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Serum proteomics unveil characteristic 
protein diagnostic biomarkers and signaling 
pathways in patients with esophageal 
squamous cell carcinoma
Wenhu Liu1†, Qiang Wang2†, Jinxia Chang1, Anup Bhetuwal3, Nisha Bhattarai4, Fan Zhang1* and Jiancai Tang1* 

Abstract 

Background:  Esophageal squamous cell carcinoma (ESCC) is a common digestive tract malignant tumor with high 
incidence and dismal prognosis worldwide. However, the reliable biomarkers for clinical diagnosis and the underlying 
signaling pathways insights of ESCC are not unequivocally understood yet. The serum proteome may provide valu-
able clues for the early diagnosis of ESCC and the discovery of novel molecular insights.

Methods:  In the current study, an optimized proteomics approach was employed to discover novel serum-based 
biomarkers for ESCC, and unveil abnormal signal pathways. Gene ontology (GO) enrichment analysis was done by 
Gene Set Enrichment Analysis (GSEA) and Metascape database, respectively. Pathway analysis was accomplished by 
GeneCards database. The correlation coefficient was assessed using Pearson and distance correlation analyses. Prior-
itized candidates were further verified in two independent validation sets by enzyme-linked immunosorbent assay 
(ELISA) and immunohistochemistry (IHC) staining.

Results:  A total of 633 non-redundant proteins were identified in the serum of patients with ESCC, of which 59 and 
10 proteins displayed a more than 1.5-fold increase or decrease compared with healthy controls. Verification was 
performed for six candidate biomarkers, including S100A8/A9, SAA1, ENO1, TPI1 and PGAM1. Receiver operating char-
acteristics (ROC) curve plotting showed the high diagnostic sensitivity and specificity of these six protein molecules as 
a biomarker panel: the area under characteristic curve (AUC) is up to 0.945. Differentially expressed proteins were sub-
jected to functional enrichment analysis, which revealed the dysregulation of signaling pathways mainly involved in 
glycolysis, TLR4, HIF-1α, Cori cycle, TCA cycle, folate metabolism, and platelet degranulation. The latter finding was all 
the more noteworthy as a strong positive correlation was discovered between activated glycolysis and TLR4 pathways 
and unfavorable clinicopathological TNM stages in ESCC.

Conclusions:  Our findings propose a potential serum biomarker panel for the early detection and diagnosis of ESCC, 
which could potentially broaden insights into the characteristics of ESCC from the proteomic perspective.
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Introduction
Esophageal squamous cell carcinoma (ESCC), the major 
histopathological subtype of esophageal cancer, is one of 
the most lethal malignancies of digestive tumors world-
wide, with a 5-year survival rate of less than 20% [1, 2]. 
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The pathogenesis of ESCC is concealed due to the lack of 
specific signs or symptoms at the early stage, but once the 
patients start to display clinical symptoms, they would 
have already developed a locally advanced or metastatic 
tumor and missed the optimal treatment period. There-
fore, the poor clinical outcome of ESCC is the most dis-
mal among digestive tumors. Despite the advances in 
therapeutic strategies, early detection and diagnosis of 
ESCC still faces difficulty in clinical practice, mainly due 
to the lack of highly sensitive and specific diagnostic pro-
tein biosignature, and many unknowns of its biological 
characteristics.

Several potential tumor biomarkers have been reported 
in various biofluids of ESCC, such as tissue, blood and 
urine. Cui et  al. demonstrated that Profilin 2 (PFN2) 
expression was markedly increased in tissues of ESCC 
patients compared with controls. Its role in promot-
ing ESCC progression, metastasis and portending poor 
prognosis suggests the potential of PFN2 as an early 
biomarker [3]. Serum HOX transcript antisense RNA 
(HOTAIR) was reported to be correlated with patho-
logical TNM stages, which might serve as a potential 
biosignature for the diagnosis of ESCC [4]. Five miR-
NAs (miR-1273f, miR-619-5p, miR-150-3p, miR-4327, 
and miR-3135b) with noticeable increase in the urine 
of ESCC patients implied their excellent diagnostic 
performance [5]. Recent genomics studies have dem-
onstrated the widespread mutational profile of ESCC, 
involving genes regulating cell cycle, epigenetic pro-
cess, and certain mutations leading to dysregulation of 
WNT, NOTCH and receptor-tyrosine kinase PI3K sign-
aling pathways [6]. Single nucleotide polymorphism also 
proved to be connected with ESCC susceptibility, such 
as rs7447927 at 5q31.2 in TMEM173 and rs1642764 at 
17p13.1 in ATP1B2 [7]. To a certain extent, these studies 
contributed to understanding the biological characteris-
tics of ESCC. However, whether these molecules would 
translate into biomarkers for early diagnosis and screen-
ing of ESCC needs further exploration and validation.

Mass spectrometry-based proteomics has emerged 
as a powerful tool for discovering the potential tumor-
associated biomarkers and exploring signaling regulatory 
networks related to carcinogenesis and progression [8]. 
Discovering protein biomarkers for diagnosis, unraveling 
signaling pathway characteristics of ESCC, and develop-
ing effective diagnostic and therapeutic strategies will 
directly benefit the patients. Currently, proteomic based 
approaches have been applied to identify biomarkers 
for ESCC. However, most of the proteins mentioned in 
these studies are single and limited, while their molecular 
functions have not been fully elucidated [9–11]. Accom-
plishing in-depth proteomic studies is thus an absolute 
necessity to explore novel candidate protein biosignature 

for early diagnosis and further understand the biological 
characteristics of ESCC.

In this study, we employed quantitative proteomics to 
characterize the proteome profiles of serum samples in 
a discovery set containing 30 patients with ESCC and 30 
healthy controls. Sixty-nine proteins dysregulated were 
revealed in ESCC patients and six candidate proteins 
(S100A8/A9, SAA1, ENO1, TPI1 and PGAM1) were fur-
ther validated in two independent validation sets. Fur-
thermore, these six candidate proteins in ROC curve 
analysis exhibited high diagnostic sensitivity and speci-
ficity. Pathway enrichment analysis showed that these 69 
differentially expressed proteins belong to fifteen major 
pathways: glycolysis, Cori cycle, folate metabolism, HIF-
1α, TLR4 signaling, focal adhesion and others. Addition-
ally, our finding displayed that activated glycolysis and 
TLR4 pathways were positively associated with clinico-
pathologic TNM stages in ESCC patients.

Materials and methods
Subject characteristics
Study subjects included thirty newly-admitted ESCC 
patients who were untreated and 30 healthy controls. The 
diagnosis was confirmed by esophagoscopy and biopsy. 
All the subjects met the following criteria: no individual 
history of (i) other types of cancer or digestive disease, 
(ii) active or at high risk of overt bleeding, coagulopa-
thy including haemophilia, (iii) liver dysfunction with 
impaired coagulation, (iv) treatment with any other inves-
tigational agent, and (v) participation in other clinical tri-
als. The clinicopathological staging was estimated based 
on the 7th edition tumor, lymph node, metastasis (TNM) 
grading of ESCC. All of the procedures performed in this 
study involving participants were in accordance with the 
ethical standards of the institution and the Declaration of 
Helsinki [12].  All participants signed informed consent 
prior to participation in the study.

Sample collection and preparation
The fasting blood from ESCC patients and healthy con-
trols were collected from July 2019 to April 2020 from 
Affiliated Hospital of North Sichuan Medical College. 
Serum samples were prepared from the blood by clot-
ting at room temperature for 30 min and centrifuged at 
3000  rpm for 10  min. After that, serum aliquots were 
transferred into sterile Eppendorf tubes and stored 
at − 80  °C refrigerator until further use. Before using, 
serum was thawed and pretreated by using the High 
Select™ TOP 14 Abundant Protein Depletion Mini Spin 
Columns Kit (catalog number: A36370; Thermo Sci-
entific) to deplete the 14 highest abundance proteins, 
including albumin, IgG, IgA, IgM, IgD, IgE, kappa and 
lambda light chains, α1-antitrypsin, α1-acid glycoprotein, 
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α2-macroglobulin, apolipoprotein A1, fibrinogen, hap-
toglobin, and transferrin, according to manufacturer’s 
protocol. Simply put, 20 µL 10% sodium deoxycholate 
and 10 µL of the sample were added to the resin slurry 
in the depletion spin column. The mixture was incubated 
for 1 h at room temperature and centrifuged at 1000×g 
for 2 min. The filtrate was collected and transferred into 
a sterile tube, reduced with 10 mM dithiothreitol at 
95  °C  for 5  min, and alkylated with 10 mM iodoaceta-
mide at room temperature for 30 min in darkness. Sub-
sequently, 2 µg trypsin was added and incubated at 37 °C 
for 16  h. Peptides were then loaded on a homemade 
reverse-phase C18 column in a pipet tip. 293T cell lysate 
was used to assess the LC-MS/MS stability and repro-
ducibility as a quality control (QC) standard.

LC‑MS/MS analysis
Peptide mixtures were analyzed on an Orbitrap Fusion 
Lumos (Thermo Fisher Scientific) mass spectrometer 
interfaced with an Easy-nLC 1200 nanoflow liquid chro-
matography system (Thermo Fisher Scientific) with a 
Nono Spray Ionization. Samples were dissolved with 50 
µL of Solvent A (0.1% formic acid in water). Following 
this, 5 µL of the dissolved sample was loaded to a home-
made trap column (100  μm × 2  cm) packed with C18 
reverse-phase resin (particle size, 3  μm; pore size, 120 
Å; SunChrom, USA) at a maximum pressure of 280 bar 
into which a further 12 µL of solvent A was added. Sub-
sequently, peptides were separated on a 150 μm × 15 cm 
silica microcolumn (homemade, particle size, 1.9  μm; 
pore size, 120 Å; SunChrom, USA) with a gradient of 
7–32% mobile phase B (100% acetonitrile and 0.1% for-
mic acid) at a flow rate of 600 nL/min for 60  min. The 
gradient elution conditions were set as follows: 7–10% 
mobile phase B for 3  min; 10–25% for 39  min; 25–32% 
for 11  min; 32–95% for 1  min; 95% for 6  min. The MS 
analysis was performed in a data-dependent manner 
(DDA) with full scans (m/z 350–1500) acquired using an 
Orbitrap mass analysis at a mass resolution of 120,000, 
and the automatic gain control (AGC targets) was set to 
4e5 with a maximum ion injection time of 50 ms. The 
most intense ions selected under top-speed mode were 
isolated in Quadrupole with a 1.6 m/z window and frag-
mented by higher-energy collisional dissociation (HCD) 
with a normalized collision energy of 32%, then detected 
in the Orbitrap at a mass resolution of 15,000. The AGC 
targets for MS/MS were set to 5e4, and the maximum ion 
injection time was 22 ms. Dynamic exclusion time was 
set as 30 s.

Data analysis
Mass spectrometry data were analyzed by MaxQuant 
(version 1.6.2.10) (http://​www.​maxqu​ant.​org) [13]. MS/

MS spectra were searched by the Andromeda search 
engine against the UniProt-human database (Ver-
sion 2019.01) supplemented with forward and reverse 
sequences [14]. Precursor mass and fragment mass were 
identified in the main Andromeda search engine with an 
initial mass tolerance of 6 ppm and 20 ppm, respectively. 
The search included variable modifications of methionine 
oxidation and N-terminal acetylation and fixed modifi-
cation of carbamidomethyl cysteine. Minimal peptide 
length was set to seven amino acids, and a maximum of 
two mis-cleavages was allowed. The false discovery rate 
(FDR) was set to 0.01 for peptide and protein identifi-
cations. For matching, a retention time window of 30  s 
was selected. In the case of identified peptides shared 
between two proteins, these were combined and reported 
as one protein group. Proteins matching the reverse data-
base were filtered out as mismatched proteins. Spear-
man’s correlation coefficient was calculated for all QC 
samples.

Protein quantification and differential protein screening
Proteins were executed based on the following criteria. 
Potentially contaminated proteins, including keratin, 
were excluded from the data. Proteins were required to 
have at least half of the valid values in both groups, and 
the remaining missing values were imputed with K-near-
est neighbors (K = 10) using the R package (v.3.5.2). 
Protein abundance was quantified using peak area and 
normalized by each sample’s total area, which repre-
sented standardized value of a protein across samples. 
The standardized value was multiplied by 105 for easy 
visualization. Fold change (FC) was obtained by calculat-
ing the ratio between the standardized average value of 
each protein in the ESCC group and the healthy group 
[FC = Average(ESCC)/Average(healthy)]. Differentially 
expressed proteins were screened by FC combined with 
significance levels (P-value). Protein abundance was 
significantly changed if a more than 1.5-fold increase 
or decrease was observed between two groups with a 
P < 0.05.

Enrichment analysis
GO enrichment analysis of biological processes was con-
ducted using GSEA software or the Metascape database 
(https://​metas​cape.​org/​gp/​index.​html) [15]. Terms with 
P-value < 0.05, a minimum count of 3 and an enrichment 
factor of more than 1.5 were collected and grouped into 
clusters based on their membership similarities (Kappa 
scores > 0.3) [15]. The most statistically significant term 
within a cluster was selected to represent the cluster. If 
more than 20 terms for GO or pathway annotations were 
identified, the top 20 terms were presented for visualiza-
tion. Protein–protein interaction (PPI) was executed by 

http://www.maxquant.org
https://metascape.org/gp/index.html
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Markov Clustering (MCL) with the inflation parameter 
of more than 3 using the STRING database (https://​cn.​
string-​db.​org/) [16]. The physical interactions network 
analysis was accomplished by the Metascape database 
and networks with scores of more than 0.132 were pre-
sented by Cytoscape (v.3.7.2). Pathway enrichment analy-
sis was done using the GeneCard database (https://​www.​
genec​ards.​org/) [17].

ELISA assays
For validation set, serum S100A8/A9, SAA1, ENO1, TPI1 
and PGAM1 of 30 healthy controls and 53 ESCC patients 
were detected using the Human S100A8/A9 Heterodimer 
Immunoassay ELISA Kit and Serum Amyloid A1 Duo-
Set ELISA kit (R&D Systemslnc Minnesota, USA), TPI1 
ELISA Kit, ENO1 ELISA Kit and PGAM1 ELISA Kit 
(Cloud-Clone Corp, China) according to the manufac-
turer’s instructions. Plates were coated with the capture 
antibody at room temperature for 1 h and subsequently 
at 4 °C overnight. After incubation, wells were washed in 
triplicate by TBST (TBS with 0.05% Tween). Wells were 
then blocked with 250 µL TBST containing 1% BSA and 
incubated for 1 h at 37 °C. Diluted samples (100 µL) were 
incubated with detection antibody for 1.5 h at 37 °C and 
finally with the HRP for 1 h at 37 ℃ and substrate solu-
tion for 30  min at room temperature. The substrate 
reaction was halted by adding 2  M H2SO4. Analysis of 
the optical absorbance was performed by using a plate 
reader. The absorbance values were determined from the 
background subtracted from the signal at 450 nm.

Immunochemistry assays
ESCC tissues and matched adjacent normal tissues 
(n = 29) were acquired from the Pathology Department 
of Affiliated Hospital of North Sichuan Medical Col-
lege. Patients did not receive chemotherapy or radiation 
before surgery. Immunochemistry was performed as 
per the standard procedure. Tissue sections were heated 
at 60 °C for 1 h and then dewaxed in xylene, rehydrated 
in a graded series of ethanol and incubated in H2O2 
for 5  min at room temperature. Heat-induced epitope 
retrieval was carried out using Tris-EDTA buffer in a 
microwave oven heated on high for 3 min and medium 
for a further 10 min. Sections were cooled at room tem-
perature and then incubated with ENO1, TPI1, PGAM1, 
SAA1 and S100A8/A9 primary antibody (dilution 1:100) 
overnight at 4 °C in a humid chamber, followed by incu-
bation with an appropriate secondary antibody. Images 
were obtained by scanning the slides using a Zeiss Axio 
Scan Z1 in brightfield mode (Zeiss, Jena, Germany). An 
IHC score was assigned to each specimen according 
to the staining intensity and the proportion of positive 
cells. 1+: light brown and stained cells < 30%; 2+: brown 

and stained cells 30–60%; 3+: deep brown and stained 
cells > 60%.  Comprehensive scores were made accord-
ing to the sum of the two indexes. 1+ = weakly positive; 
2+ = moderately positive, 3+ = strongly positive. Stain-
ing in non-cancer cells was not accounted for in the IHC 
scores.

Statistical analysis
Statistical analysis was accomplished using IBM SPSS 
23.0 package (IBM SPSS, Turkey). Normality of the data 
distributions was tested via the Shapiro-Wilks test. The 
data with normal distribution were analyzed by unpaired 
Student’s t-test. The correlation coefficient was assessed 
using Pearson and distance correlation analysis. Data 
were expressed as mean ± SEM, P < 0.05 was considered 
statistically significant. Data were displayed using Graph-
Pad Prism 8.0.1 (GraphPad Prism, Inc. San Diego, USA) 
or the R package (version 3.5.2). The diagnostic perfor-
mance of biomarkers was evaluated by calculating ROC 
curves, AUC, optimal cutoff, sensitivity, specificity, and 
positive and negative predictive values using the R pack-
age. The optimal cutoff value was defined by maximizing 
Yoden’s index.

Results
Cohorts and clinical features of the healthy controls 
and ESCC patients
A discovery set containing 30 ESCC patients and 30 
healthy controls was recruited to characterize the dif-
ferential proteome. Potential protein biomarkers were 
further investigated by procuring two independent vali-
dation sets, of which validation set_1 included 30 healthy 
controls and 53 ESCC patients, and validation set_2 
included 29 ESCC patients. Serum or tissue samples, 
including cancerous tissues (CT) and their adjacent nor-
mal tissues (ANT), were obtained from each of the sub-
jects. The clinical characteristics of controls and ESCC 
patients are summarized in Table 1.

Quantification of proteomic profiling of ESCC and healthy 
controls
Serum proteomics-based integrated function validation 
approach was employed to identify potential ESCC-asso-
ciated protein biomarkers and uncover functional charac-
teristics in our study. A brief description of the workflow 
is shown in Fig.  1. Proteins extracted from ESCC and 
healthy controls were processed using High Select Pro-
tein Depletion Mini Spin Columns to remove the 14 
highest abundant proteins. Then proteins were digested 
by trypsin, after which peptides were separated by the 
Reverse-phase C18 column, and subsequently followed 
by LC-MS/MS analysis. Differential proteins screening 
and functional enrichment analysis were accomplished 

https://cn.string-db.org/
https://cn.string-db.org/
https://www.genecards.org/
https://www.genecards.org/
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by bioinformatics analysis. Then we employed two inde-
pendent validation sets to ascertain identified ESCC-
associated biomarkers by ELSA and IHC.

The mass spectrometry proteomics data have been 
deposited to the ProteomeXchange Consortium (http://​
prote​omece​ntral.​prote​omexc​hange.​org) via the iProX 
partner repository with the data identifier PXD031287. 
A total of 633 non-redundant proteins were identified 
with at least two unique peptides at 1% peptide level 
FDR. In this pool, 310 proteins detectable in at least half 
of all samples were selected for subsequent bioinformat-
ics analysis (Additional file 2: Table S1). The high positive 
correlation (r ≥ 0.90) of the peak area in each QC sample 
displayed good repeatability (Additional file  1: Fig. S1). 
Healthy controls and ESCC patients were completely sep-
arated, as shown by principal component analysis (PCA), 
and each group of samples showed well-clustering based 
on the first two principal components (Fig.  2A). Next, 
the heatmap visualized the whole proteome comparison 
between the two groups, which indicated a significant 
change (Fig.  2B). The distribution of protein abundance 
ratio displayed by histogram obeyed normal distribution 
(Fig.  2C). The top increased proteins exhibited by the 
protein rank plot were SAA1, TKTL1, S100A8, PGAM1, 
CA2, VIM and ENO1, while the proteins decreased were 

SERPINA1/6, BCHE, APOA1, AFM, PON1 and APOC1 
(Fig. 2D).

Identification of differentially expressed proteins
A volcano plot was applied to delineate differential pro-
teins abundance against the corresponding P-value 
obtained from the t-test (Fig. 3A). The quantitative values 
of 59 proteins (19.0% of the proteome) and 10 proteins 
(3.26% of the proteome) displayed a more than 1.5-fold 
increase (marked as red dots) or decrease (marked as 
blue dots) in ESCC samples compared with controls 
(Additional file 2: Table S2). The rest of the 241 proteins 
(77.74% of the proteome) abundance was regarded as no 
significant change (marked as gray dots). Furthermore, 
the heatmap of hierarchical cluster analysis indicated that 
most of the 69 differentially expressed proteins increased 
distinctively in the ESCC group (Fig. 3B).

Enrichment analysis and signaling pathway analysis
To gain a comprehensive understanding of the biological 
significance of these 310 proteins, we conducted GSEA to 
characterize their potential functions. Our data showed 
that all increased proteins (FC > 1.0) in the ESCC group 
were moderated associated with cellular metabolism, 
adhesion and migration process (NES = 1.71, P = 0.001), 

Table 1  Clinicopathological features of all subjects

Clinic features Discovery set Validation set_1 Validation set_2

Control (n = 30) ESCC (n = 30) Control (n = 30) ESCC (n = 53) CT (n = 29) ANT(n = 29)

Age (mean±SD) 60.1 ± 15.1 64.6 ± 6.9 52.4 ± 10.5 66.8 ± 8.6 63.9±8.8

Gender

 Male 16 19 19 35 23

 Female 14 11 11 18 6

T stage

 T1 1 6

 T2 17 22 10

 T3 7 16 18

 T4 5 9 1

N stage

 N0 8 21 13

 N1 12 18 8

 N2 6 8 6

 N3 4 6 2

M stage

 M0 26 48 25

 M1 4 5 4

Overall stage

 I 2 8

 II 16 28 16

 III 6 12 10

 IV 6 5 3

http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
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whereas decreased proteins (FC < 1.0) were involved in 
lipid transport and complement cascade (NES = −1.43, 
P = 0.03) (Fig. 4A, B), respectively. Furthermore, up-and 
down-regulated proteins (FC > 1.5 or < 0.67 and P < 0.05) 
were subjected to GO terms enrichment analysis by the 
Metascape database, and the results were presented in 
Fig.  5A, B, respectively. Those proteins were discerned 
to be related to a series of biological events (Fig.  5A) 
and remarkably enriched in neutrophil degranulation 
(−log10P = 17.22), acute inflammatory response (−
log10P = 15.86) and glycolysis (−log10P = 13.94), and 
many others. (Fig.  5B). Signaling pathway analysis of 
differentially expressed proteins was performed by the 
GeneCard database. GeneRatios were calculated via ana-
lyzing matched proteins and the corresponding P values 
according to FDR. Consequently, the top 15 signaling 
pathways were visualized by a bubble chart (Fig. 6A). Cori 
cycle showed the highest enrichment ratio with a value 
of 0.5 among all pathways, whereas glycolysis displayed 
the lowest P-value (P = 1.06E−09) (Table 2). Correspond-
ingly, pathways of carbon metabolism, innate immune, 
HIF-1α signaling, TLR4 activation, and focal adhesion 

showed remarkable changes, indicating the dysfunction 
of multiple signaling pathways in ESCC patients. Proteins 
involved in glycolysis, TLR4 signaling, Cori cycle, folate 
metabolism, GMCSF-mediated signaling, HIF-1α path-
way, platelet degranulation, and interleukins signaling, 
were increased accordingly in ESCC groups (Fig. 6B–I).

Protein–protein interaction enrichment analysis
The STRING database was employed to construct the 
protein–protein interaction networks among these 69 
proteins. First, we used Markov Clustering to cluster 
the network with an inflation parameter of more than 
3. The results suggested that the up-regulated protein 
network consisted of six sub-networks (Fig.  7A), of 
which sub-network 1 occupied the dominant position 
of the entire network consisting of ENO1, GAPDH, 
PGAM1, PKM, ALDOA, LDHB, PGK1, TPI1 and 
TKTL1, the biological functions of these molecules 
were related to glucose metabolism. Sub-network 2 
consisted of eight regulated proteins (SOD1, PRDX2, 
CAP1, PRDX6, CAT, PARK7, MPO and GSTP1), 
which played an important role in antioxidant activity. 

Fig. 1   A workflow of the experiment based on serum proteomics
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Sub-network 3 was comprised of six molecules (VIM, 
MYH9, TPM4, TPM3, CALD1 and TLN1), which 
were involved in focal adhesion. Sub-networks 4 
was made up of four proteins (APOH, HP, SAA1 and 
LTF), which were associated with acute inflamma-
tory response, and sub-network 5 and 6 were formed 
by three regulated proteins respectively, which pri-
marily were associated with response to carbohydrate 
(RAP1A, CA2 and HEG1 for sub-network 5) and tubu-
lin folding pathway (TUBA1B, TBCA and TUBB1 for 
sub-network 6). In addition, we noticed that APOA1, 
APOC1, SERPINA1/5/6, PON1, BCHE, FN1, DSP and 
AFM formed primary hub molecules of downregulated 
proteins (Fig.  7B). The biological functions of these 

molecules were related to glucocorticoid biosynthesis, 
metabolic process, cholesterol homeostasis and lipid 
metabolism. Next, we constructed physical interac-
tions (scores > 0.132) to identify densely connected 
network molecules by Molecular Complex Detection 
(MCODE) using the Metascape database with the final 
accomplished MCODE networks shown in Fig. 7C–H. 
Consistent with the above results, our data showed 
that six sub-networks were formed from these up-and 
down-regulated proteins, including focal adhesion and 
actin filament-based process, Cori cycle and gluco-
neogenesis, regulation of apoptotic signaling pathway, 
lipoprotein lipase activity, insulin-like growth factor 

Fig. 2  Proteomic profiling of ESCC patients and healthy controls. A Principal component analysis in both groups. B Heatmap analysis of expression 
profile of proteins. C The distribution of protein abundance ratios. The fold changes of ESCC/control are shown in log2 scale on the x-axis, and the 
numbers of proteins are shown on the y-axis. D Rank plots show the top increased and decreased proteins in the ESCC group
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transport and uptake, and inflammatory processes and 
immune response.

Validation of ESCC‑related candidate biomarker panel
The candidate biomarkers were validated based on pro-
teomics data and fold changes from ESCC patients and 
healthy controls. Subsequently, we quantified ENO1, 
TPI1, PGAM1, SAA1and S100A8/A9 of cancerous tis-
sues and their matched adjacent normal tissues in an 
independent validation set including 29 ESCC patients 
by immunohistochemistry. The relevant clinical infor-
mation is summarized in Table 1. In line with proteom-
ics results, significantly increased expression of these six 
proteins were observed in cancerous tissues (Fig. 8A–G). 
In another validation set, a batch of serum samples of 30 
healthy controls and 53 ESCC patients were collected to 
verify their levels by ELISA. The results showed that the 
mean concentrations of S100A8/A9 were (3.92 ± 1.27) 
and (1.59 ± 0.73) µg/mL, SAA1 (39.06 ± 9.23) and 
(20.68 ± 4.79) µg/mL, ENO1 (15.46 ± 3.48) and 
(11.02 ± 3.25) µg/mL, TPI1 (27.98 ± 6.46) and 
(18.85 ± 5.23) µg/mL, as well as PGAM1 (7.78 ± 3.01) 

and (5.27 ± 2.84) µg/mL in ESCC and healthy groups, 
respectively (Fig. 8H–L). It came as no surprise that the 
ROC curve analysis also confirmed the fairly high sensi-
tivity and specificity of these combined six proteins for 
distinguishing ESCC patients from controls (sensitivity: 
0.906 and specificity: 0.967, respectively, with an AUC of 
0.945), which is clearly greater than that of S100A8/A9 
(AUC: 0.887), SAA1 (AUC: 0.786), ENO1 (AUC: 0.817), 
TPI1 (AUC: 0.746) and PGAM1 (AUC: 0.681) alone.

Activated glycolysis and TLR4 signaling pathways are 
relevant to clinicopathological TNM stages in ESCC 
patients
The protein expression of glycolysis increased in ESCC 
patients (Fig.  6B), and among them, shown by Pear-
son correlation analysis, levels of ENO1, PGAM1, 
TPI1, PKM, PGK1, ALDOA and LDHB were posi-
tively correlated with clinicopathological TNM stages 
(R2 = 0.59, P = 6.53e−7, R2 = 0.46, P = 3.99e−5, R2 = 0.33, 
P = 9.1e−4, R2 = 0.31, P = 0.001, R2 = 0.37, P = 3.7e−4, 
R2 = 0.34, P = 7.0e−4, and R2 = 0.39, P = 1.8e−4, respec-
tively) (Fig.  9A). We observed notable increase of 

Fig. 3  Bioinformatics analysis of differentially expressed proteins. A Differential proteins are presented by the volcano plot. The vertical dotted lines 
represent proteins with a more than 1.5-fold increase (marked with red) or decrease (marked with blue), respectively. The gray dots are considered 
as no significant change, and horizontal dotted lines display cutoff P-value. B Heat map visualization of 69 differential proteins. The increased and 
decreased proteins are represented by a range of red and blue intensities, respectively
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proteins in TLR4 signaling pathway, including SAA1, 
S100A8 and S100A9 (Fig. 9B), which were positively cor-
related with clinicopathological TNM stages (R2 = 0.31, 
P = 0.001, R2 = 0.41, P = 1.0e-4, and R2 = 0.36, P = 4.1e-4, 
respectively).

Discussion
Blood biomarkers are widely applied for the screening 
and diagnosis of tumor because of their ready availability. 
Blood contains a range of proteins with concentrations 
up to 12 to 13 orders of magnitude, while 90% of low con-
centration proteins are masked by a few high-abundant 

Fig. 4  Heatmap and GSEA analysis of increased (A) and decreased (B) proteins
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ones, such as albumin and immunoglobulins. Due to 
this, although these low-abundance proteins may contain 
critical information regarding the disease status, they are 
hard to be detected and quantified in proteomics. In this 
study, we employed the High Select TOP 14 Abundant 
Protein Depletion Mini Spin Columns to deplete the 14 

highest abundant proteins, which contributes to the in-
depth detection of ESCC-related proteins, including low 
abundance proteins, as well as provides data support for 
biomarker discovery and signaling pathway research.

Traditional biomarkers, such as carcinoembryonic anti-
gen (CEA), carbohydrate antigen 19-9 (CA 19-9), as well 

Fig. 5  Gene ontology enrichment analysis of increased and decreased protein. Enrichment results are displayed by network plot (A) and P-value 
(B), respectively. Sizes of nodes correspond to the degree of enrichment
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as squamous cell carcinoma antigen (SCCA), showed low 
sensitivity and specificity to the diagnosis of ESCC [18]. 
Besides, the signaling regulatory networks associated 
with ESCC pathogenesis and poor prognosis have not 
been fully elucidated. Therefore, finding valid biomarkers 
to identify early stages of ESCC progression and unrave-
ling signaling pathways mediated by these molecules 
hold great promise for providing potential novel targets 
for ESCC therapy.

S100A8 and S100A9, known as calcium-binding pro-
teins, belong to the S100 family. They usually exist in 
the form of heterodimers for stability. S100A8/A9, being 

multifunctional, can induce recruitment of leukocytes, 
promotion of cytokine and chemokine production, and 
regulation of leukocyte adhesion and migration [19]. Its 
intracellular functions include facilitating leukocyte ara-
chidonic acid trafficking and metabolism, modulation 
of the tubulin-dependent cytoskeleton, and activation 
of the neutrophilic NADPH-oxidase [20, 21], and extra-
cellular functions involve pro-inflammatory [20], oxi-
dant-scavenging and apoptosis-inducing activities [22]. 
Several studies have concluded that S100A8/A9 could be 
released by tumor cell necrosis following hypoxia within 
growing tumors [23]. Regardless of the source, S100A8/

Fig. 6  System-wide analysis of signaling pathways of ESCC patients. A Signaling pathway analysis of differential proteins by using the GeneCard 
dataset. Size of the nodes shows the number of matched proteins, color of the nodes represents P-value of the enrichment analysis. B–I 
Quantitative analysis of glycolysis, TLR4, Cori cycle, folate metabolism, GMCSM, HIF-1α, platelet degranulation and interleukins signaling pathway in 
two groups, respectively. Two-tailed t-test is performed, *P < 0.05, **P < 0.01, and ***P < 0.001 vs. controls
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A9 appears to play essential roles in both inflammation-
induced cancer and cancer-induced inflammation and 
mediate concentration-dependent protumor response 
[23]. Previous research demonstrated that S100A8/A9 is 
involved in the occurrence and progression of tumors, 
and its high level is strongly associated with poor prog-
nosis [24]. It can also be considered a potential tumor 
biomarker for melanoma and hepatocellular carcinoma 
[24, 25].

Nevertheless, other studies suggested that S100A8 and 
S100A9 were significantly downregulated in the tissues 
of ESCC patients compared with controls at the mRNA 
level [26, 27]. Since transcription level is shown to have a 
poor coherence with protein expression, without doubt, 
measurement of protein is more efficient than detecting 
mRNA for mining actionable biomarkers. Contradic-
tory with the previous reports, our results indicated that 
S100A8/A9 was significantly up-regulated in both serum 
and tissue of ESCC patients compared with controls and 
exhibited high sensitivity and specificity for distinguish-
ing ESCC patients from controls with an AUC of 0.887. 
From the perspective of regulating signaling pathways, 
S100A8/A9 acts as an alarming or a danger associated 
pattern molecule and stimulates innate cells via binding 
to pattern recognition receptors such as TLR4 [28], then 
it activates MAPK and NF-κB signaling pathways result-
ing in the amplification of the pro-inflammatory cascade 
[29]. In accordance with it, significant alteration of mul-
tiple signaling pathways regulated by S100A8/A9 was 
unearthed in our study, including TLR4, innate immune, 
as well as neutrophil degranulation. In addition, our 
findings indicated that S100A8/A9 levels were strongly 

positively correlated with TNM stages with R2 = 0.41, 
P = 1.0e−4 and R2 = 0.36, P = 4.1e−4, respectively.

SAA1 is recognized as a nonspecific, acute-phase pro-
tein secreted in response to inflammation-associated 
cytokines, such as interleukin-1/6 (IL-1/6) and tumor 
necrosis factor α (TNFα). It has been investigated in vari-
ous malignancies as a predictor of cancer risk and prog-
nostic factor [30, 31]. A previous study demonstrated 
that serum SAA1 levels increased in ESCC patients com-
pared with healthy subjects, which may be considered an 
independent and vital prognostic indicator for patients 
with ESCC following curative esophageal resection [32]. 
SAA1 showed a good diagnostic performance in our data 
(sensitivity: 0.70 and specificity: 0.857, respectively) for 
distinguishing patients with ESCC from controls. SAA1 
levels were also found to be positively correlated with 
unfavorable TNM stages closely linked with cancer pro-
gression and poor prognosis.

SAA1 is produced by the liver and enters the systemic 
circulation in response to stimulation by inflammatory 
cytokines, such as IL-6. As a potent pro-inflammatory 
cytokine, IL-6, stimulates the liver to produce SAA1 [29]. 
Elevated IL-6 in serum has been shown to be related 
to disease progression and poor prognosis in esopha-
geal cancer [33]. Although our data did not detect IL-6 
directly, pathway enrichment analysis revealed that the 
interleukin signaling pathway was activated, and lev-
els of related molecules were significantly increased in 
ESCC serum, including CA1, CFL1, UBE2V1, VIM and 
YWHAZ, which mediate the expression of IL-3, IL-4, 
IL-5, IL-12 and IL-13. Based on these results, we specu-
lated that the increased SAA1 might be due to excessive 
inflammatory cytokines, which have previously been 
proven to be produced by cancer cells in patients with 
advanced esophageal carcinoma [33, 34].

Our proteomics data showed 5.01, 3.55, 7.18, 3.84, 
3.67 and 4.90-fold higher levels of S100A8, S100A9, 
SAA1, ENO1, TPI1 and PGAM1 in ESCC patients sera 
compared with controls, respectively. Given the close 
relationship between S100A8/A9, SAA1, ENO1, TPI1, 
PGAM1 and tumor, with our present data, we were com-
mitted to developing a biomarker panel consisting of 
these six proteins for early detection of ESCC patients, 
which have yielded high specificity and sensitivity of 
0.906 and 0.967, and AUC up to 0.945, higher than each 
of them alone, suggesting the synergistic effects and 
increased diagnostic efficacy of these six biomarkers as a 
potential biomarker panel.

ENO1, a key glycolytic enzyme, which may play a 
pivotal role in aerobic glycolysis, contributed to solid 
tumor progress. Evidence showed that ENO1, whose 
overexpression was associated with multiple tumors, is 
explained as a key protein in tumorigenesis, proliferation, 

Table 2  Significantly altered signaling pathways based on 
differentially expressed proteins in ESCC group

Description P value GeneRatio Count

Carbon metabolism 1.59E−09 0.16 9

Innate immune 1.03E−08 0.03 19

Glycolysis 1.06E−09 0.21 8

Cori cycle 5.12E−04 0.50 4

Folate metabolism 3.42E−04 0.08 5

HIF-1α signaling pathway 1.10E−05 0.13 6

TCA cycle 3.30E−04 0.13 3

Activated TLR4 signaling 1.80E−04 0.15 4

Cytoskeletal signaling 2.16E−03 0.03 5

Platelet degranulation 1.20E−04 0.13 8

Focal adhesion signaling 2.30E−04 0.16 18

GMCSF-mediated signaling 3.40E−03 0.17 18

Interleukins signaling 7.90E−03 0.03 6

Neutrophil degranulation 1.13E−06 0.05 11

Vitamin B12 metabolism 5.20E−03 0.11 5
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metastasis and poor outcomes [35, 36]. However, ENO1 
expression is more diversified in esophageal cancer than 
in others. Its expression was abnormally elevated in ESCC 

and EAC cancerous tissues compared with adjacent 
non-cancerous tissue. Unexpectedly, significantly lower 
ENO1 in plasma was found in EAC patients compared 

Fig. 7  Network analysis of differentially expressed proteins. A, B Protein–protein interaction networks of up-and down-regulated proteins by 
Markov Clustering based on STRING database, respectively. Each circle represents a sub-network. C–H Physical interactions analysis of differential 
proteins by Molecular Complex Detection by using Metascape database (scores > 0.132)
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to normal subjects, and neither local nor systemic ENO1 
levels were significantly associated with overall survival. 
There was no significant difference in ENO1 detected 
between ESCC and EAC patients in  situ protein levels, 
suggesting no association of ENO1 expression with the 
pathological tumor type [37]. Our findings, which are dif-
ferent from other studies, displayed that ENO1 concen-
trations were significantly increased in both serum and 
cancerous tissues of ESCC patients, which were strongly 
positively correlated with the clinicopathological TNM 

stages (R2 = 0.59, P = 6.53e−7). Overall, these results 
suggested that ENO1 played different biological roles 
depending on the types of cancer while the exact mecha-
nisms of action remain unclear.

TPI1 is a metabolic enzyme that catalyzes the inter-
conversion between dihydroxyacetone phosphate and 
glyceraldehyde-3-phosphate in glycolysis and gluco-
neogenesis. Elevated TPI1 expression is associated with 
high levels of metabolism required for rapid tumor 
growth. A previous study showed a higher expression 

Fig. 8  Validation of ESCC-related candidate biomarker panel. A–F Representative images of carcinoma tissue and their ANT stained for ENO1, 
TPI1, PGAM1, SAA1 and S100A8/A9 (brown) using immunohistochemistry assay (×100), respectively. a NAT and b CT. G Scores from staining 
intensity and numbers in 29 pairs of brown cells in cancer and adjacent normal tissues. H–L Quantification analysis of S100A8/A9, SAA1, ENO1, 
TPI1 and PGAM1 in serum from healthy controls and ESCC patients. M ROC curve for serum against SAA1, S100A8/A9, ENO1, TPI1, PGAM1 and their 
combination for patients with ESCC versus normal controls. ANT adjacent normal tissue, CT carcinoma tissue
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of TPI1 in metastatic ovarian tumors than in primary 
ovarian cancers. However, the expression of TPI1 was 
lower in metastatic cervical tumors than in primary 
cervical cancers [38]. It was also shown to be signifi-
cantly increased in intrahepatic cholangiocarcinoma 
tissues and correlated with a higher recurrence rate and 
has the potential to act as a novel candidate biomarker 
for predicting the recurrence of intrahepatic cholangio-
carcinoma [39]. These results suggested that TPI1 may 
play pluralistic biological roles in the development and 
metastasis of different cancers. However, TPI1 has not 
been comprehensively reported in ESCC so far, includ-
ing its clinical significance, biological functions, and 
underlying molecular mechanisms. Notably, our data 
showed a significant elevation of TPI1 in ESCC patients 
with its level being positively correlated with tumor 
TNM stage (R2 = 0.33, P = 9.1e−4).

PGAM1 is known as a metabolic enzyme in glycoly-
sis. High expression of PGAM1 is closely correlated with 
lymphatic metastasis and tumor re-occurrence, which 
might account for the poor prognosis [40]. We found an 
upregulation of PGAM1 up to 5-fold in the serum with 
an overexpression in tissues of patients with ESCC. These 
results indicated a positive correlation of PGAM1 with 
unfavorable clinicopathological TNM stages (R2 = 0.46, 
P = 3.99e−5), thereby potentiating the role of PGAM1 as 
a diagnostic and prognostic marker for ESCC. Further-
more, several proteins related to glycolysis, such as PKM, 
PGK1, ALDOA and LDHB, were significantly elevated in 
the serum of ESCC patients and positively correlated with 
TNM stages (R2 = 0.31, P = 0.001, R2 = 0.37, P = 3.7e−4, 
R2 = 0.34, P = 7.0e−4, and R2 = 0.39, P = 1.8e−4, respec-
tively), which suggested activated glycolysis could be a 
significant characteristic of ESCC.

Fig. 9  Pearson correlation analysis between proteins-related glycolysis (A), TLR4 signaling pathway and TNM stages, respectively
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It is widely known that PGK1, ALDOA, ENO1, PKM, 
TPI1, GAPDH, PGAM1 and LDHB are key regulators in 
glycolysis and are mainly located in the cytoplasm. How-
ever, recent studies detected several glycolysis-related 
proteins in the extracellular region, such as serum [41–
43], of which serum-derived exosomes are the primary 
source of these proteins. To our knowledge, glycolytic 
molecules expression levels and their relationship with 
TNM stages have not been widely reported in serum 
proteomics of ESCC patients. Undoubtedly, our find-
ings highlighted the importance of glycolysis in ESCC 
and provided novel insights into pathogenesis for ESCC. 
In addition, previously published data proposed that 
hypoxia-inducible factor (HIF) enhanced glycolysis by 
increasing the transcription of glycolytic enzyme genes to 
protect cancer cells from energy starvation [44]. At the 
same time, the activated HIF-1α signaling pathway was 
demonstrated in current data, which was consistent with 
previous reports.

Conclusions
Our study comprehensively portrayed serum proteomic 
profiling of ESCC patients, identified 69 differential pro-
teins and systematically elucidated multiple abnormal 
signaling pathways in ESCC patients. Our data showed a 
potential biomarker panel composed of six protein mol-
ecules, including S100A8/A9, SAA1, ENO1, TPI1 and 
PGAM1, with high diagnostic sensitivity and specific-
ity and revealed the relevance of activated glycolysis and 
TLR4 pathways to TNM stages. These results propose 
potential biomarkers for early screening and diagnosis of 
ESCC and shed new light on the biological characteris-
tics of ESCC from the perspective of signaling pathway.
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