two drugs that target key pathways activated in AML: quizartinib (FLT3) and trametinib (Ras/MEK), and show 
how patient-derived signatures can be interpreted biologically and validated in cell lines. In conclusion, this pilot 
study demonstrates strong promise for proteomics-based patient stratification to assess drug sensitivity in AML.
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Background
Acute myeloid leukemia (AML) is characterized by the 
incomplete maturation of myeloblasts and their expan-
sion in blood and bone marrow, which impacts healthy 
blood cell formation resulting in decreased numbers of 

granulocytes, platelets, and red blood cells [1]. Though 
the number of FDA-approved treatments for AML has 
increased significantly over the past five years, prognosis 
remains poor with a 5-year survival rate of 25% for indi-
viduals over the age of 20 [2]. Targeted agents have shown 
promise in mutationally defined subsets of patients, 
but due to the genetic evolution of this highly heterog-
enous disease, drug response is often lost and patients 
relapse. Proper selection of personalized drugs and drug 
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combinations over the course of a patient’s disease will be 
required to provide more durable clinical responses, and 
will require a comprehensive mechanistic evaluation of 
each patient’s leukemia.

The goal of the Beat AML program was to improve 
drug selection by collecting large quantities of molecular 
data together with ex vivo small molecule inhibitor assays 
performed on freshly isolated patient leukemia cells. In 
these studies, peripheral blood and bone marrow mono-
nuclear cells from AML patients are isolated and exposed 
to a panel of approximately 145 drugs over a three-day 
period and cell viability is used as the primary readout for 
drug efficacy. Patient genomics and transcriptomics, as 
well as extensive clinical annotation, enable the stratifica-
tion of patients by these measures which are more effec-
tive than predictions of drug response based on genetics 
alone [3]. This functional genomic and transcriptomic 
dataset uncovered numerous novel genetic, transcrip-
tomic, and microenvironmental drivers of AML patho-
genesis and drug resistance [4–8].

Proteomic measurements, including measurements of 
global protein levels and specific phosphosites, have been 
shown to better identify clinically relevant patterns in 
patient tumors compared to transcriptomics or genetics 
alone [9]. This has motivated significant investment by 
the National Cancer Institute through the Clinical Prot-
eomic Tumor Analysis Consortium (CPTAC) in which 
patient-derived samples have been assayed using state-
of-the-art mass spectrometry (MS) pipelines to produce 
proteomic and phosphoproteomic measurements of hun-
dreds of tumors in breast, ovary, kidney, head and neck, 
endometrium, brain and other tissues [10–15]. In each 
study, these proteomic measurements reveal patterns 
that are not evident at the genomic or transcriptomic 
level [9]. Most efforts to study how proteomics signatures 
can predict drug response have been previously evaluated 
in cell lines [16, 17] and AML patient samples [18]. More 
recent efforts have characterized proteomics in patient 
samples using reverse phase proteomic assays (RPPA) in 
a pediatric AML cohort [19] as well as focusing explicity 
on phosphoproteomics measurements in AML related to 
FLT3 activity [20], showing how measuring protein and 
phosphorylation activity can better stratify patients and 
predict drug response. To date, however the integration 
of proteomic, phosphoproteomic, transcriptomic, and 
genomic data with drug response has not been evaluated 
in AML patient samples.

There exist numerous computational modeling and 
machine learning approaches to predict the response 
of cancer cell lines to drug perturbation using baseline 
genomics or transcriptomics [21, 22]. These approaches 
have been widely successful using genomic data together 
with subsequent dose response measurements to identify 

specific signatures capable of predicting which drugs 
affect cell lines from basal genomic and transcriptomic 
data of those same cell lines [23, 24]. These datasets have 
been further supplemented by global proteomic analy-
sis of the same cell line library [25] that have also been 
used to predict drug response. However, cell line-derived 
computational models have their flaws, as they sample a 
limited subset of patient genetics and have been shown 
to correlate poorly with patient-derived xenograft data 
of the same tumor type [26], suggesting they are not 
accurate models of in vivo tumors. There are still ongo-
ing innovations in the computational space that predict 
drug response from the underlying genomic phenotype 
[27] including Bayesian approaches [28], variational 
auto-encoders [29], and deep learning [30]. However, 
proteomic measurements in cell lines have been shown 
to provide improvement over drug prediction modeling 
in numerous cases, suggesting that additional data can 
improve modeling [16, 31–33]. To date, however, most 
predictive models are based on cancer cell lines, which 
are limited in their ability to recapitulate the diversity of 
genetic backgrounds found in patients and lack potential 
contributions from the tumor microenvironment.

In this work, we combine the rigorous pre-clinical 
drug testing and genomic profiling of the Beat AML 
dataset with patient-derived proteomic and phospho-
proteomic measurements to determine the potential for 
protein-level data to produce robust molecular biomark-
ers of drug response. Using a small pilot proteomic data-
set of 38 patients, we focus on two drugs that target the 
FLT3 and Ras/MEK pathways in AML (quizartinib and 
trametinib respectively) and evaluate how the genes, 
transcripts and proteins measured in each patient sample 
correlate with drug sensitivity. We expand our analysis to 
24 additional drugs to determine how well baseline prot-
eomic and phosphoproteomic measurements can predict 
drug response compared to genomic or transcriptomic 
measurements. We then explore the signatures that result 
from our analysis to determine how best to interpret 
these results biologically, by both evaluating their role in 
signaling networks and also assessing their expression in 
drug-resistant cell lines. Together this work represents a 
robust toolkit by which protein-derived signatures can be 
used to predict drug response and understand the biolog-
ical pathways these signatures represent.

Methods
Experimental design
Our overall experimental design is depicted in Addi-
tional file 2: Figure S1. It entails subjecting patient AML 
samples to genomic and proteomic analysis and ex-vivo 
drug screening followed by the construction of predictive 
models of drug response for each type of data collected. 
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We then use the signatures determined by the model to 
assess their performance in cross-validation experiments, 
explore their role in biological networks, and then valid-
late them in cell lines.The data collected are summarized 
in Additional file 1: Table S1.

Sample collection
Samples were collected and processed as described in 
detail previously [3]. Briefly, all patients gave informed 
consent to participate in the Beat AML study, which had 
the approval and guidance of the Institutional Review 
Boards (IRB) from participating institutions. All samples 
used in this manuscript were collected at Oregon Health 
& Science University with a broad ‘research use’ clause. 
Mononuclear cells (MNCs) were isolated from freshly 
obtained bone marrow or peripheral blood samples from 
AML patients via Ficoll gradient centrifugation. Isolated 
MNCs were utilized for genomic (500 × WES; RNA-seq) 
and ex vivo functional drug screens. WES and RNA-seq 
were performed using standard methods and data analy-
sis was performed as previously described [3]. Clinical, 
prognostic, genetic, cytogenetic and pathologic labora-
tory values as well as treatment and outcome data were 
manually curated from the patient electronic medical 
records (EMR). Patients were assigned a specific diag-
nosis based on the prioritization of genetic and clinical 
factors as determined by WHO guidelines. We selected 
38 unique patients from our ongoing study that had com-
plete proteomic and phosphoproteomic measurements.

Ex vivo drug screening analysis
For drug sensitivity assays, 10,000 viable cells were dis-
pensed into each well of a 384-well plate containing 7 
point, threefold dilution, drug concentration series from 
a library of small molecule inhibitors. Cells were incu-
bated with the drugs in RPMI media containing 10% FBS 
without supplementary cytokines. After 3 days of culture 
at 37 °C in 5% CO2, MTS reagent (CellTiter96 AQueous 
One; Promega) was added, the optical density was meas-
ured at 490 nm, and raw absorbance values were adjusted 
to a reference blank value and then used to determine cell 
viability (normalized to untreated control wells). Ex vivo 
functional drug screen data processing was performed as 
described, and dose response curve-fitting was carried 
out using the probit regression on quality-controlled data 
as in our previous work [3].

Protein digestion and tandem mass tag (TMT) labeling
Sample preparation for proteomics was based on the 
protocol developed under the CPTAC consortium with 
minimal modifications [34]. Patient cell pellets were 
lysed with 500 µL fresh lysis buffer, containing 8 M urea 
(Sigma-Aldrich), 50  mM Tris pH 8.0, 75  mM sodium 

chloride, 1 mM ethylenediamine tetra-acetic acid, 2 µg/
mL Aprotinin (Sigma-Aldrich), 10  mg/mL Leupeptin 
(Roche), 1 mM PMSF in EtOH, 10 mM sodium fluoride, 
1% of phosphatase inhibitor cocktail 2 and 3 (Sigma-
Aldrich), 20 µM PUGNAc, and 0.01 U/µ/µL Benzonase. 
The samples were then vortexed for 10 s and placed in a 
thermomixer for 15  min at 4  °C and 800 RPM. Vortex-
ing was repeated and the samples incubated again for 
15 min utilizing the same settings. After incubation, the 
samples were centrifuged for 10 min at 4  °C and 18,000 
rcf to remove cell debris. The supernatant was then trans-
ferred to a fresh tube. A BCA (ThermoFisher) assay was 
performed on the supernatant to determine protein yield.

Protein concentrations were normalized to the same 
concentration prior to beginning digestion. The sample 
was reduced with 5  mM dithiothreitol (DTT) (Sigma-
Aldrich) for 1  h at 37  °C and 800  rpm. Reduced cys-
tines were alkylated with 10  mM iodacetamide (IAA) 
(Sigma-Aldrich) for 45 min at 25 °C and 800 rpm in the 
dark. The sample was diluted fourfold with 50 mM Tris 
HCL pH 8.0 and then Lys-C (Wako) was added at a 1:20 
enzyme:substrate ratio, followed by incubation for 2 h at 
25  °C, shaking at 800 rpm. Trypsin (Promega) was then 
added at a 1:20 enzyme:substrate ratio, followed by a 
14-h incubation at 25  °C and 800  rpm. The sample was 
quenched by adding formic acid to 1% by volume, and 
centrifuged for 15 min at 1500 rcf to remove any remain-
ing cell debris. Peptides samples were desalted using 
a C18 solid phase extraction (SPE) cartridge (Waters 
Sep-Pak).

After drying down SPE eluates, each sample was recon-
stituted with 50 mM HEPES, pH 8.5 to a concentration 
of 5  µ/µ/µL. Each isobaric tag aliquot was dissolved in 
250 µL anhydrous acetonitrile to a final concentration 
of 20 µg/µ/µL. The tag was added to the sample at a 1:1 
peptide:label ratio and incubated for 1  h at 25  °C and 
400  rpm and then diluted to 2.5  mg/mL with 50  mM 
HEPES pH 8.5, 20% acetonitrile (ACN). Finally, the reac-
tion was quenched with 5% hydroxylamine and incu-
bated for 15 min at 25 °C and 400 rpm. The samples were 
then combined per each plex set and concentrated in a 
speed-vac before a final C18 SPE cleanup. Each 11-plex 
experiment was fractionated into 96 fractions by high 
pH reversed phase separation, followed by concatenation 
into 24 or 12 global fractions for MS analysis.

Phosphopeptide enrichment using IMAC
The global samples were further concatenated to 
create 6 samples per plex for further enrichment. 
Fe3+-NTA-agarose beads were freshly prepared using 
Ni–NTA-agarose beads (Qiagen). Sample peptides 
were reconstituted to a 0.5  µg/µL concentration with 
80% ACN, 0.1% TFA and incubated with 40  mL of the 
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bead suspension for 30 min at RT in a thermomixer set 
at 800  rpm. After incubation the beads were washed 
with 100 mL 80% ACN, 0.1% TFA and 50 mL 1% FA to 
remove any non-specific binding. Phosphopetides were 
eluted off beads with 210 mL 500 mM K2HPO4, pH 7.0 
directly onto C18 stage tips and eluted from C18 mate-
rial with 60 mL 50% ACN, 0.1% FA. Samples were dried 
in speed-vac concentrator for storage and reconstituted 
with 12 mL 3% ACN, 0.1% FA immediately prior to MS 
analysis.

LC–MS/MS analysis
Proteomic fractions were separated using a Waters nano-
Aquity UPLC system (Waters) equipped with a 75 um 
I.D. × 25  cm length C18 column packed in-house with 
1.9 um ReproSil-Pur 120 C18-AQ (Dr. Maisch GmbH). A 
120-min gradient of 95% mobile phase A (0.1% (v/v) for-
mic acid in water) to 19% mobile phase B (0.1% (v/v) FA 
in acetonitrile) was applied to each fraction. The separa-
tion was coupled to either a Thermo Orbitrap™ Fusion 
Lumos™ (patient samples) or Q Exactive™ HF (cell lines) 
Hybrid Quadrupole-Orbitrap™ mass spectrometer for 
MS/MS analysis. MS Spectra were collected from 350 
to 1800 m/z at a mass resolution setting of 60,000. A top 
speed method was used for the collection of MS2 spec-
tra at a mass resolution of 50 K. An isolation window of 
0.7  m/z was used for higher energy collision dissocia-
tion (HCD), singly charged species were excluded, and 
the dynamic exclusion window was 45 s. For the Fusion 
Lumos™, a top speed method was used for the collection 
of MS2 spectra at a mass resolution of 50 K. For the Q 
Exactive™ HF experiments, a top 16 method was used for 
the collection of MS [2] spectra at a mass resolution of 
30 K.

TMT global proteomics data processing
All Thermo RAW files were processed using mzRefinery 
to correct for mass calibration errors, and then spectra 
were searched with MS-GF + v9881 [35–37] to match 
against the human reference protein sequence database 
downloaded in April of 2018 (71,599 proteins), com-
bined with common contaminants (e.g., trypsin, kera-
tin). A partially tryptic search was used with a ± 10 parts 
per million (ppm) parent ion mass tolerance. A reversed 
sequence decoy database approach was used for false 
discovery rate calculation. MS-GF + considered static 
carbamidomethylation (+ 57.0215  Da) on Cys residues 
and TMT modification (+ 229.1629  Da) on the peptide 
N terminus and Lys residues, and dynamic oxidation 
(+ 15.9949  Da) on Met residues. The resulting peptide 
identifications were filtered to a 1% false discovery rate 
at the unique peptide level. A sequence coverage mini-
mum of 6 per 1000 amino acids was used to maintain a 

1% FDR at the protein level after assembly by parsimoni-
ous inference.

The intensities of TMT 11 reporter ions were extracted 
using MASIC software [38]. Extracted intensities were 
then linked to peptide-to-spectrum matches (PSMs) 
passing the FDR thresholds described above. Relative 
protein abundance was calculated as the ratio of sample 
abundance to reference channel abundance, using the 
summed reporter ion intensities from peptides that could 
be uniquely mapped to a gene. The relative abundances 
were log2 transformed and zero-centered for each gene 
to obtain final relative abundance values. We identified 
8963 distinct proteins across 38 patients, with some vari-
ability as depicted in Additional file 2: Figure S2A.

TMT phosphoproteomics data processing
IMAC enriched fraction datasets were searched as 
described above with the addition of a dynamic phospho-
rylation (+ 79.9663 Da) modification on Ser, Thr, or Tyr 
residues. The phosphoproteomic data were further pro-
cessed with the Ascore algorithm [39] for phosphoryla-
tion site localization, and the top-scoring assignments 
were reported. To account for sample loading biases in 
the phosphoproteome analysis, we applied the same cor-
rection factors derived from median-centering of the 
global proteomic dataset for normalization. We identi-
fied 45,806 distinct phosphopeptides across 38 patients, 
that mapped to 31,788 pSer sites, 7395 pT sites, and 1259 
pTyr sites. Additional file  2: Figure S2B shows the rela-
tionship of these sites to their annotation in databases of 
known kinase-substrate interactions.

All proteomic data can be found on our synapse site 
(http://​synap​se.​org/​ptrc). The cohort is spread across 
three tranches, as described in Table 1 below.

Identifying drugs and samples for analysis
The list of available data for each patient is in Additional 
file  1: Table  S1. Although ~ 145 total compounds were 
tested in the drug panels, we filtered the drugs in this 
study to collect those that exhibited a range of responses 
across the 38 patients as determined by area under the 
curve (AUC) of the dose response. AUC correlates to 
the amount of drug required to reduce cell viability, so 
higher AUC values mean the samples are less sensitive 
to the drug, and lower AUC values indicate the samples 
are more sensitive. We selected drugs for which at least 
10% or 2 (whichever was greater) samples exhibited an 
AUC less than 100 (determined to be sensitive in pre-
vious work [3]). This selection produced a “balanced” 
distribution of AUC scores to enable our downstream 
analysis. We also added Gilteritinib (ASP-2215) to the 
panel as it is currently being evaluated in numerous clini-
cal trials. Drug responses varied across the 38 patients for 

http://synapse.org/ptrc
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26 drugs, with AUC values ranging from 14.7 to  186.3. 
Despite some missingness in the data, we were able to 
use these values to compare the efficacy of  genomics, 
transcriptomics, proteomics, and phosphoproteomics to 
model drug sensitivity based on the available data.

Linear models of proteomics and drug response
We constructed linear models for each of the 26 differ-
ent drugs across up to 38 patients (depending on how 
many patient samples were evaluated with that drug) 
by regressing the AUC values (which ranged between 0 
and ~ 300, as depicted in Fig.  2A) against the molecular 
data shown in Additional file 1: Table S1 and Additional 
file  2: Figure S2A. The input data for each model were 
each scaled slightly differently: the genetic mutations 
were represented as a binary matrix in which a 1 repre-
sented the presence of a somatic mutation and a 0 repre-
sented no mutation, the transcriptomics was represented 
by Counts per Million (CPM) of gene expression values, 
while proteomics and phosphoproteomics were repre-
sented as the log ratio of gene/phosphosites compared to 
the reference sample described above.

For each combination of drug and data type, we con-
structed a linear model Y ~ X where Y represents the 
vector of AUC values and X represents the molecular 
measurements for that patient. We used three differ-
ent linear modeling approaches to reduce the number of 
features selected by the model: LASSO regression [40], 
Elastic Net Regression [41], and logistic regression as 
implemented by the `glmnet` package [42]. For the logis-
tic regression, we discretized the AUC by representing Y 
as a binary variable, where 1 represented an AUC greater 
than 100 (patient is resistant to drug) and 0 if the AUC is 
less than 100 (patient is sensitive to drug).

For each model, we employed K-fold cross validation 
with K = 5 on each type of data (e.g. mutations, proteom-
ics, etc.) to assess performance. Within each K, we used 
leave-one-out cross-validation for each combination of 
data to select the alpha parameter that minimized cross-
validation error. The model performance scores in Fig. 2B 
and Additional file  1: Table  S2 represented the average 
correlation between predicted and actual values across 

all 5 models for each drug/data type. All of our analysis 
can be found in the `amlresistancenetworks` package we 
built at http://​github.​com/​PNNL-​CompB​io/​amlre​sista​
ncene​tworks and implemented at https://​github.​com/​
PNNL-​CompB​io/​beata​mlpil​otpro​teomi​cs. Those mod-
els that failed to select any molecular features were not 
included in our final analysis. The results are depicted in 
Figs. 2B and Additional file 1: Table S2.

Signature interpretation using pathway annotations 
and statistical enrichment
To identify patterns in the features selected by the 
LASSO, Elastic Net, and logistic models we employed 
three main approaches. For gene, transcript, and prot-
eomic signatures, we first used the `clusterProfiler` pack-
age [43] to identify GO biological process tools that are 
enriched for the specific genes, transcripts, or proteins 
selected by the model. The results are listed in Additional 
file 1: Table S2. In cases where there were no significant 
(corrected p < 0.01) terms, the column is blank. Of the 
237 signatures for which the mean correlation was > 0.1, 
101 exhibited some enriched terms. For phosphopro-
teomic features, we used the `leapR` R package [44] 
to identify specific kinases that were over-represented 
among the selected substrates, though none were iden-
tified with statistical significance. We believe this is due 
to the sparsity constraints imposed by the regression 
method as well as the large number of phosphosites for 
which no kinase was known, shown in Additional file 2: 
Figure S2B.

Supplementing sparse regression signatures 
with interaction networks
To provide further context for the phosphoproteomic 
features selected by the models, we mapped selected 
transcripts, proteins, or phosphosites to published pro-
tein–RNA [45], protein-protein [46] and kinase-substrate 
[47, 48] interactions and then reduced this network to 
identify subnetworks using the Prize Collecting Steiner 
Forest (PCSF) R package [49, 50]. Specifically, we used 
the STRING database [46] together with networkKin [47] 
and PhosphoSitePlus [48] predictions of kinase substrate 

Table 1  Location of processed proteomics files on Synapse

Patients Data type File Table

Primary patient cohort Proteomics syn22130778 syn22172602

Patients with Sorafenib treatment Proteomics syn22313435 syn22314121

Patients with drug combination Proteomics syn25672089 syn22156810

Primary patient cohort Phosphoproteomics syn24610481 syn24227903

Patients with Sorafenib treatment Phosphoproteomics syn24227680 syn24228075

Patients with drug combination Phosphoproteomics syn24240156 syn24240355

http://github.com/PNNL-CompBio/amlresistancenetworks
http://github.com/PNNL-CompBio/amlresistancenetworks
https://github.com/PNNL-CompBio/beatamlpilotproteomics
https://github.com/PNNL-CompBio/beatamlpilotproteomics
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interactions to build a graph that combined protein–pro-
tein interactions with kinase-substrate interactions. To 
do this we added each phosphosite as its own node in the 
underlying graph. We weighted each edge from the node 
representing the substrate gene to the phosphosite with a 
cost of m/4 where m represents the mean cost of all the 
edges in the graph. The weight of each edge between the 
phosphosite node and the kinase gene was weighted with 
a cost of 3 m/2 where m represents the mean cost of all 
edges in the graph. We then ran the PCSF algorithm [49, 
50] over 100 randomizations using phosphosites, pro-
teins, or genes from a single drug model. The results for 
the quizartinib proteomic and trametinib genomic logis-
tic signatures are in Fig. 3B, D.

Using the proteins selected by the PCSF algorithm, 
which are a combination of those selected by the linear 
model as well as those selected by the PCSF algorithm, 
we used Cytoscape [51] and the BinGO [52] applica-
tion to identify which GO biological process terms were 
enriched. The results are depicted in Additional file  1: 
Tables S3 and S4.

Trametinib resistant cell line cultures
Human MOLM13 cells with FLT3-ITD mutation, were 
obtained from the Sanger Institute Cancer Cell Line 
Panel. Cell lines were maintained in RPMI 1640 (Gibco) 
supplemented with 20% Fetal Bovine Serum (HyClone), 
2% l-glutamine, 1% penicillin/streptomycin (Life Tech-
nologies).Trametinib-resistant MOLM13 cell lines were 
generated by culturing MOLM13 cells in increasing 
concentrations of trametinib (Selleck). Cell viability was 
measured bi-weekly and cells were replenished with new 
media and trametinib. Resistance was assessed using the 
MTS assay for drug sensitivity. Once resistant, cell lines 
were maintained in 50  nM trametinib added bi-weekly. 
Cell lines were screened for mycoplasma contamination 
on a monthly schedule.

For proteomic and phosphorproteomic profiling, 5 mil-
lion parental MOLM13 (N = 3) and resistant MOLM13 
(N = 3) cell lines were starved overnight in starvation 
media (RPMI supplemented with 0.1% BSA). Trametinib 
(50 nM) was added to the starvation media of the resist-
ant cell lines. Cells were washed three times in PBS, pel-
leted and flash frozen.

Quizartinib resistant cell line cultures
Human MOLM14 cells were generously provided by Dr. 
Yoshinobu Matsuo (Fujisaki Cell Center, Hayashibara 
Biochemical Labs, Okayama, Japan). Cells were grown 
in RPMI (Life Technologies Inc., Carlsbad, CA) sup-
plemented with 10% FBS (Atlanta Biologicals, Flowery 
Branch, GA), 2% L-glutamine, 1% penicillin/streptomy-
cin (Life Technologies Inc.), and 0.1% amphotericin B 

(HyClone, South Logan, UT). Cell line authentication 
was performed at the OHSU DNA Services Core facility.

To establish resistant cultures, 10 million MOLM14 
cells were treated with 10  nM of quizartinib (Selleck 
Chemicals, Houston, TX) in media alone (N = 4) or in 
media supplemented with 10 ng/mL of FGF2 (N = 4) or 
FLT3 ligand (N = 4, FL; PeproTech Inc., Rocky Hill, NJ) 
[53]. All cultures were maintained in 10  mL of media. 
Every 2 or 3  days, recombinant ligands and quizartinib 
were replaced and cell viability was evaluated using the 
Guava cell counter (Millipore Inc., Burlington, MA). Fol-
lowing ligand withdrawal, quizartinib and media were 
similarly replenished and viability was monitored every 2 
to 3 days. All cell lines were tested for mycoplasma on a 
monthly schedule.

For proteomic and phosphoproteomic profiling, naïve 
MOLM14 (N = 4), quizartinib-resistant parental (N = 2, 
no ligand), early (N = 4/ligand) and late (N = 4/ligand) 
cultures were washed three times with PBS to remove 
any trace of fetal bovine serum, pelleted, and flash frozen.

Results
Multi‑omic data highlights varied impact of drug response 
in AML patient samples
We first explored the relationship between the individual 
molecular (genetic, transcriptomics, proteomic, phos-
phoproteomics) measurements in our matched patient 
cohort based on known targets of specific AML drugs. 
Given the success of molecular profiling using RNA-seq 
in the Beat AML dataset [3], and general knowledge that 
mRNA can often, but not always, be a proxy for protein 
expression, we wanted to ask if mRNA and protein levels 
are correlated in our specific dataset. The results, shown 
in Additional file 2: Figure S2C confirm previously pub-
lished work [9] that mRNA and protein levels are weakly 
correlated (Spearman R = 0.25) across all patient sam-
ples. We also mapped phosphosites to their correspond-
ing proteins and found that the overall abundance values 
were also weakly correlated (Spearman R = 0.15, Addi-
tional file 2: Figure S2D), aligning with our previous work 
[54].

To examine the correlation of molecular values with 
drug response, we first sampled sensitivity to quizarti-
nib and the genes, transcripts, and proteins within the 
pathway quizartinib was designed to target. Specifi-
cally, we looked at these molecules in the FLT3/MAPK 
pathway (Fig.  1A) and compared them with the ex  vivo 
sensitivity to quizartinib (Fig.  1B, C). The proteins and 
transcripts in the pathway itself are variably correlated. 
Specifically, we found that some proteins, e.g. NRAS and 
FLT3, are positively correlated with the mRNA levels for 
the same gene (R = 0.41, R = 0.34, respectively), while 
proteins such as SOS1 and PTPN11 are more negatively 
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correlated (R = − 0.22, R = − 0.11 respectively). We then 
compared transcript (Fig. 1B) and protein (Fig. 1C) lev-
els with the AUC for quizartinib by plotting a heatmap 
of the molecular values ranked by drug response. Lastly, 
we evaluated the phosphosites identified in our untar-
geted phosphoproteomics on the 12 proteins in the FLT3 
signling pathway in Fig. 1A, also depicted in Additional 
file  2: Figure S3A. While we were unable to detect any 
phosphorylation sites on FLT3 itself (most likely due to 
the undersampling of pTyr in our workflow) we were able 
to characterize many alterations downstream. However, 
in some cases, the phosphoproteomic data will correlate 

with global protein levels (e.g. HCK protein expression 
correlated with phosphosite occupancy, with a R = 0.62, 
shown in Additional file 2: Figure S3B). These results sug-
gest that protein abundance can sometimes be an effec-
tive surrogate for protein phosphorylation. The results 
also suggest that focusing on a single specific pathway 
may not be sufficient, as off-target effects of the drug that 
can effect sensitivity may be missed, such that integration 
of data could provide more meaningful results.

We expanded our correlative analysis to study the 
Ras/MEK pathway, which is downstream of Ras and 
targeted by trametinib. The correlation of the mRNA 

Fig. 1  Measuring correlation across data modalities. A Correlation between mRNA and protein levels for individual genes in the FLT3-MAPK 
signaling pathway. Correlation values map to legend inset. B Expression of transcripts in the FLT3-MAPK signaling pathway ordered by patient 
response to quizartinib. C Expression of proteins in the FLT3-MAPK signaling pathway ordered by patient response to quizartinib. D Correlation 
between mRNA and protein levels for individual genes in the MAPK signaling pathway. Legend is the same as A. E Expression of transcripts in the 
MEK1/2 signaling pathway ordered by patient response to trametinib. F Expression of proteins in the MEK1/2 signaling pathway ordered by patient 
response to trametinib
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and protein levels of the pathway trametinib targets 
(Fig.  1D) was again modestly positive in some genes 
such as JAK1, JAK2, and MAP2K1 but negative in oth-
ers such as PTPN11. We also measured the correlation 
of mRNA levels (Fig. 1E) and protein levels (Fig. 1F) with 
trametinib response in the patients. Here we found that 
the three patients with NRAS mutations were sensitive 
to trametinib, but that few other mRNA or protein levels 
seemed to correlate with drug response. We also stud-
ied the phosphorylation patterns of Ras/MEK targets in 
Additional file 2: Figure S3C, where we also found limited 
representation from the specific phosphosites measured. 

Interestingly we found examples in which phosphosite 
activity did not correlate with protein expression, such 
as MAPK3 (R = − 0.2, Additional file 2: Figure S3D). In 
summary we conclude that a broad, data-driven approach 
to studying drug response would be more successful than 
a targeted pathway driven approach, given the data at 
hand.

Linear modeling enables broad sweep of data space 
to identify multi‑omic signatures of drug response
Our findings in Fig. 1 show that molecular measurements 
across a pathway targeted by a specific drug may fail to 

Fig. 2  Linear modeling description and performance. A Summary of drug response values across 26 drugs and 31 patient samples together with 
the data available for each patient sample (across top). B Cross-validation performance of Elastic Net, LASSO, and Logistic regression with various 
types of data or combinations of data types. Performance is measured by Spearman correlation with held out dataset
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adequately summarize the drug response in patient sam-
ples. As such, we turned to a basic statistical approach to 
identify such groups of genes, transcripts, proteins, or 
phosphosites that predict drug response.

We examined a panel of 26 drugs measured in the Beat 
AML ex vivo drug sensitivity functional assay described 
above, specifically selecting drugs that exhibited a vari-
able response in the pilot samples as described in the 
experimental procedures and shown in Fig. 2A. We con-
structed three types of linear models as described above 
for each drug and data modality individually (genomics, 
transcriptomics, proteomics, phosphosites) as well as in 
combination (transcriptomics + proteomics, proteom-
ics + phosphosites, and all four data types combined) for 
a total of 21 possible models for each drug. We meas-
ured the performance of each model using fivefold cross 
validation and measured the correlation between the 
predicted response on the held-out data and the actual 
value. The correlation values of each of the five models 
is shown in Fig. 2B and summarized in Additional file 1: 
Table S2. In numerous cases, the models were unable to 

select any features and therefore were not counted. This 
was particularly noticeable in the case of logistic regres-
sion, where the division of test data into sensitive/resist-
ant samples left fewer data points for model construction.

This framework enabled us to compare modeling 
approach and data type. While all three flavors of regres-
sion performed similarly, the logistic regression created 
fewer models and was not very accurate overall (median 
correlation < 0.1, Fig. 2B). The other two regression mod-
els showed a significant boost from adding the prot-
eomics data to transcriptomics data (mRNA + Proteins, 
yellow, Fig.  2B). Interestingly, the strongest overall per-
formance comes from proteomics data alone (beige). 
Despite the general good performance of models, there 
was a high degree of variability between drugs and drug 
families. Additional file 2: Fig. S4 shows the performance 
of each model across individual drugs (Additional file 2: 
Fig. S4A) and drug classes (Additional file  2: Fig. S4B). 
This diversity shows that individual model selection 
requires a robust cross validation approach to avoid gen-
eralizing with only one type of model or data modality.

Fig. 3  Interpretation of top-performing signatures by heatmap and protein network integration. A Heatmap of proteins and phosphosites selected 
by the logistic regression depicts clustering of patients by sensitivity to quizartinib. B Interaction network links proteins (ovals) and phosphosites 
(diamonds) selected by signature (yellow) to other proteins (blue) to illustrate how they relate to one another. C Heatmap of proteins and 
transcripts by the LASSO regression shows how they cluster patients by trametinib AUC. D Interaction network showing how those proteins (ovals) 
and transcripts (triangles) selected by the signature (yellow) are closely related via protein interactions with related proteins (blue)
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Model selection via cross‑validation and network analysis 
provides robust interpretations of molecular signatures
To show how the cross validation framework can be 
used in practice, we selected the top performing mod-
els of quizartinib and trametininb response from Addi-
tional file 2: Fig. S4A and Additional file 1: Table S2 and 
examined the features to determine if they aligned with 
the known mechanism of action of each of the drugs. 
The top-performing (via average correlation with held-
out data) models that predict quizartinib and trametinib 
response are depicted in Fig. 3.

We first analyzed the features from the logistic regres-
sion model of quizartinib response based on proteomic 
and phosphoproteomic data. To identify the features that 
drove the models, we re-ran it on all the data (instead of 
on just the training data subsets) and plotted the features 
in Fig. 3A. Here we noticed INPP5D, which is identified 
in both the LASSO and logistic regression models and 
highly down-regulated in quizartinib sensitive samples. 
This gene encodes the inositol 5-phophatase know as 
SHIP-1 which acts as a negative regulator of the PI3K/
AKT pathway. SHIP-1 affects cell proliferation in AML, 
due to mutations in the nuclear localization signature or 
phosphorylation site [55]. It has also been shown to act 
as an adaptor protein linked to wild type FLT3 signaling 
[56, 57].

While we found two enriched GO Biological process 
terms related to actin filament-based transport, (Addi-
tional file  1: Table  S2) in the regression signature, we 
employed a network approach to better characterize 
how the selected phosphosites and proteins interacted 
based on published protein–protein and kinase-substrate 
interactions. We used the OmicsIntegrator [49] tool to 
supplement the proteins and phosphosites selected by 
the model (yellow nodes in Fig.  3B) with proteins from 
the protein protein interaction network (blue nodes in 
Fig.  3B). This approach enables improved visualization 
of protein and phosphosite activity by linking together 
individual signature components. For example, SHC1 
was added by the network algorithm, which has been 
found to be expressed in AML blasts [58], as well as high-
lighting the role of phosphorylation of SMC3, a member 
of the cohesion complex, which has been also found to 
synergize with FLT3 in AML [59]. By linking the proteins 
in the signature together through other protein inter-
actions, we can examine how the proteomic signature 
connects various proteins involved in signaling, histone 
regulation, and DNA damage to show how alterations in 
diverse pathways give rise to drug sensitivity (Additional 
file 1: Table S3).

We also examined the top model that predicted 
trametinib response from Additional file  1: Table  S2, 
which is comprised of both transcripts and proteins 

(Fig.  3C). In this case, expression of the signature pro-
teins and transcripts was able to cluster highly resistant 
patient samples on the left of Fig. 3C. Biological process 
enrichment (Additional file  1: Table  S2) included terms 
related to mRNA processing and catabolism. When we 
used the mRNA and proteins to build a network using 
the PCSF algorithm, depicted in Fig.  3D, we identified 
numerous additional apoptotic related proteins, such as 
BID, CASP1, and GZMB that suggest that expression of 
apotosis-related proteins and transcripts could predis-
pose patients to trametinib sensitivity. The proteins in 
the network were broadly enriched in apoptotic related 
pathways (Additional file  1: Table  S4), suggesting that 
this pathway plays a role in MEK inhibitor response. This 
hypothesis has been confirmed by the apparent synergy 
between venetoclax, a BCL2 targeting drug, and other 
MEK inhibitors used for treatment in AML [60].

Proteins that predict drug response are dysregulated 
in resistant cell lines
To experimentally validate these signatures, we turned to 
cell culture models of AML. Here we explicitly focused 
on proteomic and/or phosphoproteomic measure-
ments to determine if protein and phosphosite levels 
could predict resistance to drugs in vitro. We first exam-
ined MOLM13 cells that were grown in the presence of 
trametinib over 3–4  months to develop resistance, and 
measured protein expression in the resistant cells com-
pared to the parental cells. While the regression mode-
ling selected a combination of transcripts and proteins to 
be the most informative (Additional file 1: Table S2 and 
Additional file 2: Fig. S4A), we only had protein measure-
ments from these cell lines, and therefore clustered the 
proteins from the proteomic signatures of trametinib 
response in these cell lines (Fig. 4). Despite the fact that 
the proteomic signature was not as robust in our cross-
validation compared to that of proteins together with 
mRNA, we found that each protein signature from the 
LASSO, logistic, and Elastic Net regressions cleanly clus-
tered resistant and sensitive cells. This suggests that the 
proteins derived from these signatures represent the bio-
logical indicators of trametinib response.

Proteomic signatures can distinguish between early 
and late models of drug resistance
To further confirm this role of regression-derived signa-
tures in cell lines, we evaluated the proteins and phospho-
sites selected for the quizartinib signatures in MOLM14 
cells grown in the presence of quizartinib to develop 
resistance. We then examined the proteins/phosphosites 
selected by all three regression models and found that 
regardless of which method, the proteins clustered the 
resistant and parent cells separately (Fig. 5A–C).
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We then wanted to explore if any of these signatures 
were related to temporal changes during development of 
resistance to quizartinib. We used resistant cell lines that 
were developed in two stages: early resistance, which is 
mediated by extrinsic ligands from the marrow microen-
vironment, and late resistance, which is mediated by the 
expansion of intrinsic resistance mutations—most com-
monly in the activation loop [53, 61]. Using this model 
we compared early resistance and late resistance, with 
the hypothesis that the patient-derived signature would 
more closely resemble the late resistance phenotype.

To test this hypothesis, we plotted the proteins and 
phosphosites selected by the logistic model (which 
was the best performing according to Additional file  1: 
Table S2 and Additional file 2: Figure S4A) in these cell 
lines and clustered them in Fig. 5D. We observed a sim-
ilar split between sensitive and resistant cells as we did 
in Fig. 5A–C, as the proteins that predict drug response 
cluster the MOLM14 parental cells (blue) distinctly from 
the fully resistant cells (beige). However, in this case, 
these proteins also separate those cells that represented 
early resistance (red) from those that represent late 
resistance (orange) in our previous work. This fits with 
our previous claim that the resistance to FLT3 inhibitors 
involves a two-step process, as cell lines exhibiting the 
early resistance phenotype cluster more closely with the 
parental cells than with the late resistance cells.

Discussion
This study describes a computational framework to asesss 
the role of protein-derived measurements in predict-
ing ex vivo AML patient drug response. Given that pro-
teins and phosphosites clearly capture a unique aspect in 

disease activity, we employed numerous types of regres-
sion analyses together with cross-validation to determine 
the best signature for each drug or drug family. We also 
showed how to interpret these signatures using data from 
external sources and validated the signatures in cell cul-
ture models.

This study was not without limitations. For example, 
this was a small dataset, with only 38 patients, so is lim-
ited in the diversity of drug response as well as muta-
tional heterogeneity. Furthermore, the depth of coverage 
of phosphotyrosine sites was limited in our untargeted 
phosphoproteomics is (Additional file 2: Fig. S2B), which 
can be particularly challenging when trying to evaluate 
the impact of drugs targeting FLT3, a kinase that primar-
ily operates through tyrosine phosphorylation. As such, 
we illustrate in Fig. 1 that evaluating signaling pathways 
targeted by each drug may not be sufficient across high 
throughput datasets, so rather used linear models to 
identify specific features that are better characterized 
in the available data we collect. We are working toward 
both increasing our sample size in future studies as well 
as sorting cells to identify signatures (from single cell 
transcriptomics or proteomics data) across various cell 
populations within AML patient samples to improve our 
ability to predict drug response.

While we were able to compare different flavors of 
regression modeling, we believe that, for our data, there 
is no best choice across all drugs. The logistic regres-
sion failed in many cases with low sample numbers, so 
may not work for all drugs. However, the choice of data 
type does seem to have more of an impact, as genetic 
mutations are robust in cases of targeted therapy (e.g. 
trametinib and quizartinib for NRAS and FLT3 activating 

Fig. 4  All proteomic signatures selected from ex vivo modeling cluster MOLM13 parental cell lines from those that are resistant to trametinib. A 
Heatmap of signature selected from LASSO regression. B Heatmap of signature selected from ElasticNet. C Heatmap of signature selected from 
logistic regression. D Legend



Page 12 of 15Gosline et al. Clinical Proteomics           (2022) 19:30 

mutations respectively), but models involving proteins 
perform best when assessed over all drugs (Fig.  2B and 
Additional file 2: fig. S4). We are looking to expand this 
analysis using a larger patient cohort where we can fur-
ther derive robust protein signatures that can be vali-
dated in the clinic. We believe that our protein-based 
approach can be easily employed in the clinic through 
antibody-based measurements targeting a small set of 
proteins that can more rapidly predict drug response 
than current genetic-based assays.

We also underscore the need for interpretable mod-
els for drug response. While the regression approaches 
select the features that are numerically most valuable for 
predicting drug response, they fail to account for the bio-
logical context of the proteins or genes selected. As such, 

we believe that using the OmicsIntegrator or other tools 
to map selected proteins to the interaction network will 
provide better understanding of what causes drug resist-
ance in some patients, and potentially assist in under-
standing the effects of drug combinations, which are 
becoming increasingly common in clinical trials [62], 62].

In summary, this study presents an effective work-
flow for the future analysis of integrated genomic, tran-
scriptomic, proteomic and phosphoproteomic data 
in larger cohorts, such as the larger Beat AML cohort 
(N = 210). While the patient cohort used in this prelim-
inary study is limited in size, the robust verification of 
results in independent cell line studies provides confi-
dence in the scalability of these methods. Additionally, 
the performance of protein-based models compared 

Fig. 5  Proteomic signatures selected to predict ex vivo response to quizartinib using the A LASSO, B Elastic Net, and C logistic regression cluster 
quizartinib resistant cells from parentals. D The same signature from (C) but with additional cell lines that were developed as models of late and 
early resistance
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to transcriptomic-based models opens up the possibil-
ity of developing antibody-based, CLIA-eligible assays 
for the rapid assessment of likely therapeutic targets 
at the time of biopsy, without the need for DNA or 
RNA sequencing. Lastly we believe that our network 
approaches could help identify potential novel drug 
synergies that could be tested in the clinic.
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