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Many kinds of oxidized proteins are present 
more in the urine of the elderly
Yongtao Liu1†, Xuanzhen Pan1†, Yijin Bao1, Lilong Wei2 and Youhe Gao1* 

Abstract 

Background:  Many studies have shown an association between aging and oxidation. To our knowledge, there have 
been no studies exploring aging-related urine proteome modifications. The purpose of this study was to explore dif-
ferences in global chemical modifications of urinary protein at different ages.

Methods:  Discovery (n=38) cohort MS data including children, young and old groups were downloaded from three 
published studies, and this data was analyzed using open-pFind for identifying modifications. Verification cohort 
human samples (n=28) including young, middle-aged, and old groups, rat samples (n=7) at three-time points after 
birth, adulthood, and old age were collected and processed in the laboratory simultaneously based on label-free 
quantification combined with pFind.

Results:  Discovery cohort: there were 28 kinds of differential oxidations in the old group that were higher than those 
in the young or children group in. Verification cohort: there were 17 kinds of differential oxidations of 49 oxidized pro-
teins in the middle and old groups, which were significantly higher than those in the young group. Both oxidations 
and oxidized proteins distinguished different age groups well. There were also 15 kinds of differential oxidations in old 
age higher than others in the rat cohort. The results showed that the validation experiment was basically consistent 
with the results of the discovery experiment, showing that the level of oxidized proteins in urine increased signifi-
cantly with age.

Conclusions:  Our study is the first to show that oxidative proteins occur in urine and that oxidations are higher in 
older than younger ages. Perhaps improving the degree of excretion of oxidative protein in vivo through the kidney 
is helpful for maintaining the homeostasis of the body’s internal environment, delaying aging and the occurrence of 
senile diseases.
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Background
Aging is a process that everyone must face. For almost a 
century on, scientists have been constantly exploring the 
mysteries of aging and trying to find ways to slow down 
aging. Some studies have found that oxidative stress 

exacerbates aging and age-related diseases [1–6], limiting 
healthful longevity. Therefore, protection against oxida-
tive stress is a common mechanism mediating the pheno-
type observed in animal models of longevity [5].

Protein oxidation product is one of the oxidative stress 
indicators. In this study, a series of oxidations and oxi-
dative proteins were found to change with aging from 
urinary proteome in human and rat cohorts, which 
may provide a distinctive perspective to predict the 
evolving trends in the aging of human, even reversing 
the aging progress. Most age-related pathologies and 
aging processes are accompanied by a dysregulation of 
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ubiquitin-proteasomal system (UPS), leading to the accu-
mulation of some damaged proteins [7]. These damaged 
proteins with structural changes could be excreted by the 
body. Urine filtered plasma proteins originate from dis-
tal organs, including the brain, etc, not only the kidney 
[8–10]. Recent studies indicate that urine offers another 
promising clinically viable matrix for many diseases as 
it can be frequently and noninvasively collected in large 
volumes, especially providing diagnostic and prognos-
tic opportunities [10–14]. Nevertheless, only a hand-
ful of PTMs have been studied and applied in urinary 
biomarker researches [15, 16]. Here, for the first time, 
we explore the relationship between urinary protein 
modifications and aging. We applied a mass spectrom-
etry-based, data-dependent acquisition (DDA) with a 
sequence-tag-based search engine (Open-pFind) [17, 18] 
to discover modifications, through limit-search [19, 20] 
as refined search analyses and random grouping calcula-
tions to achieve technical verification. Then, we also vali-
dated the results in another human cohort and rat cohort 
as biological duplications.

Methods
Acquisition of experimental samples and data
The discovery cohort involved urine samples from 38 
healthy individuals, including children, young and sen-
ior groups. Children (n=22) and senior (n=6) RAW data 
were download from published studies [21, 22], and data 
from the young group (n=10) were obtained from exist-
ing data in our laboratory. Validation cohorts were com-
bined with human urine samples (n=28) and male rat 
samples (n=21). Human cohort included young (n=8), 
middle-aged (n=8) and old (n=12) groups. All 29 healthy 
individuals conformed to periodic physical examination 
with passing medical tests, and their detailed param-
eters and information are available in Additional file  1: 
Table S1. These samples were collected from the clinical 
laboratory of China-Japan Friendship Hospital during a 
fasting physical examination. This study’s ethics approval 
was approved by the China-Japan Friendship Hospital 
review boards, and each participant signed informed 
consent. These urine samples were collected and stored 
in the same environment. We tried to avoid samples 
being exposed to air and reduced the time the sample 
stayed at room temperature. Finally, samples were fro-
zen in a −80 ℃ fridge refrigerator, and then processed 
together.

The rat cohort includeed seven male rats of which the 
mother and father were born from the same brood of the 
same parents. We collected data from their three devel-
opmental periods including childhood (27 days), enter-
ing adulthood (240 days), and reproductive senescence 
(600 days) [23–25]. All rats were bred from birth to the 

indicated day, with the same fodders, and they lived in 
the same environment. The animal experiments were 
approved by the Ethics Review Committee of the Insti-
tute of College of Life Science, Beijing Normal University, 
China. Male rats’ parents were purchased from Beijing 
Charles River Laboratory. The rats were acclimated to 
the environment for one week before the experiment. 
All experimental animals were utilized following the 
“Guidelines for the Care and Use of Laboratory Animals” 
issued by the Beijing Office of Laboratory Animal Man-
agement (Animal Welfare Assurance Number: ACUC-
A02-2015-004). These urine samples were collected in 
the same environment, frozen in −80℃ fridge refrigera-
tors, and then processed together.

Sample preparation for label‑free analysis
The urine samples were reacted with 20  mmol/L dithi-
othreitol (DTT) at 37 ℃ for 1 h to denature the disulfide 
bonds in the protein structure, followed by the addi-
tion of 55 mmol/L iodoacetamide (IAA) in the dark for 
30 min to alkylate the disulfide bond site. Precipitated 
the supernatant with three-fold volumes of pre-cooled 
acetone at −20  °C for 2–4  h, and then centrifuged at 
12,000 ×g for 30 min at 4  °C to obtain protein precipi-
tate. The pellet was then resuspended in an appropri-
ate amount of protein solubilization solution (8  mol/L 
urea, 2 mol/L thiourea, 25 mmol/L DTT, and 50 mmol/L 
Tris). The protein-concentrated solution was measured 
using Bradford analysis. By using the filter-assisted sam-
ple preparation (FASP) method, 100  µg of each sam-
ple was digested with trypsin (Trypsin Gold, Mass Spec 
Grade, Promega, Fitchburg, WI, USA) at a ratio of 50:1. 
After digestion with trypsin at 37°C for 14 h, 10% formic 
acid solution was added to the solution to terminate the 
enzymolysis, and the peptide solution was obtained after 
centrifugation through a 10 kDa ultrafiltration tube. The 
concentration of the peptide was determined using the 
BCA method and passed through a vacuum centrifugal 
concentrator (Thermo Fisher, USA), and the dried pep-
tides were sealed and stored at −80 °C. Additional file 1: 
Table S7 shows the urine sample processing methods of 
the published studies in the literature, and the compari-
son with this method.

Liquid chromatography and mass spectrometry
Before analysis of urine samples of healthy young indi-
viduals, the dried peptide samples should be dissolved in 
0.1% FA (formic acid) for liquid chromatography-mass 
spectrometry analysis, the final concentration should 
be controlled at 0.1  μg/μL, and each sample should be 
analyzed with 1  μg peptide. For DDA experiments, iRT 
(indexed retention time; Biogenesis, Switzerland) cali-
bration peptides were spiked into the sample. Thermo 
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EASY-nLC1200 chromatography system was loaded to 
Pre-column and the analytical column. Proteome data 
was collected by the Thermo Orbitrap Fusion Lumos 
mass spectrometry system (Thermo Fisher Scientific, 
Bremen, Germany). Liquid chromatography analysis 
method: pre-column: 75 μm×2 cm, nanoViper C18, 2 μm, 
100 Å; analytical column: 50 μm×15 cm, nanoViper C18, 
2 μm, 100 Å; injection volume: 10 μL, flow rate: 250 nL/
min. The mobile phase configuration is as follows, phase 
A: 100% mass spectrometric grade water (Fisher Scien-
tific, Spain)/1% formic acid (Fisher Scientific), phase B: 
80% acetonitrile (Fisher Scientific, USA)/20% water/1‰ 
formic acid, 120 min gradient elution: 0 min, 3% phase 
B; 0–3 min, 8% phase B; 3–93 min, 22% phase B; 93–113 
min, 35% phase B; 113–120 min, 90% phase B; mass spec-
trometry method, ion source: nanoESI, spray voltage: 2.0 
kV, capillary temperature: 320  ℃, S-lens RF Level: 30, 
resolution setting: level 1 (Orbitrap) 120,000 @m/z 200, 
Level 2 30,000 (Orbitrap) @m/z 200, precursor ion scan 
range: m/z 350-1350; product ion scan range: from m/z 
110, MS1 AGC: 4e5, charge range: 2–7, Ion implanta-
tion time: 50 ms, MS2 AGC: 1e5, ion implantation time: 
50  ms, ion screening window: 2.0 m/z, fragmentation 
mode: high energy collision dissociation (HCD), energy: 
NCE 32, Data-dependent MS/MS : Top 20, dynamic 
exclusion time: 15s, internal calibration mass: 445.12003. 
Additional file  1: Table  S8 shows the urine sample data 
collection methods of published studies in the literature 
and compares them with our method.

Analysis of urinary proteomes with the MaxQuant 
and Perseus software tool
The validation cohorts included 28 healthy individuals 
and 7 rats, allowing for robust statistics when perform-
ing label-free quantitative comparisons. Each sample 
was run in technical triplicates for more reliable gen-
eration of three RAW files that contained all acquired 
full MS and MS2 spectra. Base peak chromatograms 
were inspected visually in Xcalibur Qual Brower ver-
sion 4.0.27.19 (Thermo Fisher Scientific). RAW files were 
processed by MaxQuant version 1.6.17.0 (http://​www.​
maxqu​ant.​org) using default parameters unless otherwise 
specified [21, 26–29]. All RAW files of one species were 
analyzed together in a single MaxQuant run. Database 
searches were performed using the Andromeda search 
engine included with the MaxQuant release [30] with 
the Uniprot human and rat sequence database (Novem-
ber 27, 2020; 196,211 sequences; April 17, 2021; 36,181 
sequences). Precursor mass tolerance was set to 4.5 ppm 
in the main search, and fragment mass tolerance was 
set to 20 ppm. Digestion enzyme specificity was set to 
Trypsin/P with a maximum of two missed cleavages. A 
minimum peptide length of seven residues was required 

for identification. Up to five modifications per peptide 
were allowed; acetylation (protein N-terminal) and oxi-
dation (Met) were set as variable modifications, and car-
bamidomethyl (Cys) was set as fixed modification. No 
Andromeda score threshold was set for unmodified pep-
tides. A minimum Andromeda score of 40 was required 
for modified peptides. Peptide and protein false discov-
ery rates (FDR) were both set to 1% based on a target-
decoy reverse database. Proteins that shared all identified 
peptides were combined into a single protein group. If 
all identified peptides from one protein were a subset of 
identified peptides from another protein, these proteins 
were combined into that group. Peptides that matched 
multiple protein groups (“razor” peptides) were assigned 
to the protein group with the most unique peptides. 
“Match between run” based on accurate m/z and reten-
tion time was enabled with a 0.7 min match time window 
and 20  min alignment time window. Label-free quan-
titation (LFQ) was performed using the MaxLFQ algo-
rithm built into MaxQuant [31]. Peaks were detected in 
Full MS, and a three-dimensional peak was constructed 
as a function of peak centroid m/z (7.5 ppm threshold) 
and peak area over time. Following de-isotoping, pep-
tide intensities were determined by extracted ion chro-
matograms based on the peak area at the retention time 
with the maximum peak height. And peptide intensities 
were normalized to minimize overall proteome differ-
ences based on the assumption that most peptides do 
not change in intensity between samples. Protein LFQ 
intensity was calculated from the median of pairwise 
intensity ratios of peptides identified in two or more 
samples and adjusted to the cumulative intensity across 
samples. Quantification was performed using razor and 
unique peptides, including those modified by acetylation 
(protein N-terminal) and oxidation (Met). A minimum 
peptide ratio of one was required for protein intensity 
normalization, and “Fast LFQ” was enabled. Only pro-
teins that were quantified by at least two unique peptides 
were used for analysis. RAW data of mass spectrometry 
are available in iProX Datasets under the Project ID: 
IPX0002313003 (https://​www.​iprox.​org/​page/​HMV006.​
html).

Data processing was performed Perseus version 
1.6.14.0 (http://​www.​perse​us-​frame​work.​org) [32, 33]. 
Contaminants, reverse, and protein groups identified by 
a single peptide were filtered from the dataset. FDR was 
calculated as the percentage of reverse database matches 
out of total forward and reverse matches. Protein group 
LFQ intensities were log2 transformed to reduce the 
effect of outliers. Protein groups missing LFQ values were 
assigned values using imputation. Missing values were 
assumed to be biased towards low abundance proteins 
that were below the MS detection limit, referred to as 

http://www.maxquant.org
http://www.maxquant.org
https://www.iprox.org/page/HMV006.html
https://www.iprox.org/page/HMV006.html
http://www.perseus-framework.org
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“missing not at random”, an assumption that is frequently 
made in proteomics studies [27, 33, 34]. Imputation was 
performed separately for each group from a distribution 
with a width of 0.3 and a downshift of 1.8.

Open search to uncover and identify global modifications 
and refined search for verification in pFind software tool
RAW data files were searched against Homo sapiens 
Uniprot canonical database. Database searches were 
performed with pFind studio (Version 3.1.5) [17], using 
default parameters unless otherwise specified [35–37]. 
Precursor ion mass and fragmentation tolerance were set 
as 10 ppm and 20 ppm, respectively. The maximum num-
ber of modifications allowed per peptide was three, as 
was the maximum number of missed cleavages allowed. 
The minimum peptide length was set to six amino acids. 
To discover global modifications, the Open Search was 
selected (Additional file  1: Fig. S6 shows Open-search 
and refined-search detailed parameters). For protein-
level analysis, mass shifts of +15.9949  Da (methionine 
oxidation) and +28.0313  Da (dimethylation, Light, 
N-term/K) were searched as variable modifications; mass 
shifts of +57.0214  Da (Carbamidomethyl cysteine) was 
searched as fixed modifications. The FDRs were esti-
mated by the program from the number and quality of 
peptide-spectrum-match (PSM) to the decoy database. 
The FDRs at spectrum, peptide, and protein levels were < 
1%, and the Q-value at the protein level was less than 1%. 
Data are analyzed using both forward and reverse data-
base retrieval strategies.

Refined-search did not select Open Search option. 
And for fixed modifications, mass shifts of +28.0313 Da 
(dimethylation, Light, N-term/K), +57.0214 Da (Carba-
midomethyl cysteine), +15.9949  Da (methionine oxida-
tion), −17.0265 Da (Pyro-glu from Q) and +114.0429 Da 
(cystine glycineglycine/double carbamidomethylation) 
were searched, which are top five in modifications pro-
portion rank of open-search results. Meanwhile, select-
ing them as fixed modifications in the next refined-search 
can reduce the false-positive rate of validation results as 
a quantity control. All oxidations were searched as vari-
able modifications, including mass shifts of +15.9949 Da 
(oxidations), +31.9898Da (Dioxidations), and +47.9847 
Da (Trioxidations).

Quantification of heavy to light ratios (RH/L) was per-
formed using pQuant as previously described [36, 38], 
which directly uses the RAW files as the input. pQuant 
calculates RH/L values based on each identified MS scan 
with a 15 ppm-level m/z tolerance window and assigns 
an interference score (Int. Score, also known as confi-
dence score) to each value from zero to one. In princi-
ple, the lower the calculated Int. Score, the less co-elution 
interference signal was observed in the extracted ion 

chromatograms. In this regard, the median values of oxi-
datively modified peptide ratios with σ less than or equal 
to 0.5 were considered to calculate site-level ratios. For 
each independent experiment, only proteins identified by 
two or more distinct peptides with quantified PSM RH/L 
values were retained for further analysis. In this regard, 
the RH/L value of each identified protein was calculated 
as the median of all corresponding PSM RH/L values. For 
site-level analysis, a differential modification of 15.9949 
Da on probe-derived modification was used for quantify-
ing PSM RH/L values. For each independent experiment, 
The RH/L value of each oxidatively modified site was cal-
culated as the median of all corresponding PSM RH/L 
values.

Statistical analysis
We required the proteins to be removed if the CVs of the 
protein intensity in QC samples were more than 30 %. 
Log ratios were calculated as the difference in log2 LFQ 
intensity averages between different age groups. Two-
tailed, unpaired, heteroscedastic Student’s t-test calcula-
tions were used in statistical tests as histograms of LFQ 
intensities showed that all datasets approximated normal 
distributions. P-value<0.05 was considered statistically 
significant. Base 2-fold-change values for ratios <1 are 
represented as negative reciprocals of the ratios.

For quantify modifications, after open-search and 
refined-search, we obtain “pd.all_result” document, 
which obtains the number of identified peptides and the 
protein groups to which these modifications belong. As 
well-known, multiple kinds of modifications can occur on 
a single peptide, and the same kind of modifications can 
occur on different sites of the same peptide (Additional 
file 1: Fig. S7a). However, information on the total num-
ber of sites where a modification occurs or on how many 
types of peptides it occurs on is not provided directly. 
Therefore, we wrote a program to extract this informa-
tion from the “pd.all_result” document. The program 
codes are available (Supplementary site calculate method 
code). Most of the significantly differential modifications 
in “Species” are basically in line with “Sites” (Additional 
file  1: Fig. S7b). Comparisons of modifications propor-
tions (one modification’s sites/total modifications sites 
in this sample) between different groups were conducted 
using two-sided paired t-tests. The differential modifica-
tions were selected according to a P-value < 0.05 and a 
fold change >2 or <0.5.

Meanwhile, we also used a mini-program (designed 
and developed by our lab) for random grouping testing 
to eliminate interruptions between groups. Briefly, the 
program is based on “permutation and combination”. For 
example, for a bunch of m pieces of data divided into n 
groups, there are Cn

m kinds of combinations, our program 
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will calculate the differential modifications or proteins 
probability of occurring in these random combinations, 
and the amount if they are still differential (if they satisfy 
the above conditions).

Bioinformatics analysis
Unsupervised clustering and hierarchical clustering 
analysis were performed using the ‘Wu Kong’ platform 
(https://​www.​omics​oluti​on.​org/​wkomi​cs/​main/) [39]. 
The distance algorithms of both rows and columns were 
performed by correlation linkage algorithm. ROC curves 
and PCA analysis were performed using Hiplot platform 
(https://​hiplot.​com.​cn/​basic/​roc). The differential pro-
teins were analyzed by Gene Ontology (GO) based on 
the biological process, cellular component, molecular 
function, and KEGG using DAVID (https://​david.​ncifc​
rf.​gov/) [40]. Canonical pathways and diseases or func-
tions annotation for significantly differentially expressed 
proteins were generated by g:Profiler toolkit[41] (https://​
biit.​cs.​ut.​ee/​gprof​iler/​gost), functional profiling of each 
protein set was conducted using the GO [42], KEGG 
[43] and WikiPathways databases [44], the full set of GO 
molecular function, GO biological process, KEGG and 
WikiPathway terms are provided in Additional Figs. Pro-
tein interaction network analysis was performed using 
STRING (https://​string-​db.​org/​cgi/​input.​pl) based on 
the STRING database [45]. T-test, analysis of variance, 
Mann-Whitney U-test, and Kruskal-Wallis test were used 
to evaluate the statistical comparison between groups. 
Statistical analysis was performed using GraphPad Prism 
v9.0. p-value <0.05 was considered significant.

Based on the huge amount of calculation required to 
limit the algorithm search, this article by virtue of the 
supercomputing service provided by the platform of 
the Supercomputing Center of Beijing Normal Univer-
sity. The hardware information was as follows: Windows 
Computing Platform (8480-4 Windows VM1), config-
ure 4 Xeon Platinum 8160 processors, each processor has 
24 cores, each CPU main frequency is 2.1GHz, memory 
speed is 2666 MHz, and each node is configured with 
1TB DDR4 2666 ECC REG memory (32*32GB). Total 
hard disk capacity ≥ 9 TB, virtual machine configuration: 
Windows 10, number of cores: 48, memory: 512 GB, total 
hard disk capacity ≥ 2 TB (expandable).

Results
Cohorts characteristics
In discovery cohort, the healthy people samples con-
sisted of children, the young and senior groups (n=38). 
The children and senior groups were from published 
data [21, 22], the young group came from existing data 
in our laboratory. The validation collection (n=28) con-
tained young and middle-aged and the old individuals 

to eliminate environmental and technological differ-
ences. Finally, we collected seven male rats’ urine sam-
ples when they were in childhood, entering adulthood, 
and undergoing reproductive senescence [23–25]. The 
seven rats’ mothers and the fathers were born from 
the same brood of the same parents. Detailed informa-
tion of healthy cohorts is presented in Additional file 1: 
Table S1.

Overview of discovery cohort modifications in urinary 
proteomics
Relying on the label-free quantitative proteome method, 
the experimental results of urine samples were obtained 
by LC-MS/MS analysis. After retrieving data (RAW) 
based on pFind software, the analysis results were shown 
in pBuild. The results were sorted and counted (flow-
chart in Fig.  1a). Here, we found that some oxidations 
and amino acid (AA) substitutions were higher in the 
old group than others. These proteins’ structures change 
with aging and in turn, their structural variation also 
influences aging (Fig.  1b). First, we used Open-search 
method to identify a total of 1480 modifications in 38 
samples; these modifications occurred at 20 amino acids 
and the N and C terminals in a protein chain. Additional 
file  1: Table  S2 showed the information on the propor-
tion of modifications occurring at each amino acid. The 
quantified modification intensities spanned over seven 
orders of magnitude, in which the top ten most abundant 
proteins contributed 81–91% of the total modification 
intensity of the entire (Fig. 1c). The identified modifica-
tion numbers among three different ages were shown in 
Fig.  1d. The overlap between modifications changing at 
children, young and senior stages was significant using a 
two-tailed test (p-value < 0.05, fold change >2 or <0.5), 
and all significantly differential modifications were 242 
(Fig. 1e). Normed principal-component analysis was used 
to characterize changes of the aging signature modifica-
tions by total modifications (Fig. 1f ) and significantly dif-
ferential modifications (Fig. 1g) in sites, respectively. Both 
displayed effective separation of different age groups. 
As shown in the histogram of Fig. 1h, we calculated the 
ratio of different amino acid modifications according to 
the ratio (modification sites number/ peptide number) of 
each modification in each age group. At the same time, 
we found that among the non-artificial modifications of 
proline(Pro, P), tryptophan(Trp, W), tyrosine(Tyr, Y), 
cysteine(Cys, C), leucine(Leu, L), phenylalanine(Phe, F), 
valine(Val, V) and isoleucine(Ile, I), oxidations and amino 
acid substitutions were dominant, especially in proline, 
tryptophan, tyrosine, leucine, phenylalanine and isoleu-
cine, the oxidations rate of the senior group was higher 

https://www.omicsolution.org/wkomics/main/
https://hiplot.com.cn/basic/roc
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
https://string-db.org/cgi/input.pl
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Fig. 1  Overview of discovery cohort for chemical modifications in urinary proteomics. A Experimental flow chart, schematic representation of 
analysis of the urinary proteome. Discovery cohorts contained 38 samples from 1 to 81 years, and validation cohorts contained 29 samples from 21 
to 72 years. First, we use D open-search to find out modifications of aging signature, next we used refined-search to retrieve these modifications for 
verification. B Conjectures about the relationship between aging and post-translational modification of proteins. Changes in the structure of some 
proteins are not only the cause of aging but also the phenomenon accompanying aging, and these changes in the structure of proteins damage 
their functions and are even harmful to the body, they are excreted in the urine. C Median modification abundance distribution as calculated from 
MS intensities of quantified sites of each modification. D Intersections between waves of aging global modifications in discovery cohorts. E Venn 
diagram of significantly changed modifications. The overlap between waves of aging modifications (n=242; p-value<0.05, fold change>2 or <0.5), 
significance was tested using the t-test. F and G, PCA of total modifications (R:0.994, P:0.001) and PCA of significantly changed modifications (R:1, 
P:0.001). H Statistics on the number and proportion of various amino acid site modifications (In order to better display the data, Carbamidomethyl 
[C] and Oxidation [M] were removed because they accounted for almost 60% of the total number of artefacts.) between the three age groups. 
The abscissa is the ratio of the number of various amino acid modification sites to the sum of the total modifications’ sites identified. The pie chart 
shows the proportion of the same amino acid modification between different age groups, the detailed content of each part has been placed in the 
schedule
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than that in other age groups, as shown in the pie chart 
(Fig. 1h).

Oxidations and AA substitutions changing in the discovery 
cohort
Among all modifications, we found that oxidations 
and AA substitutions had obvious trends reflecting the 
increase in age. Unsupervised cluster analysis was per-
formed on the global modifications (n=1480) and all 
significant (n=242) modifications, and each sample was 
grouped into its age group (Fig.  2a and b). And cluster 
analysis showed that it could be an obvious feature to 
distinguish three different age groups very well. A total 
of 242 modifications with significant differences using a 
two-tailed test (p-value < 0.05, fold change >2 or <0.5) 
and the changes in each modification between different 
groups could be obtained through calculation and sta-
tistics. Here we listed changes in 26 oxidations and 58 
AA substitutions (Additional file 1: Table S3). And every 
modification classification was quoted from the UniMod 
website (http://​www.​unimod.​org/​modif​icati​ons_​list.​php).

Due to the significant difference in oxidative modifica-
tions, and its close correlation with age, we found out all 
oxidative modifications in total modifications, including 
oxidative modifications of proline, tryptophan, tyrosine, 
cysteine, methionine, and other insignificant and non-
differential oxidative modifications (34 types in total). 
Unsupervised cluster analysis showed that it could be a 
perfect feature to distinguish these different age groups 
well, and Fig. 2c showed the details. Meanwhile, all amino 
acid substitutions (n=383) cluster analyses could dis-
tinguish different age groups very well (Fig. 2d). Among 
the significantly up- or down-regulated modifications in 
the older individuals, most oxidations showed signifi-
cant changes compared to both children and young peo-
ple (Fig. 2e, f ). Oxidation of methionine was eliminated 
because it may be affected during the experiment.

To minimize the false-positive results brought by 
Open-search, for the significantly expressed oxidation 
modifications and AA substitution obtained, the factic-
ity of these modifications was further checked by refined 
search identification. All the differential modifications 
information was added in the modification type, while 
the other search parameters remain unchanged. Due 
to the huge amount of calculation when performing a 
refined search with various modifications, supercomput-
ing was used here. Among them, the expression of 11 oxi-
dation modifications and 3 AA substitutions increased 
with age signally (Fig.  2g). Most of the comparisons of 
seniors with others were significantly differential using 
a two-tailed test (p-value <0.001), indicating that these 
modifications had higher expression than young and chil-
dren (Fig.  2h, i). The performance of single confirmed 

candidate markers screened by the refined search analy-
sis, which could be expressed in each group, was quali-
fied both graphically and statistically with the ROC 
curve method between the senior group and the other 
two groups (as a whole group) [46]. Wilcoxon Rank-Sum 
test was used to establish the statistical significance of a 
single marker and evaluate the significance of the whole 
ROC curve. Four oxidations and 1 AA substitution’s had 
an AUC (area under the curve) >0.99 (Fig. 2j), and model 
performance parameters and Delong test were listed in 
Additional file 1: Table S4.

After scrambling the data serial numbers between dif-
ferent groups, they were randomly and independently 
grouped to form new groups, which were screened for 
differential modification according to the same standard 
(p-value<0.01, fold change >2 or <0.5) to verify the false-
positive rate of 11 oxidations and 3 AA substitutions. All 
the data from 38 all samples (children and young people 
as a group, 32 samples, the elderly as a group, 6 sam-
ples) were randomly divided into two groups with a total 
of 2,760,681 ( C6

38
 ) different combinations. Through the 

same differential screening conditions, the combination 
under each condition was statistically analyzed. After 
detailed calculation and statistics, random combinations 
of ten oxidative modifications and three AA substitutions 
were obtained (Additional file 1: Table S5). Through the 
random grouping test, it was found that the randomness 
of the 14 modifications was found to be approximately 
2%, and the reliability was more than 95%. The difference 
between these 14 modifications in different age groups 
was less likely to be generated at random.

Oxidations and oxidized proteins changing in validation 
cohort
To verify the oxidative modification in different age 
groups, we next collected 28 samples from individuals 
21–72 years old to repeat the above experimental pro-
cess. First, using open-search to obtain global modifica-
tions, the hierarchical cluster analysis could distinguish 
young from the middle and the older individuals (Fig. 3a). 
Given the importance of oxidative modifications, we 
used 1 oxidation to retrieve by refined search, of which 
the trend still increased with aging. We found 17 modi-
fications expression increased with aging, belonging to 
post-translation and chemical derivative modifications to 
the exclusion of artifacts and hierarchical cluster analysis 
of 17 oxidations distinguished the young group from the 
middle-aged and senior people (Fig.  3b, c). There were 
seven differentially expressed oxidations among young, 
middle-aged, and old groups that are potential diagnos-
tic markers for aging (Fig.  3d). The performance of sin-
gle confirmed candidate markers screened by the refined 
search analysis, which could be expressed in each group, 

http://www.unimod.org/modifications_list.php
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Fig. 2  Oxidations and AA substitutions changing with aging in discovery cohort. A Unsupervised cluster analysis results of the total modifications 
for three groups samples. Children group covers with green, and young age group covers with yellow, the senior group covers with blue. B 
Heatmap depicting the levels of differentially identified modifications in discover cohorts with different age groups. The graphs show the relative 
intensity of differentially expressed modifications. Proteins included in the heatmap meet the requirement that fold change >2 or <0.5 and p-value 
(t test) of <0.05 comparing different age samples. Color bar represents the relative intensity of identified proteins from −4 to 4. C and D Heatmap 
depicting the levels of differentially identified oxidations and AA substitutions among different ages. The graphs show the relative intensity of 
differentially expressed modifications. Color bar represents the relative intensity of identified proteins from −6 to 6. E and F The scatter plot graphs 
showing all differentially expressed oxidations that are potential diagnostic markers for aging. Comparison of oxidation differences among children 
group, young age, and senior group. The horizontal line in the middle of the data represents the median, the upper and lower color lines represent 
the data quartile range, and the upper part of the data represents the significance between groups. Data are presented as mean ± SD. As the 
number of labels increases, the significance increases. (*p <0.05, **p <0.01, ***p <0.005, ****p <0.001). G 14 modifications changed trend with age. 
The expression of 11 oxidation modifications and 3 AA substitutions increased with aging. H and I The scatter plot histogram graphs showing 11 
differentially expressed oxidation modifications and 3 AA substitutions that are potential diagnostic markers for aging. Comparison of oxidation 
differences among children group, young age, and senior group. The horizontal line in the middle of the data represents the median, the upper and 
lower color lines represent the data quartile range, and the upper part of the data represents the significance between groups. Data are presented 
as mean ± SD. As the number of labels increases, the significance increases. (*p <0.05, **p <0.01, ***p <0.005, ****p <0.001). J The ROC plot of 4 
oxidations and an AA substitution
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was qualified both graphically and statistically with the 
ROC curve method between the young group and the 
other two groups (as a whole group) [46]. Wilcoxon 
Rank-Sum test was used to establish the statistical signifi-
cance of a single marker and evaluate the significance of 
the whole ROC curve. Three oxidations had AUC (area 
under the curve) >0.9 (Fig. 3e), and model performance 
parameters and Delong test are listed in Additional file 1: 
Table S6. In the end, we made a comparison between 26 
differential oxidations in discovery and 17 oxidations in 
validation cohorts of which expression quantities were all 
increasing with aging (Fig. 3f ).

As for seven differentially expressed oxidations, we 
found the proteins to which they belong. The oxidative 
sites of osteopontin (gene: SPP1) were the highest among 
all oxidative proteins. Osteopontin is a multifunctional 
protein, that has important functions in cardiovascu-
lar diseases, cancer, diabetes, and kidney stone diseases 
and in the process of inflammation, biomineralization, 
cell viability, and wound healing [47–49]. These oxidative 
osteopontins maybe have been damaged and lost their 
function, even indicating osteoporosis. Among oxida-
tive proteins, we found 4 proteins belonging to Platelet 
Amyloid Precursor Protein Pathway using DAVID Bio-
informatics Resources, they are coagulation factor II, 
thrombin(F2), collagen type IV alpha 2 chains (COL4A2), 
Urokinase-type plasminogen activator (PLAU), plas-
minogen (PLG). The 4 proteins’ oxidative sites rank 
was higher, and in the young group, only 2 of the 4 pro-
teins had few oxidative sites, indicating that with aging 
beginning these proteins may become damaged, even 
causing age-related pathologies. Meanwhile secreted 
phosphoprotein 1(SPP1) and collagen type IV alpha 2 
chain (COL4A2) also belong to Regulators of Bone Min-
eralization. (https://​david.​ncifc​rf.​gov).We used oxidative 
proteins to make protein-protein interaction (PPI, PPI 
enrichment p-value < 1.0e-16) and functional enrich-
ments analysis (Fig. 3g and Additional file 1: Fig. S1). To 
determine the biological relevance of identified protein 

networks, we used the g:Profiler toolkit. Functional pro-
filing of each protein set was conducted using the GO, 
KEGG, and WikiPathways databases. The full set of GO 
molecular function, GO biological process, KEGG, and 
WikiPathway terms are provided in Additional file 1: Fig. 
S2.

MS data were acquired in the DDA scan mode for 28 
samples, using MaxQuant and Perseus software process-
ing. After normalizing oxidative proteins intensity, hier-
archical cluster analysis (HCA) of these oxidative proteins 
displays showed common trends in different age stages 
(Fig. 3h). Next, we compared each stage (young-middle, 
middle-old. Young-old, young-middle and old) to obtain 
differentially expressed proteins using two-tailed tests 
(p-value < 0.05, fold change > 2 or <0.5). The overlap of 
the differentially expressed proteins between each group 
was shown in Additional file 1: Fig. S3. And we used the 
common differential proteins between O-Y and MO-Y 
to make functional annotation through DAVID and 
g:Profiler. We found that the top biological processes are 
related to signaling receptor binding, negative regulation 
of endopeptidase activity, and extracellular matrix struc-
tural constituent; the top KEGG pathways were renin-
angiotensin system, protein digestion and absorption and 
pathways in cancer (more detailed and other functional 
profiles were shown in Additional file 1: Fig. S4). Mean-
while, we found the five differentially expressed proteins 
of M-Y were involved in the KEGG pathway Ras signal-
ing pathway, and else 5 differentially expressed proteins 
of O-M were involved in the biological process response 
to oxidative stress (Additional file 1: Fig.S5). And all these 
proteins were also involved in some immune- and inflam-
matory-associated pathways (Additional file  1: Fig. S4, 
S5). Heatmap of unsupervised cluster analysis depicted 
the levels of all identified proteins intensity from old to 
young (Fig. 3i), in which the old samples are classified as 
one closest cluster. Comparing intensity as aging, the five 
proteins showed an upwards trend with aging (Fig.  3j), 
PLAU and F2 differentially expressed using two-tailed 

(See figure on next page.)
Fig. 3  Open and refined search of validation cohorts. A Heatmap depicting the levels of global modifications among different ages. The graphs 
show the relative intensity of young and middle-old group. Color bar represents the relative intensity of identified proteins from −4 to 4. B 
Hierarchical cluster analysis of 17 oxidations which are all belong to post-translational and chemical derivative modifications to the exclusion of 
artefact modifications. Color bar represents the relative intensity of identified proteins from −4 to 4. C The scatter plot histogram graphs showing 17 
oxidations fluctuation change. Comparison of oxidation differences among young, middle-age, and old group. D The scatter plot histogram graphs 
showing seven differentially expressed oxidations that are potential diagnostic markers for aging. The horizontal line in the middle of the data 
represents the median, the upper and lower color lines represent the data quartile range, and the upper part of the data represents the significance 
between groups. C and D data are presented as mean ± SD. As the number of labels increases, the significance increases. (*p <0.05, **p <0.01, ***p 
<0.005, ****p <0.001). E The ROC plot of 7oxidation and an AA substitution. F The comparison of differentially expressed oxidations in discovery and 
validation cohorts. Each histogram represents the proportions of each modification, showing how the same modification compares at different 
ages. G STRING protein–protein interaction (PPI) network analysis of oxidative proteins (PPI enrichment p-value< 1.0e-16 ). H hierarchical cluster 
analysis (HCA) of these oxidative proteins distinguishes different ages well. I Heatmap of unsupervised cluster analysis depicting the landscape of 
all identified proteins from old to young. J The trends of 5 proteins with aging, PLAU and F2, were differentially expressed using two tailed tests, and 
the expression increased with aging (p value < 0.05, fold change > 2). (*p <0.05, *****p <0.00001)

https://david.ncifcrf.gov


Page 10 of 14Liu et al. Clinical Proteomics           (2022) 19:22 
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tests, and their expression incresed with aging (p-value < 
0.05, fold change > 2).

Oxidations changing in male rat cohort
Seven male rats of inbreeding were fed from birth, we 
collected their urine on 27 days, 240 days, and 600 days 
which is equal to preadolescents, adults, and old as 
humans [25] (Fig.  4a also shows rat validation flow-
chart). After open-search, unsupervised cluster analyses 
of all identified modifications and all oxidations depicted 
global modifications variation tendency and oxidations 
changing in old rats significantly distinguished from 

young and adult stages (Fig. 4b, c). Fifteen non-artificial 
oxidations showed an upwards trend with aging, hier-
archical cluster analysis of these was shown in Fig.  4d. 
Among them, eight oxidations were differential in old 
rats compared to other groups, and they showed an 
almost linear increase with aging as shown in Fig. 4e.

Discussion
Judging from the large amount of evidence discovered 
over the years, the damage accumulation theory is one 
of the most widely accepted where the accumulation 
of damage is thought to be caused by oxidative stress, 

Fig. 4  Oxidations changing with aging in male rat cohort. A Experimental flow chart of rat cohort. B and C open-search, unsupervised cluster 
analyses of both all identified modifications and all oxidations state oxidations in old group is obviously different from the low age groups. D 15 
oxidations show an upwards trend with aging. E 8 oxidations are differential in old from others, and they are almost linear increasing with aging 
using two tailed tests. Data are presented as mean ± SD. As the number of labels increases, the significance increases. (*p <0.05, **p < 0.01, ***p < 
0.005, ****p < 0.001)
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and oxidative stress promotes protein modification and 
senescent cells how to respond to them through protein 
stabilization mechanisms, including antioxidant enzymes 
and proteolytic systems [50–53]. Native, functional pro-
teins suffering oxidation and other modifications would 
be damaged, unfolded, and dysfunctional [7]. Meanwhile, 
accompanied by dysregulation of UPS, autophagy, and 
the cross-talk between both systems, these oxidatively 
modified/damaged by ROS proteins accumulation, age-
related pathologies, and the aging process will aggravate 
[54]. With the normal aging process, damaged proteins 
accumulate from organs to blood, and urine filtered 
plasma proteins [9, 10], which obtain damaged proteins. 
Here, this is the first time to stratify different age people 
from global modifications, all oxidations can distinguish 
old people from others; there was a positive correlation 
between a series of oxidations and age. Unlike previous 
studies in which a single oxidative site was found on a 
protein [50, 51, 55–57], this discovery of a series of oxi-
dations reveals oxidative proteins accumulate in old peo-
ple’s urine. Oxidative proteins and differential protein 
expression were found to be higher in older group than 
in other age stages. These proteins are involved in many 
biological processes including Platelet Amyloid Precur-
sor Protein Pathway, oxidative stress pathway, and some 
immune and inflammatory associated pathways.

The comprehensive modification of urine protein can 
provide a new model for monitoring the normal aging of 
the human body. Because urine is obtained after repeated 
filtration of blood, its sensitivity can better express the 
state of the body. Normal urine can also have these oxi-
dized (damaged) proteins, but when their expression or 
modification changes, they may indicate abnormal aging; 
and studying the structure of these proteins in urine 
could provide new insights into the search for drug tar-
gets for diseases of aging.

Recently, many studies have demonstrated that a dis-
tal body fluids, such as urine, contain organ proteins 
and even brain-specific proteins, and urine can pro-
vide information about the mutation status of disease 
and uncover its molecular basis [10, 58–60]. However, 
global modifications in urinary proteome perspective 
are used to predict the evolving trends in the aging 
of humans or reveal aging process is the first time. 
Finally, changes in oxidations and proteins landscape 
that revealed damaged or oxidative proteins excreted 
by the body into urine and accumulate in urine as nor-
mal aging processing, furthermore, these oxidative pro-
teins can provide information about the prognosis of 
abnormal aging. The limitation of this study is that the 
dataset lacks a wider range of ages samples, and we will 
collect larger datasets to explore why these proteins 

are modified and whether there are other differential 
modifications. We purpose that the excretion of these 
oxidized proteins are excreted through urine to help to 
maintain homeostasis in the body. These features of old 
people will guide us in further exploring the aging pro-
cess, mechanistic studies, and clinical treatments.

Conclusion
In this study, we found that some modifications were 
higher in older than younger ages, among which oxi-
dations accounted for a large proportion. These modi-
fied proteins may be excreted from the body due to 
structural changes, resulting in loss of function or even 
harmful effects on the body. Metabolizing or reducing 
the accumulation of these proteins may be of great sig-
nificance for maintaining homeostasis in vivo and even 
delaying aging and aging-related diseases.
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