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Abstract 

Cancer biomarkers have transformed current practices in the oncology clinic. Continued discovery and validation are 
crucial for improving early diagnosis, risk stratification, and monitoring patient response to treatment. Profiling of the 
tumour genome and transcriptome are now established tools for the discovery of novel biomarkers, but alterations 
in proteome expression are more likely to reflect changes in tumour pathophysiology. In the past, clinical diagnostics 
have strongly relied on antibody-based detection strategies, but these methods carry certain limitations. Mass spec-
trometry (MS) is a powerful method that enables increasingly comprehensive insights into changes of the proteome 
to advance personalized medicine. In this review, recent improvements in MS-based clinical proteomics are high-
lighted with a focus on oncology. We will provide a detailed overview of clinically relevant samples types, as well as, 
consideration for sample preparation methods, protein quantitation strategies, MS configurations, and data analysis 
pipelines currently available to researchers. Critical consideration of each step is necessary to address the pressing 
clinical questions that advance cancer patient diagnosis and prognosis. While the majority of studies focus on the 
discovery of clinically-relevant biomarkers, there is a growing demand for rigorous biomarker validation. These studies 
focus on high-throughput targeted MS assays and multi-centre studies with standardized protocols. Additionally, 
improvements in MS sensitivity are opening the door to new classes of tumour-specific proteoforms including post-
translational modifications and variants originating from genomic aberrations. Overlaying proteomic data to comple-
ment genomic and transcriptomic datasets forges the growing field of proteogenomics, which shows great potential 
to improve our understanding of cancer biology. Overall, these advancements not only solidify MS-based clinical 
proteomics’ integral position in cancer research, but also accelerate the shift towards becoming a regular component 
of routine analysis and clinical practice.
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Background
Cancer is the second leading cause of death and poses 
a major problem to healthcare systems worldwide. The 
prevalence of cancer remains stable with an estimated 
1.7 million new cases, resulting in 600,000 new deaths, 

in 2018 in the United States alone [1]. Currently, clini-
cal practices are being improved by research on early 
detection methods, appropriate classification of risk 
groups and treatment efficacies. Much of this research 
has characterized tumours at the molecular level using a 
systems biology approach aimed at biomarker discovery. 
The National Cancer Institute (NCI) defines a biomarker 
as a biological molecule found in blood, other body flu-
ids, or tissues that provides an indication of a normal or 
abnormal process, or of a condition or of a disease. They 
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are used in the early detection, diagnosis, prognosis and 
treatment selection in the oncology clinic. The routine 
measurement of biomarkers and better treatment options 
in oncology clinics have led to a gradual reduction in can-
cer mortality rates with an estimated 1.5% annual decline, 
amounting to a 26% decrease over the past three decades 
[1].

Other fields of clinical research attempt to elucidate 
molecular differences between cancer cases and healthy 
controls or different stages of cancers as the disease pro-
gresses. These include genomics and transcriptomics that 
have identified numerous cancer-driving genes. While 
these omics datasets have demonstrated the ability to 
compare and contrast different clinical cancer groups, 
one limitation is that these changes do not necessarily 
directly translate to our understanding of disease biology. 
On the other hand, proteins are the biomolecules that 
directly carry out most biological processes suggesting 
they are ideal predictors of disease progression [2]. Addi-
tionally, proteins are the active targets of most cancer 
therapeutics including the growing field of immunother-
apies. This makes clinical proteomics a growing field in 
molecular clinical research: the large-scale study of pro-
teins, including their expression, functions and structure, 
and applying the findings to improve patient care.

Multiple studies have shown that globally mRNA 
expression is positively, but weakly, correlated with pro-
tein expression [3–6]. This may be one reason why results 
from transcriptomic studies have translated to the clinic 
with mixed results and support the implementation of 
additional (and complementary) research in clinical prot-
eomics. This discordance arises from the highly dynamic 
and complex nature of proteome regulation. Protein 
expression is affected by alternative splicing, SNP’s 
(which translate to different proteoforms) and transcript 
degradation, as well as protein-level processes such as 
protein–protein interactions, degradation rates and post-
translational modifications (PTMs) [7, 8]. Accurate pro-
tein detection techniques are required for routine clinical 
analysis.

There currently exists a strong bias towards antibody-
based techniques for the detection of clinically-relevant 
proteins. ELISA is commonly used to quantify pro-
tein biomarkers in a variety of biofluids, with ongoing 
improvements, such as Prostate-specific antigen (PSA) in 
the blood of suspected prostate cancer (PCa) patients as 
low as one hundred picograms per millilitre [9]. Immu-
nohistochemistry (IHC) stains tissues to provide spatial 
information regarding well-established cancer markers. 
For example, the protein markers HER2, ER and PgR are 
used to classify breast cancer subtypes which has signifi-
cant implications in selecting an appropriate treatment. 
ER and PgR-positive tumors are treated by endocrine 

therapy while HER2-positive status is a prerequisite for 
targeted immunotherapy [10]. IHC is also useful in dis-
cerning tissue physiologies associated with poor progno-
sis or treatment response. These include tissue hypoxia 
using markers such as HIF1α [11], or staining for infil-
trating immune cells such CD69+ activated lymphocytes 
in melanoma [12]. Fluorescence activated cell sorting 
(FACS) uses antibodies to detect a small panel of pro-
tein markers and determine heterogeneity amongst a 
population of cells. The main advantage of antibodies is 
the detection specificity they provide but their applica-
tion comes with several disadvantages: cost of develop-
ment, availability, quality, and ability to be multiplexed. 
The need for higher-throughput techniques that capture 
a wider swath of the cancer proteomic landscape have 
opened the door for mass spectrometry (MS)-based 
techniques in the oncology clinic. Rapid technological 
advancements on multiple fronts including sample prep-
aration, peptide separation, MS-detection, and data anal-
ysis have all been essential for the robust quantitation of 
proteins from complex clinical samples.

In this review, we highlight relevant literature related 
to MS-based clinical proteomics with a specific focus on 
cancer research. We specifically focus on clinical sample 
types, sample preparation techniques, MS configurations 
and protein quantitation strategies. To limit this review 
to a more manageable scope we further describe nota-
ble studies that specifically investigate the proteomes of 
cancer tissues and bodily fluids. While we attempted to 
be as complete and inclusive as possible, we apologize 
to authors whose papers were not cited as part of this 
review.

Recent advances in clinical proteomic 
methodologies
Clinical sample preparation methods
A wide array of sample types has been analyzed by clini-
cal proteomics. First and foremost, larger cohorts of pri-
mary patient materials in the form of tissue samples are 
becoming increasingly feasible, due to improvements in 
biobanking and proteomics technologies. As a result, 
the direct proteomic investigation of clinical tissues is 
becoming increasingly popular. Preservation of the tis-
sue’s proteome dynamics is critical from time of surgical 
resection to the protein digestion stage, and there are a 
few methods of doing so: fresh frozen (FF), formalin-
fixed paraffin embedded (FFPE), and optimal cutting 
temperature embedded (OCT). One important caveat 
for consideration in clinical tissue-based proteomics is 
that surgical procedures could possibly take hours from 
the time a patient is admitted to the operating room to 
the point of sample retrieval and preservation. How this 
affects a tissue proteome is currently poorly understood. 
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More rapid procedures such as needle biopsies have the 
potential to overcome some of these complications but 
provide significantly lower amounts of tissue for pro-
teome analysis. While FF is the preservation method of 
choice from a proteome coverage perspective, FFPE tis-
sues have been banked for decades, providing extensive 
clinical follow-up and an invaluable resource for clinical 
proteomics. Previously, cross-linking-based modifica-
tions produced insufficient proteomic coverage for global 
proteomic studies of FFPE tissues. Improvements in sam-
ple preparation have led to more efficient de-crosslinking 
of fixed proteins, and as a result, greater protein availabil-
ity for digestion. Tissue samples can be further prepared 
by laser-capture microdissection (LCM) to add an ele-
ment of spatial resolution. This allows different regions of 
the same tissue sample to be compared, whether normal 
adjacent or tumorous.

While tissue samples have the potential to provide 
novel biological insights, many clinical proteomics stud-
ies have aimed to discover novel biomarkers, ideally in 
clinical samples that are obtainable in a non-invasive or 
minimally invasive manner (i.e. liquid biopsies). The most 
commonly analyzed biofluids are blood (plasma, serum) 
and urine, but other biofluids that have been analyzed by 
proteomics include post-digital rectal examination urine 
[13], expressed prostatic secretions [14], saliva [15], tears 
[16], cerebrospinal fluid (CSF) [17], and ascites [18, 19] to 
name a few. The promise of analyzing patients’ body flu-
ids is that disease-relevant changes in molecular markers 
such as cfDNA, RNA, proteins, lipids and metabolites are 
reflected in the fluid sample. Therefore, a liquid biopsy 
sample can be collected in a renewable manner for lon-
gitudinal studies that monitor cancer progression and a 
patient’s response to treatment.

Clinical sample cohorts of the past were often under-
powered due to biobanking limitations (i.e. availability 
of high-quality, richly annotated samples). As a result, 
various model systems have been developed to facili-
tate the discovery of new biomarkers or aid in charac-
terizing proteins of interest, as in Fig. 1. These models 
include transgenic animal models, immortalized cancer 
cell lines, primary cell lines and xenograft models. Cell 
lines of various cancer subtypes can be grown in 2D 
on cell culture dishes, either directly on plastic or on 
various matrices (i.e. collagen), or under more sophis-
ticated 3D conditions (i.e. embedded in Matrigel). 
More recently, primary cells have been established as 
organoid models that more accurately mimic three-
dimensional tumour development [13]. Alternatively, 
cancer cell lines or patient-derived tumors can also be 
engrafted into immunocompromised mice to generate 
so-called cell line-derived xenografts (CDX) or patient-
derived xenografts (PDX), respectively [20–22]. These 

xenograft models are thought to more accurately reca-
pitulate human tumor specimens, due to the presence 
of matrix components and stromal cells (i.e. vascular 
cells, fibroblasts, etc.), but still lack important contri-
butions from the immune system. Model systems play 
a critical role in allowing for an expansion of clinical 
proteomic studies to gain more functional insights. As 
such, data from representative model systems can act as 
a complement to data obtained from clinical samples.

Sample preparation plays an important role in the pro-
teomic characterization of clinical samples and rigorous 
standard operating procedures need to be established in 
order to get relevant information on the complex biologi-
cal processes that lead to cancer progression. There is no 
universal protocol for proteomic sample preparation, but 
rather the selected strategy should be optimized/selected 
based on the proteomic complexity, the available quantity 
of sample and the goal of the study. The first step in sam-
ple preparation for MS includes lysis and extraction of 
proteins from the clinical samples. This includes extrac-
tion reagents such as different organic solvents and deter-
gents followed by tissue disruption techniques such as 
freeze–thaw cycles, sonication or mechanical disruption 
to maximise the protein extraction and solubilisation. 
Organic solvents solubilise and denature proteins and 
can be easily removed by evaporation using lyophiliza-
tion. TFE (2,2,2-Trifluoroethanol) based lysis and extrac-
tion on nano-scale (30  µg) and macro-scale (> 100  µg) 
input materials gave comparable protein detection rates 
relative to the traditional detergent-based methods [23]. 
While the use of other organic solvents such as acetoni-
trile have been reported, TFE-based sample preparation 
in clinical studies have been shown in the study of ovar-
ian cancer [24] and PCa tissues [6].

Denaturants (urea and guanidine HCl), ionic deter-
gents (SDS, SDC), and non-ionic detergents (Triton 
X-100, NP-40) act to efficiently lyse cells and solubilise 
protein complexes, especially membrane proteins. The 
disadvantage of detergent use is their difficult removal 
from samples for downstream MS applications that could 
lead to peptide ion suppression. Detergents also tend to 
deposit in the electrospray emitters and liquid chroma-
tography lines, C18 chromatography columns, and in the 
MS instrument front-end causing added maintenance. 
Many MS-compatible, commercially available detergents 
have been reported and widely used including Rapigest 
(Waters), ProteaseMax (Promega), Invitrosol (Thermo). 
These detergents degrade with the addition of heat or 
acidic pH conditions; hence reducing problems described 
above. Recently different protein purification techniques 
have been developed with increased efficiency, reduce 
protein digestion time requirements and minimized sam-
ple losses as described below.
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FASP, MStern and S‑trap
The anionic surfactant sodium dodecyl sulfate (SDS) is 
an excellent agent to solubilise proteins but possess lim-
ited compatibility with MS applications. The removal of 
SDS from the peptide sample has proven to be a major 
barrier with conventional methods. Recently developed 
sample preparation methods focus on using SDS and 
other denaturants as the solubilization agent and their 
removal through various membrane-based protein cap-
ture techniques. One of these developed methods is 
filter aided sample preparation (FASP) first described 
by Manza et al. [25] and further characterized by Wis-
niewski et al. [26]. FASP uses molecular weight (MW) 
filtration to bind proteins to a nitrocellulose filter, while 

lower MW analytes pass through the filter. Consecu-
tive urea washes facilitate SDS removal, followed by 
on-filter digestion and peptide elution. This technique 
reduces sample preparation time and sample loss while 
maintaining the advantages of using SDS for improved 
proteome coverage. One of FASP’s limitations is a 
reduced binding efficiency with small quantities of 
starting material with greater sample losses [27]. Addi-
tionally, the small membrane pore size in FASP requires 
higher spinning speeds which makes it time consuming 
in the 96-well format. Distler et  al. [28] made minor 
modifications to the FASP protocol to minimize poten-
tial losses of input material and reduce processing time. 
Alkylation and reduction were performed on-filter and 
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Fig. 1  Overview of clinical cancer proteomics strategies. a Various sample types are used for clinical proteomics. These include solid tumor 
tissues, patient body fluids, animal models and cell-based systems. Tumor tissues are obtained either as surgically resected samples or are biopsy 
based. There are a number of tissue processing approaches available, which include the analysis of “bulk” tissue or preferentially after pathological 
inspection, tissue macro-dissection or laser capture microdissection (LCM). Patient fluids are a popular source for the discovery of biomarkers. The 
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system for clinical proteomics. The most common models include transgenic disease models and patient-derived xenografts (PDX). Cell-based 
systems continue to be popular model systems in cancer biology. They include immortalized cancer cell lines or more sophisticated organoid 
systems that are established using defined culture conditions and primary patient material. Samples obtain from these sources are homogenized 
and proteolytically digested prior to proteomic analyses (i.e. bottom-up proteomics). b Proteomic analyses can use several well-established 
workflows. These include label-free proteomics (LFQ), isobaric labelling strategies or the specific enrichment of post-translational modification 
such as phosphorylation, ubiquitination, glycosylation, etc. c Integration of proteomics data with publicly available resources such as the CPTAC 
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further washes with MS-compatible volatile salts such 
as ammonium bicarbonate leading to highly purified 
samples. FASP has been utilised in different clinical 
tissue proteomics studies including colorectal cancer 
(CRC) FFPE samples [29, 30], PCa FFPE tissue samples 
[31] and FFPE samples of PCa bone metastases [32], to 
name a few.

Clinical proteomics studies consist of increasingly 
large cohorts which require efficient and timely sample 
preparation; which has been facilitated by the develop-
ment of 96-plate format techniques. The MStern method 
was developed to overcome the problem of slow liquid 
transfer through nitrocellulose membrane. MStern uses 
hydrophobic PVDF membranes with significantly larger 
pore sizes allowing for improved liquid transfer and more 
efficient protein adsorption relative to nitrocellulose [33]. 
A vacuum system is used for passing the samples through 
the membrane more effectively than centrifugation. 
Similarly to FASP, MStern involves reduction, alkylation 
and digestion on the same membrane. Apart from the 
speed and efficiency of MStern, peptides are not eluted 
with a high salt concentration. Rather, they are eluted 
by acetonitrile and formic acid which limits the need 
for extra desalting steps. The one limitation of MStern is 
that the binding capacity of each well is 25 µg compared 
to < 400 μg for FASP. A study by Berger et al. compared 
MStern and FASP techniques using urine, CSF and whole 
cell lysate samples with varying amounts of starting 
material. MStern showed a comparable number of pro-
tein detections while saving 9.5 h of processing time [33].

Another recently developed membrane-based method 
that uses a similar principle as FASP is called suspension 
trapping (S-trap) [34]. S-Trap packed filters consist of 
quartz fibers packed with a larger pore size compared to 
FASP. The other protocol modifications include the use 
of higher SDS concentrations (5%) in the lysis method. 
The addition of methanol and phosphoric acid causes 
the formation of protein particulates which are trapped 
by the filter. Similarly, to FASP and MStern, reduction, 
alkylation and digestion are done directly on the filters. 
The comparative study to evaluate the overall efficiency 
of S-Trap, MStern and FASP showed that S-Trap and 
FASP provided the greatest number of protein detec-
tions compared to the polyvinylidene difluoride (PVDF) 
method. The digestion efficiency was greatest for S-trap 
which reported the lowest number of missed cleavages 
[35]. Another study showed that S-Trap outperformed 
FASP in terms of protein detection due to a higher diges-
tion efficiency [36].

SP3 and iST
Clinical tissue samples are sometimes challenging to pro-
cess due to their small size, particularly LCM samples. 

These samples require efficient sample processing tech-
niques to ensure limited sample losses and maximal 
extraction of the proteins to maximize proteome cover-
age. The solid-phase-enhanced sample preparation (SP3) 
method was developed with these limitations in mind. 
Originally described by Hughes et  al. [37] the method 
uses paramagnetic beads which are coated with hydro-
philic carboxylate groups. The beads are compatible with 
various detergents and organic solvents including SDS, 
urea, TFE and acetonitrile (ACN) [27, 38]. The proteins 
are immobilized to the charged carboxylate groups in the 
presence of an organic solvent with acidic or basic pH. 
After the immobilisation of the proteins, detergents are 
removed with high organic content washes, followed by 
on-bead digestion. Eluted peptides can be directly intro-
duced into the MS without the need for desalting. SP3 
protocol has been further modified to improve the effi-
ciency and its reproducibility. These studies showed that 
binding efficiency of proteins are lower in acidic condi-
tions as compared to neutral pH [39]. Furthermore, using 
ethanol in neutral pH during protein binding resulted in 
better protein recovery compared to ACN in acidic pH 
[40]. The strength of SP3 beads lie in providing a plat-
form for efficient protein binding from minute amounts 
of starting material; with all sample preparation steps 
happening in one tube to limit potential losses. This 
method has been scaled to an 96-well automated robot 
liquid handling platform for robust reproducibility and 
through-put [41]. Several clinical studies using patient 
derived samples have used the SP3 method, including 
ovarian cancer [42], CRC [43].

The in-StageTip (iST) method developed by Kulak et al. 
[44] in 2014 is another sample preparation workflow, 
which is compatible with low input material. The method 
focuses on using a single stage tip enclosed by a barrier 
to perform multiple sample processing steps to mini-
mize sample losses and to provide better proteome cov-
erage. In the iST workflow, a pipette tip is inserted with 
a reversed-phase membrane barrier at the bottom. The 
sample in the tip is introduced from the top, where they 
can be lysed through heating or sonication. The sample 
is then denatured, alkylated and digested. The membrane 
at the bottom of the tip is then used for peptide clean-
up. Alternatively, samples can also be fractionated on 
the same tip. The iST workflow shows high performance 
handling ultra-low amount of material, but due to the 
reverse-phase membrane barrier the iST is incompatible 
to use detergents (SDS) and organic solvents (TFE) for 
lysis [37].

The work by Sielaff et al. [39] showed an independent 
comparison between commercially available iST, FASP 
and SP3 sample preparation strategies using minute 
amounts of starting material. Initially, varying amounts 
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of HELA lysates (1–20  µg) were used to process these 
samples. The results showed that all three methods per-
formed similarly with respect to the numbers of pro-
tein detections and reproducibility. Reduction of the 
input < 10  µg resulted in SP3 and iST providing similar 
proteome coverage, whereas FASP showed a decrease 
in performance. Furthermore, clinically relevant FACS 
immune cells (25,000) were processed in triplicates using 
these three methods. The highest number of proteins 
were detected through SP3 method giving an average 
detection of 3152, followed by 2343 proteins by iST and 
FASP detecting 109 proteins. These results suggest that 
SP3 and iST methods are suitable for low input starting 
material while FASP may not be feasible for ultra-low 
amounts of starting material.

Front‑end MS developments
The field of clinical proteomics has seen advancements 
at the sample preparation stages, as well as in MS tech-
nology. MS-based proteomics’ emergence can be attrib-
uted to the development of soft ionization techniques 
such as electrospray ionization (ESI) and matrix-assisted 
laser desorption ionization (MALDI). Further advance-
ments in front end technologies have propelled clinical 
proteomics to further depths of the human proteome. 
ESI continues to rely on well-established reversed-phase 
nano-LC technologies, or combined with capillary elec-
trophoresis [45], and is hence more practical for discov-
ery-based experiments. Orthogonal peptide separation 
techniques have grown in popularity amongst clinical 
proteomics research applications. For increased pro-
teome coverage over a single-shot experiment, a peptide 
pool can be fractionated by basic reverse-phase LC or 
strong cation exchange chromatography. For example, 
peptides from lung cancer cell lines resistant and sensi-
tive to tyrosine-inhibitor treatment were fractionated and 
produced 39% more detections per protein than a single 
shot analysis [46]. The increased burden of LC–MS time 
requirements can be reduced by strategic concatenation 
of non-sequential fractions. Additionally, this strategy 
comes with increased sample handling and loss of pep-
tides; an important consideration when clinical samples 
may be limited in protein input and availability [46]. In 
the gas phase, peptides can be further separated by ion 
mobility to achieve greater proteome coverage. These 
technologies include high-field asymmetric ion mobility 
spectrometry (FAIMS) and trapped ion mobility spec-
trometry (TIMS) aim to reduce MS1 complexity and 
thus MS2 contamination from co-eluted and co-isolated 
peptides [47, 48]. These technologies have demonstrated 
a 30% increase in peptide detections from routine analy-
sis of cancer cell lines [49] and this improvement trans-
lates similarly to clinically-relevant specimens. Overall, 

the improvement of front-end peptide separation tech-
niques is ongoing to meet the goal of increased proteome 
coverage.

MS scanning modes
The majority of discovery-based clinical proteomic stud-
ies continue to depend on data-dependent acquisition 
(DDA) to identify potential biomarkers or gain biologi-
cal insights. This approach has some benefits includ-
ing well established instrument operation, data analysis 
and processing pipelines. Additionally, DDA includes 
the option of label-dependent quantitation and associ-
ated multiplexing. On the downside, DDA is hampered 
by low inter-sample reproducibility of peptide detection 
due to random sampling, thus creating a “missing value” 
problem. While the premise of DDA has remained largely 
unchanged, improvements in the instrument’s efficiency 
have stemmed from the development of the BoxCar data-
acquisition method [50]. Unlike past DDA advancements 
that focus on the MS2-level, BoxCar sequentially fills nar-
row m/z windows to increase the ion injection time more 
than ten-fold. The increase in ion collection significantly 
increases the signal-to-noise and overcomes issues of 
abundant peptides dominating the MS1 spectrum, while 
less abundant, co-eluting peptides were less likely to be 
selected for MS2. As a result, 90% of a cancer cell line 
proteome was detected in a 1-h analysis as opposed to 24 
fractions. Reproducibility was also high, as the majority 
of proteins were quantified in all ten replicates. BoxCar 
will undoubtedly be applied to cancer-relevant stud-
ies in the near-future [51]. Another recent advancement 
in DDA is the MaxQuant.Live software that combines 
aspects of global and targeted MS. It applies on-the-fly 
mass, retention time and intensity calibration and con-
trols the Orbitrap mass analyzer to predict the detection 
of significantly more precursors in real-time [52].

Due to the shortcomings of DDA, the field of clinical 
proteomics is observing a shift towards data-independent 
acquisition (DIA), a method that was originally described 
by Purvine et  al. [53] and further reported by Venable 
et  al. [54]. In DDA, the N most intense peptide precur-
sors in a survey MS1 scan are selected for sequential 
fragmentation and MS2 detection. Whereas in Sequen-
tial Window Acquisition of All Theoretical Mass Spectra 
(SWATH-MS), a variation of classic DIA, all theoretical 
peptides in a sample are sequentially fragmented in nar-
row m/z windows to yield more complex MS2 spectra 
[55, 56]. These spectra are then matched to a pre-defined, 
empirically determined, spectral library of peptides with 
the goal of the library having achieved maximum pro-
teome depth through extensive peptide fractionation. 
Additionally, peptide sequencing and quantitation are 
more robust since stochastic peptide detections as in 
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DDA are no longer a concern. Current data analysis plat-
forms such as Spectronaut Pulsar [57], OpenSWATH 
[58], and Scaffold EncyclopeDIA [59] (among others) 
are sufficient in de-convoluting the MS2 spectra to pep-
tide sequences, at a rate comparable to DDA. Further 
improvements will allow less abundant peptides to be 
confidently matched. Clinical samples with greater prot-
eomic diversity, such as tissues, make this MS2 complex-
ity issue more troublesome. On the other hand, clinical 
samples of less complexity are well-suited for DIA analy-
sis, such as urine. DIA’s reproducibility was tested across 
11 laboratories using a benchmarked sample of stable 
heavy isotope labelled peptides spiked into a cell lysate 
digest with 91% of proteins detected across all centers 
[60]. Furthermore, public databases such as SWATHAt-
las will continue to increase spectral library availability 
and increase DIA’s ascension in clinical proteomics [61, 
62].

Fragmentation and MS detection techniques
MS instruments continue to show versatility with vari-
ous peptide fragmentation and detection configurations. 
Collision-induced dissociation (CID) was first introduced 
in 1981 and is one the most fundamental fragmentation 
techniques in proteomics [63]. The ionized peptides are 
passed through a vacuum chamber where they collide 
with a neutral gas such as nitrogen, helium or argon. The 
vibrational energy cleaves the C–N (peptide bonds) to 
generate b and y ions series, followed by mass analyzer 
detection. Higher-energy collision dissociation (HCD) 
which is essentially a vendor-specific term for CID is 
often used in Orbitraps and hybrid LTQ-Orbitrap mass 
spectrometers which combine the cycle speed and sen-
sitivity of the linear ion trap with the mass accuracy and 
resolution of the Orbitrap. Precursor ions are shuttled 
from the C-trap to the collision cell where the ions are 
similarly fragmented by a neutral gas [64]. The fragments 
are then transmitted to the Orbitrap analyzer resulting in 
improved MS2 spectrum quality, particularly with lower 
molecular mass [65].

Electron-transfer dissociation (ETD) is an ion–ion 
collision fragmentation-based method where cations 
(peptides or proteins) collide with charged radical rea-
gent anions [66]. ETD is particularly useful in the study 
of diverse modifications because PTM integrity is pre-
served while still achieving the backbone fragmentation 
necessary for peptide detection. Hybrid ETD fragmenta-
tion methods like ETD-HCD have been reported where 
precursors sequentially undergo both types of frag-
mentation to yield b/y and c/z type fragment ions in a 
single spectrum [67]. Additionally, ETD is suitable for 
the study of top-down proteomics due their high-cati-
onic nature including intact proteins, their PTMs, and 

protein–protein interactions. One such application is the 
study of engineered antibodies which have shown poten-
tial to be used as cancer therapies [68]. ETD-based MS 
methods have been reported in the literature to charac-
terize monoclonal antibodies (mAb) and antibody drug 
conjugates (ADC) [69–74].

Protein quantitation
There is a large number of global and targeted protein 
quantitation approaches available, each with their unique 
sets of advantages and disadvantages. These can be cat-
egorized as relative or absolute quantitation, of which the 
former can be further divided into label-dependent and 
label-free techniques.

Relative quantitation often depends on the use of sta-
ble-isotopic labels that result in covalently derivatized 
peptides. Past methods include metabolic and chemical 
labelling, such as dimethylation and Stable Isotope Labe-
ling with Amino Acids in Cell Culture (SILAC) which 
rely on MS1-level quantitation, but they are most appli-
cable to cell line-based studies [75, 76]. Additionally, 
SILAC-based methods have also been adopted to in vivo 
studies, termed Super-SILAC, where heavy labelled cell 
line lysates are spiked into tumor tissue lysates as a global 
control [77]. This approach was used for histone PTM 
quantitation in breast cancer FFPE samples [78].

More recent labelling strategies, such as Tandem mass 
tag (TMT) and isobaric tag for relative and absolute 
quantitation (iTRAQ), have gained popularity as these 
techniques apply isobaric tags providing MS2-level rela-
tive quantitation while boosting the MS1 signal inten-
sity to improve chances of peptide detection [79, 80]. A 
potential problem with these approaches is the co-iso-
lation of precursor peptides that results in ratio com-
pression. Improvements in instrument resolution with 
narrower isolation widths, and the combination of iso-
baric tags with ion mobility to reduce co-isolation have 
significantly improved the quality of these experiments. 
One notable advantage of using TMT in a clinical pro-
teomic setting is the high degree of multiplexing, up to 
16-plex, to significantly reduce the LC–MS time require-
ments of analyzing increasingly large patient cohorts. 
Potential caveats of TMT -based approaches are that 
extensive peptide-based fractionation is required to 
obtain deep proteome profiles and that 1–2 TMT chan-
nels are usually dedicated to a global control (i.e. a com-
bined lysate of all clinical lysates analyzed). This reduces 
the ability of individual projects to be effectively com-
pared against each other. More recently, the ratio com-
pression of TMT labels and thus limited dynamic range 
of quantitative proteomic data can be overcome with 
further fragmentation. MS3-level quantitation further 
removes co-isolating and co-eluting peptides with the 
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use of SPS (synchronous precursor selection) with only a 
marginal decrease in ion signal intensity [81].

The use of stable-isotopic labels does create added 
expenses in clinical proteomic studies. As an alternative, 
recent advances in data computation have given rise to 
powerful label-free proteomic techniques, with sample 
peptides often separated over long LC gradients. Relative 
protein abundances are derived from MS1-level peptide 
peak integration using software like MaxQuant [82], Pro-
teome Discoverer and Skyline [83]. This allows for wider 
dynamic ranges spanning several orders of magnitude 
that are difficult to achieve with label-based techniques, 
albeit at a loss of precision (i.e. reproducibility). Label-
free quantitation is more applicable to clinical proteom-
ics due to the inter-patient and intra-patient variability 
of protein expression. Label-free strategies are applied to 
both DDA and DIA scanning modes. Latosinka et al. [84] 
compared label-free and isobaric tag (iTRAQ) strate-
gies in muscle-invasive and non-muscle-invasive bladder 
cancer tissues. It was concluded that both methods pro-
vide comparable proteome coverages and proportional 
quantitative data, but label-free DDA identified a greater 
number of differentially expressed proteins.

In general, relative quantitation strategies are used for 
discovery-based clinical proteomics. Once proteins of 
interest have been identified they require further valida-
tion. While antibody-based techniques such as ELISA 
fulfill this role, MS-based targeted assays are well suited 
for validation, especially if no suitable antibodies are 
available. The most commonly used method is called 
multiple-reaction monitoring mass spectrometry (MRM-
MS). This assay is well established for small molecules 
and peptides and is carried out using triple quadrupole 
mass analyzers. MRM-MS assays require prior knowl-
edge of the parent ion (MS1) and fragment ion (MS/MS) 
mass-to-charge ratios. The combination of a parent ion 
and 3–5 associated fragment ions, termed transitions, are 
selected by the quadrupole. Quantitative data is obtained 
by measuring the area under the curve of the transitions 
extracted ion chromatograms. More recently, targeted 
assays have also been developed using quadrupole Orbit-
rap mass analyzers—termed parallel reaction monitor-
ing mass spectrometry (PRM-MS), which leverage the 
high-resolution, accurate-mass (HRAM) Orbitrap for 
increased specificity [85, 86]. Similar to MRM-MS assays, 
prior knowledge of parent ion mass-to-charge ratios is 
required to develop PRM-MS assays. Since all fragment 
ions are generated and recorded in PRM-MS assays, prior 
knowledge of individual transitions (fragment ion mass-
to-charge ratios) is not required. Rather the best frag-
ment ions can be selected from the full MS/MS spectrum 
afterwards. Extracted fragment ion chromatograms, 
similar to described above, are used for quantitation. If 

appropriate controls such as stable isotope labelled pep-
tide standards are used, targeted proteomics assays can 
provide absolute quantitation. Importantly, each targeted 
assay must be carefully optimized to achieve optimal 
performance. This includes optimized chromatographic 
separation, collision energies to achieve maximal frag-
ment ion signal-to-noise and dwell times (MRM) or ion 
fill times (PRM), as recently described [87]. Optimization 
of these parameters also depends on the total number of 
peptides targeted. Ideally, for each peptide the assay lin-
earity, level of detection (LOD) and lowest level of quan-
tification (LLOQ) are experimentally determined using 
synthetic peptides [88]. Furthermore, the mass spec-
trometer’s detection efforts can be further optimized by 
using retention time information to schedule MRM/PRM 
target detection. These strategies require robust chroma-
tography schemes that can be monitored using standard 
index retention time (iRT) peptides This allows for a sub-
stantial increase in the number of targets an assay can 
accurately monitor. Advances in instrument detection 
speed now allow for hundreds of targets to be monitored 
in a single injection [87, 89]. As the door opens for rou-
tine monitoring of proteomic signatures in the oncology 
clinic, targeted PRM approaches show great promise due 
their ability to monitor progressively more targets in a 
dependable fashion.

Tissue biopsy studies
Discovery‑based studies
In the context of clinical proteomics, tissue analysis 
provides the most accurate reflection of the tumour’s 
physiological state. As mentioned, recent advance-
ments in LC–MS technology have continuously enabled 
increased proteome coverage with reliable quantitation. 
These studies now enable routine proteomics analyses of 
patient tumor tissues for biomarker discovery, discovery 
of biological pathways and integrations with available 
genomics/transcriptomics profiles.

Tissue-based proteomic strategies have been applied 
to the study of many cancer types, including prostate 
[90, 91], breast [77, 92, 93], melanoma [94, 95], lung 
[96–98], ovarian [99, 100], and oropharyngeal carcinoma 
[101]. The studies above can be summarized by com-
mon themes. Clinical proteomic studies often compare 
cancerous tissue samples with “healthy” adjacent con-
trols from the same patient for potential diagnostic bio-
markers. Meanwhile, comparisons between patients with 
varying stages of cancer are compared for prognostic 
information. Once a smaller number of candidate pro-
teins have been identified, pathway analyses give insight 
into how these proteins are associated with tumorigen-
esis, proliferation, metastasis and other cancer-driving 
processes. This is often followed by antibody-based 
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techniques that complement and validate the differential 
expression findings in a larger independent cohort. The 
studies detailed below follow these guidelines and are 
summarized in Table 1.

A major application of discovery-based proteomics in 
cancer tissues is the development of risk stratification 
and cancer subtyping systems. This has been demon-
strated by label-free strategies with several recent exam-
ples of DIA applications. Bouchal et al. [102] performed 

SWATH-MS on frozen breast cancer tumours. An 
extensive spectral library contained reference spectra 
for 28,233 proteotypic peptides and their modified vari-
ants, attributing to more than 4400 proteins. The dis-
covery cohort consisted of 96 tissues belonging to five 
well-established clinical subtypes. Proteomic analysis 
resulted in the consistent quantitation of 2842 protein 
groups, the majority of which were involved in well-
established breast cancer pathways. For the most part, 

Table 1  Summary of select tissue-centric proteomic studies highlighted in this review

Protein quantitation Tissue 
type

Sample preparation MS Model Clinical question Proteins 
detected

Patient 
cohort

References

Label-free DDA FFPE FASP, SAX QE CRC, healthy tissue and adenoma 10,000 32 [26]

QE Malignant vs. benign prostate tissue 9000 36 [31]

QE Breast cancer heterogeneity and 
triple-negative subtypes

10,819 131 [92]

FASP, SAX, Super-SILAC 
normalization

QE ER-positive luminal breast cancer 
progression and metastasis

10,000 88 [77]

QE Breast cancer subtypes 10,000 40 [93]

QE HF Melanoma response to immuno-
therapy

10,300 116 [95]

SDS QE Ovarian cancer chemosensivity and 
chemoresistance mediators

9000 25 [105]

Phospho-enrichment QE Triple-negative breast cancer treat-
ment outcomes

2643 34 [110]

TFE QE HF Metabolic regulators of CAF’s in high-
grade serous carcinoma

6944 107 [24]

FASP, SAX, LCM LTQ XL Colon cancer with healthy matched 6000 6 [29]

MudPIT LTQ XL HPV-positive and HPV negative oro-
pharyngeal carcinomas

2633 53 [101]

FF FASP, SAX QE PCa bone metastasis characterization 5067 22 [32]

Urea, SDS, CHCl3/
MeOH precipitation

QE Ovarian carcinoma histotypes 6360 20 [100]

iST QE HF Primary urachal carcinoma, metasta-
ses and healthy tissue

5543 1 [96]

Label-free SWATH OCT Pressure-cycling tech-
nology, urea

5600 TOF Intratumoural heterogeneity of PCa 6873 60 [90]

FF 5600 TOF Renal cell carcinoma and healthy 
controls

4624 18 [103]

5600 TOF Hepatocellular carcinoma and healthy 
adjacent control

2579 38 [104]

FASP 5600 TOF Breast cancer classification 2842 96 [102]

Isobaric Labelling FFPE SP3, RPF, TMT OF High grade serous and clear cell ovar-
ian carcinomas

8167 20 [42]

FF PDX, iTRAQ OV, QE Basal and luminal-B breast cancer 
subtypes

8126 2 [134]

FASP, RPF, iTRAQ OV Non-muscle invasive and muscle 
invasive bladder cancer

900 8 [84]

RPF, glyco-enrichment, 
iTRAQ

OV Ovarian high-grade serous carcinoma 
and benign cases

4817 6 [99]

Urea, glyco- enrich-
ment, iTRAQ

QE Squamous cell carcinoma vs. adeno-
carcinoma and healthy controls

8337 18 [106]

PDX, phospho-enrich-
ment, TMT

OF Lumos Luminal and basal breast cancer 
subtypes

7700 4 [109]
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proteomic analysis confirmed the conventional subtype 
classifications, but highlighted intra-subtype heteroge-
neity to further create a protein-based classification sys-
tem. Namely, proteins INPP4B, CDK1 and ERBB2 were 
found to be linked to ER and HER2 status, patient out-
come, and their expression was further validated in cell 
line models. A renal cell proteomic study was performed 
by Guo et al. [103] who analyzed tumor and healthy con-
trol tissue biopsies from nine different renal cell carci-
noma patients (18 samples). The SWATH-MS approach 
resulted in the quantitation of more than 2000 proteins 
with high reproducibility. As above, several detected 
proteins were differentially expressed in the tumor 
region, with 296 proteins upregulated in tumor sam-
ples compared to controls. SWATH-MS was also used 
in a biomarker discovery study on hepatocellular carci-
noma (HCC) performed by Zhu et al. [104]. In this study 
38 biopsies from 19 HCC patients with punches from 
paired tumor and benign regions. The data was analysed 
by OpenSWATH using a pan-human SWATH assay 
library which led to the detection of 2570 proteins. Once 
again, several proteins were differentially expressed in 
tumor samples compared to benign tumors. In particu-
lar, a putative biomarker, MCM7 which is believed to 
be involved in liver cancer progression was further con-
firmed through IHC.

Aforementioned label-dependent protein quantitation 
techniques have also been applied to tissue proteomic 
for improved risk stratification. Iglesias-Gato et  al. [31] 
performed a proteome-wide study of PCa progression 
with Super-SILAC quantitation. With an aim of find-
ing prognostic biomarkers. Twenty-eight FFPE prostate 
tumor samples from with a range of Gleason scores 6–9, 
and eight adjacent non-malignant samples, were pre-
pared for MS analysis. The peptides were fractionated, 
and the MS runs resulted in the quantitative detection of 
over 9000 proteins, with an elevated expression of CPT2, 
COPA and MSK1/2 in tumour tissues compared to non-
malignant region. These elevated proteins were reported 
to play a role in the regulation of cell proliferation. Com-
parisons between Gleason groups highlighted pro-neuro-
peptide Y (Pro-NPY) to be associated with poor patient 
outcome in intermediate and high-risk patients (Gleason 
score ≥ 7), which was confirmed by IHC in an independ-
ent cohort.

Aside from improving risk stratification, and thus 
patient survival, clinical proteomics can be used to 
identify new targets for improved treatment efficiency. 
Recently, a label-free, global proteomics approach was 
used to investigate the proteomes of 25 FFPE ovarian 
cancer tissues, stratified by chemo-resistance. More than 
9000 proteins were detected and the differential expres-
sion of CT45 was related to a positive chemotherapy 

response. Little was known about CT45’s molecular 
function, thus phosphoproteomic analysis of cell line 
models was pursued and suggested that CT45 increases 
the repair response to DNA damage. Additionally, CT45 
produces immunogenic peptides that recruit cytotoxic 
T cells and promote tumour killing. Therefore, clinical 
proteomics was a powerful tool in identifying a target for 
future immunotherapies [105].

As demonstrated in the study above, tissue global pro-
teomic studies can be further extended to the investiga-
tion of PTMs. Yang et  al. [106] studied the global and 
glycoproteome of non-small cell lung carcinoma sub-
types. In total 18 patient samples consisting of three 
squamous cell carcinoma (SqCC) tumor samples with 
matched benign tissues, six adenocarcinoma (ADC) sam-
ples with five matched benign samples and one normal 
healthy tissue. The digested samples were iTRAQ labelled 
and enriched for N-glycopeptides followed by reversed-
phase LC fractionation prior to shotgun MS analysis. Dif-
ferent protein and glycoprotein signatures were found in 
ADC and SqCC samples, with pathways distinguishing 
between tumour types.

Protein kinases play an important role in signal trans-
duction pathways, and the dysregulation of these path-
ways is an intriguing area of study in cancer [107]. 
Modern MS instruments and recent phosphopeptide 
enrichment methods have allowed for the large-scale 
detection and quantification of thousands of phosphoryl-
ation sites. Phosphoproteomic studies in clinical samples 
allow the identification of aberrantly activated kinases 
and their downstream substrates, which would other-
wise be undetectable by traditional shotgun proteomics, 
serving as potential therapeutic targets. Many studies 
have shown important roles in understanding the molec-
ular mechanism of cancers governed by phosphoryla-
tion-mediated pathways [108, 109]. Zagorac et al. [110] 
performed label-free quantitative analysis of the triple 
negative breast cancer (TNBC) phosphoproteome and 
compared relapsed and non-relapsed patients. In total 
34 patient samples were lysed, digested and enriched for 
phosphopeptides. Label free single-shot runs resulted in 
the detection of more than 10,000 phosphosites, corre-
sponding to 2643 phosphoproteins. The analysis showed 
159 phosphosites to have increased phosphorylation sta-
tus. Several different kinases were found to be hyperacti-
vated in relapsed samples compared to the non-relapsed 
ones through pathway enrichment analysis. Six kinases, 
PNKP, CDK6, PRKFCE, c-Kit, P70S6K were considered 
to play a role in the relapse of cancer and showed poten-
tial as prognostic markers. Inhibitors against these six 
kinases were studied in TNBC PDX models and cell lines 
which showed antitumor activities suggesting potential 
therapeutic targets in TNBC.
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Targeted and multi‑site validation
Tissue proteomic studies to date have focused on dis-
covery-based studies that highlight countless potential 
markers of cancer. We need to move towards rigorous 
validation of these targets if the field is to evolve towards 
routine analysis in the oncology clinic. This bridge is 
being formed by targeted MS methods. PRM of tissue 
lysates, or immuno-affinity pulldowns of specific pro-
teins from lysates, will become more mainstream [111]. 
For example, a panel of 54 proteins involved in tumour 
suppression, drug metabolism and chemoresistance were 
monitored in FFPE tissue lysates from 50 metastatic CRC 
patients. This identified differentially expressed proteins 
that can be used to help guide eligibility of patients for 
clinical trials [112]. In a breast cancer tissue study, PRM 
assays were developed for proteins implicated in treat-
ment sensitivity such as HER2, EGFR and PTEN with 
sub-femtomolar limits of quantitation. This was applied 
to monitor treatment effects in cell lines, PDX models, 
and extended to 46 frozen tissue lysates. Interestingly, a 
subset of the clinically annotated HER-2 positive tissues 
showed only minimal levels of HER2 by PRM [113]. Tar-
geted LC–MS provides improved levels of detection and 
quantitation by only focussing on a subset of the pro-
teome, but on occasion, particularly from complex tissue 
samples, target concentrations are still below reproduci-
ble levels of quantitation. Immuno-affinity enrichment of 
targets is then required to overcome this obstacle. Such 
a strategy was applied to the measurement of osteopon-
tin in FFPE breast cancer tissues. Two rabbit IgGs were 
used to isolate two peptide targets from the lysates of 
normal tissue and breast cancer tumours. It was repro-
ducibly demonstrated that the tumours contained 30× 
more osteopontin than normal healthy tissues using the 
first peptide and supported by the second peptide show-
ing a 28× increase [114]. It is important to note that a 
tissue’s preservation method has an impact on targeted 
MS detection. Sprung et  al. [115] targeted 114 peptides 
from FFPE and frozen tissues and reported that while the 
reproducibility of measurements was consistent between 
sample types, MRM signal intensities were reduced by 
34% in FFPE samples.

When using the same sample preparation methods, 
LC–MS configuration and data analysis pipelines, con-
siderable inter-lab reproducibility can be achieved. 
TMT-10 was used to multiplex PDX tissues derived 
from two breast cancer subtypes and compared across 
three independent laboratories. Overall, 7700 human-
originating proteins were distinguishable from the 3100 
mouse-derived stromal proteins with a maximum devia-
tion across laboratories of 7%. Additionally, the TMT 
ratio between the two subtypes produced a minimum R2 
correlation of 0.88. Phosphoproteomic results, with an 

average of 37,000 phosphosites quantified per sample, 
were less reproducible. The maximum deviation in phos-
phoproteome coverage was 24% with a R2 correlation of 
0.72 [109]. Similar studies to assess inter-lab reproduc-
ibility in cancer cell lysates have been performed with 
similar results. Thirty stable-isotope labeled peptides 
were spiked into 1  µg digest of cell lysate and detected 
by SWATH-MS across 11 laboratories worldwide over a 
1-week period. The inter-lab median CV of the standard 
peptide intensities was 47.3% in comparison to the inter-
day and intra-day median CV’s at each site of 8.9% and 
5.5%, respectively. 4000 proteins were detected in more 
than 80% of LC–MS runs. Of these proteins, the inter-lab 
median CV of protein intensity across sites was 22% [60]. 
Another study compared independently generated data-
sets. For example, one CPTAC CRC proteomic dataset 
generated by 2D LC–MS was compared to the proteome 
of another 40 CRC tissues prepared by GeLC–MS in a 
separate laboratory. The proteomes shared an 80% over-
lap in protein detections, of which quantitative meas-
urements were strongly correlated (R2 = 0.8) [116]. Of 
course, any conclusions from this meta-analysis would 
require rigorous validation, but it does demonstrate that 
comparisons of independently-generated tissue prot-
eomic datasets will be possible in the future [92]. Cross-
referencing proteomic data findings with other public 
datasets such as The Cancer Genome Atlas (TCGA) and 
Human Protein Atlas [117] instills further confidence in 
biomarker identifications.

Spatial resolution in discovery proteomics
One factor to consider in quantifying changes in the tis-
sue proteome is tumour heterogeneity. This was recently 
shown by sampling the proteome of frozen prostatec-
tomy specimens by SWATH-MS from benign prostatic 
hyperplasia and adenocarcinoma patients. To account 
for inter-patient, intra-tissue and inter-tissue variabil-
ity, tissue biopsy sections were investigated from dif-
ferent areas of the same sample, different samples and 
different patients. It was noticed that proteins involved 
in DNA repair pathways differ significantly between dif-
ferent areas of the same tumor tissue, owing to tumour 
heterogeneity. Thus, it was suggested to account for this 
variability in future studies when identifying protein bio-
markers from tissues [90]. Efforts are being made to dis-
tinguish changes in protein expression originating from 
disease progression from those originating from tissue 
heterogeneity and secondary biology pathways. To over-
come this, the development of laser-capture microdis-
section (LCM) provides a powerful tool to isolate specific 
regions of a tumour cross-section. LCM was used to iso-
late neoplastic islands and stroma from the tumour front 
and inner tumour of oral cancer tissues. Discovery-based 
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proteomics revealed the lower expression of cystatin-B in 
the islands which was further verified by IHC. The study 
was extended to targeted methods to further distinguish 
patients with increased chances of lymph node metas-
tasis [118]. Increasing the throughput of LCM to match 
that of discovery-based proteomic experiments with 
increasing cohort size is imperative for this technology to 
transfer to the clinic.

Another MS-based technique that provides spatial 
information and shows potential in the clinic is Mass 
Spectrometry Imaging (MSI). MSI has already been estab-
lished in the detection of metabolomics-based markers, 
as is making strides in the proteomics sphere. A sectioned 
tissue biopsy is surveyed by MALDI-MS at ever-increas-
ing spatial resolutions, as low as a few micrometers [119], 
and routine analysis at 100 µm. As the laser moves over 
the tissue, a protein marker’s intensity is correlated to a 
colour-coded heat map. Clinical MSI experiments are 
most commonly reserved for the detection of small mol-
ecules [120], glycans [121] and lipids [122] due to caveats 
in proteomics studies related to spectral complexity, dif-
ficult characterization of distinguishing peaks, and poor 
ionization of in-tact proteins. More recently, peptide ioni-
zation can be facilitated by the brief digestion of surface 
proteins prior to MSI. One applicable area of interest that 
has caught the attention of cancer research is the ECM 
proteome, as it relates to tumour metastasis and treat-
ment resistance. It has been shown that pre-digestion of 
liver and colon cancer sections with matrix-metallopro-
teinase prior to MSI gives further insights into how these 
enzymes modulate ECM [123]. Alternatively, MSI can 
determine the distribution of cancerous and healthy cell 
types in heterogeneous tissue cross-sections [124].

This tumour heterogeneity creates the need for single-
cell resolution in proteomics. Fluorescence-activated 
cell sorting (FACS) is an antibody-based technique used 
to sort a heterogeneous mixture of cells based on the 
expression of predetermined protein markers but comes 
with low multiplexability of markers. An MS-based alter-
native has emerged, called mass cytometry, and allows for 
dozens of protein markers to be monitored in individual 
cells. This is accomplished by coupling antibody probes 
to unique stable heavy metal isotopes rather than fluoro-
phores [125]. The cells are nebulized by inductively-cou-
pled plasma (ICP) and the metal ions provide the mass 
spectrometer a quantitative readout of a marker’s distri-
bution within a sample, such as immune cell infiltration 
[126]. For example, single-cell mass cytometry was used 
to quantify a panel of 73 proteins related to tumour-
immune cell signalling in 144 breast tumours and 50 
healthy tissue samples. Higher grade tumours were found 
that have exhausted T cell counts and higher frequen-
cies of PDL1+ tumor-associated macrophages [127]. 

The mass cytometry quantitative strategy can also be 
extended to intact tissue sections like MSI. Imaging mass 
cytometry was used to visualise the tumor microenviron-
ment in FFPE CRC tissues with a focus on immune cell 
infiltration [128] or more recently to evaluate the single-
cell pathology landscape of a large cohort of 352 breast 
cancer tissues [129].

Proteogenomics
Potentially the most powerful application of tissue prot-
eomics to cancer research is using it in a concerted effort 
to complement genomics. This rapidly growing field is 
termed proteogenomics [130, 131]. Genomic research 
has significantly contributed to our understanding of 
cancer biology, through the identification of various can-
cer driver genes. It will be interesting to evaluate how 
some of these genomic aberrations modulate the can-
cer proteome. However, discovery proteomic analysis is 
dependent on reference databases of known peptides. 
Next-generation sequencing technologies can now pro-
vide comprehensive human genomes and transcriptomes 
that can detect single nucleotide polymorphisms and 
translocations. These variants are translated to unique 
proteoforms that would otherwise go undetected by 
traditional canonical sequence databases. Currently, 
MS-based detection of genomic aberrations is limited 
to only few cancer-specific variants, based on genomic 
estimations, due to the relatively low sequence coverage 
for each detected protein in a typical shotgun proteomic 
experiment. Future improvements in proteomics and 
computational approaches, such as open search algo-
rithms like MSFragger [132], are expected to improve 
these detections. Alfaro et al. was able to combine pub-
licly available databases with sample-specific genomic 
and transcriptomic data to interrogate proteomic data 
across 59 NCI cell lines. This resulted in the detection of 
4771 mutations in 2200 gene products that would have 
otherwise escaped detection. This highlights the need 
for public availability of MS proteomics data so that 
expanded variant databases can be used for re-interro-
gation. In another example, Dimitrakopoulos et al. com-
pared the DNA exome variants in 21 ER-positive breast 
cancer tissues to the proteomic data from the same sam-
ples [133]. This study demonstrated the limitations that 
still exist in the field as only 0.4% of these variants were 
detected at the proteome level. It was noteworthy that 
these detected variants belonged to the 6.3% most abun-
dant mRNA transcripts which translated to many of the 
most abundant proteins. Nonetheless, the small subset of 
detectable variant peptides provides optimism that this 
class of potential biomarkers are well worth investigating 
in the future. Adding these variants to existing databases 
will make them more complete.
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While the cancer genome and transcriptome of many 
cancers have been well elucidated, the cancer proteome 
and its relation to up-stream genomic alterations are 
poorly documented. In recent years, a growing number 
of studies have begun to integrate all levels of omics data 
to describe a comprehensive multi-omic assessment of 
tumours. These projects often require large collabora-
tions between laboratories with unique skill sets, such 
as The Clinical Proteomic Tumor Analysis Consortium 
(CPTAC). This network was created by the National 
Cancer Institute to promote collaboration in an effort to 
accelerate our understanding of the molecular basis of 
cancer, with an initial focus on ovarian, breast and CRC 
(additional cancers have since been added). The con-
sortium has produced increasingly complex multi-omic 
datasets, using standardized methods and applying them 

to growing cohort sizes of diverse surgical tissues. Stem-
ming from the consortium, the Applied Proteogenomics 
Organizational Learning and Outcomes (APOLLO) net-
work was created to bridge the CPTAC findings so that 
proteogenomic analysis becomes a routine component of 
personalized medicine. The International Cancer Prote-
ogenome Consortium (ICPC) also works to bring cancer 
researchers together to share and compare data across 10 
countries. The benefit of these networks is the validation 
of results in multiple centres. Irreproducibility in prot-
eomics arises from differences in peptide digestion, pre-
fractionation, chromatography, MS configuration and 
bioinformatics [134]. These aforementioned collabora-
tions work to limit these factors with standard protocols 
and publicly available databases as detailed in the studies 
below, and summarized in Table 2.

Table 2  Summary of the clinical proteogenomic studies highlighted in this review

Protein 
quantitation

Tissue 
type

Additional omic 
datasets

MS model Sample 
preparation

Clinical question Proteins 
detected

Patient 
cohort

References

Label-free DDA FFPE GEN, TRA, PHO OF FASP, RPF Stratify HBV-related hepatocarci-
noma into subtypes

9252 110 [137]

FF EPI, TRA, PHO OF Urea, RPF, Super-
SILAC

Distinguishing between four sub-
groups of medulloblastomas

3892 41 [140]

GEN, EPI, TRA​ QE TFE Biomarkers of curable PCa 7054 76 [6]

OCT TRA, EPI OV TFE CRC characterization 7526 95 [4]

GEN, TRA, PHO QE Urea, RPF, TMT 
additional

Tumour, adjacent healthy tissue 
and blood in colon cancer 
patients

8067 110 [79]

Label-free 
SWATH

OCT TRA​ 5600 TOF Pressure cycling 
technology, 
urea

Protein degradation rates in PCa 
and adjacent healthy tissue

3056 68 [91]

FF GEN, EPI, TRA​ 5600 TOF RIPA buffer Untreated and castration-resist-
ant PCa compared to benign

4601 38 [138]

Isobaric Label-
ling

FFPE GEN, TRA​ QE FASP and IEF, 
TMT

Recapitulating breast cancer 
subtypes

9995 45 [135]

FF GEN, TRA, PHO QE HF SDS, FASP, RPF, 
TMT

Tissue and blood samples from 
HBV-related hepatocarcinoma 
and healthy adjacent liver 
patients

10,783 159 [139]

GEN, TRA​ QE FASP and IEF, 
TMT

Characterizing pathogenetic 
impact of hyperdiploidy in 
acute lymphoblastic leukemia

8480 89 [142]

GEN, TRA, PHOS, 
GLYCO

QE SDS, RPF, iTRAQ Characterization of gastric cancer 
from tumour, healthy adjacent 
tissue and blood samples

9625 80 [141]

OCT GEN, TRA, PHO OF Lumos Urea, Basic RPF, 
TMT

Characterization of treatment-
naïve clear cell renal cell 
carcinoma

11,355 103 [139]

GEN, TRA, PHO LTQ Velos TFE. iTRAQ High-grade serous ovarian carci-
noma characterization

9600 174 [5]

GEN, TRA, PHO QE Urea, basic RPF, 
iTRAQ

Characterization of breast cancer 
subtypes: basal, HER2-enriched, 
luminal A, luminal B

12,405 77 [3]
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Proteogenomic studies on breast cancer have recently 
demonstrated the ability to narrow down candidates for 
driver genes and to identify therapeutic targets. Mertins 
et al. [3] quantified the proteome and phosphoproteome 
of 105 breast cancer tissues which had previously been 
genomically annotated in a TCGA study. Trans-omic 
connections were made between cancer-centric path-
ways including CETN3 leading to elevated EGFR levels, 
or SKP1 loss leading to increased SRC expression. In 
another study, Johansson quantified nearly 10,000 pro-
teins across all 45 breast cancer tumours prepared by 
FASP. Encouragingly, breast cancer subtypes were reca-
pitulated by the proteomic data and among the subtypes 
with poor prognosis, and further classification was possi-
ble based on proteins related to immune infiltration. This 
study also included the mapping of protein products to 
non-coding genes which opens the door to new, tumour-
specific, immunotherapeutic targets [135].

Human hepatocellular carcinoma has been inves-
tigated by a couple of proteogenomic studies. In col-
laboration with CPTAC, Gao et al. [136] applied TMT 
11-plex to assess the proteome expression profiles from 
165 patients with hepatitis-B virus-related hepatocel-
lular carcinoma. Pathways related to tumour microen-
vironment regulation, cell proliferation and metabolic 
reprogramming, were studied in greater detail, and 
PYCR2 and ADH1A1 were identified as prognostic 
indicators of further patient subtyping. This study pro-
vides a valuable resource moving forward as the field 
acts to better understand liver cancer biology [136]. 
A group from the Chinese Human Proteome Project 
(CNHPP) consortium used proteomic and phospho-
proteomics to stratify a cohort of 110 paired hepatocel-
lular carcinoma and non-tumour tissues into subtypes 
with different clinical outcomes [137].

Sinha et  al. [6] investigated the proteogenomic land-
scape of PCa through quantitation of the genome, epig-
enome, transcriptome and proteome. Label-free analysis 
of 76 localized, intermediate risk prostate tumours led to 
the quantitation of 7000 protein groups. This study led 
to several interesting observations. First, that established 
genomic subtypes of PCa converge on five proteomic 
subtypes, which are themselves associated with clini-
cal outcomes. That ETS fusion genes, the most common 
mutation in prostate tumors, perturb the proteome and 
transcriptome in dramatically divergent ways, particu-
larly influencing metabolic pathways. Similar to studies 
from CPTAC, that RNA abundance explains only ~ 10% 
of variability in protein levels in PCa, but there is a broad 
network of trans effects that converge on specific func-
tional pathways and unique to this paper that biomarkers 
comprising genomic and proteomic features significantly 
out-perform those comprised of either molecular feature 

alone. Latonen et al. [138] also performed integrative pro-
teomics in fresh frozen PCa tissues using a SWATH-MS 
strategy and also reported aberrations in the proteome 
cannot be reliably predicted by other omics datasets 
including gene copy number, DNA methylation and 
RNA expression. Similarly, in a 110 clear cell renal cell 
carcinoma study, it was reported that a handful of genes 
demonstrated an expected decrease in protein expres-
sion when the gene was increasingly methylated such as 
IQSEC1. On the other hand, this was not the case at the 
transcriptomic-level (mRNA), suggesting post-transla-
tional regulatory mechanisms were at play [136, 139].

Other notable cancer proteogenomic studies include 
the study of medulloblastoma [140], early-onset gastric 
cancer [141], lymphoblastic leukemia [142], and ovar-
ian cancer [5]. Additionally, CPTAC has released prote-
ogenomic datasets for colon and rectal cancers [4, 79]. 
While understanding cancer biology is critical, other 
studies have focussed on observing proteogenomic aber-
rations that may affect anti-cancer treatment responses. 
For example, CRC patients often receive treatment with 
anti-EGFR monoclonal antibodies. Yet, a study mined 
transcriptomic and proteomic data to validate that wild-
type KRAS is necessary in tumours for effective treat-
ment due to variant peptides [143]. Moving forward, the 
integration of proteomic datasets with genomic-level 
data will become increasingly common in future research 
of oncology and personalised medicine.

Proteomics of human body fluids
Blood‑based proteomics
The promise of liquid biopsies is that they are thought 
to provide proteomic information representative of a 
given tumour or tissue type but can be collected in a less-
invasive and longitudinal manner. In clinical laboratory 
assays, blood is the most widely used human body fluid 
in disease diagnosis, prognosis and treatment outcomes. 
Blood consists of cellular components (i.e. erythrocytes, 
thrombocytes, and lymphocytes) and a liquid component 
called plasma [144]. Blood is tested for various plasma 
proteins via enzymatic assays or antibody-based immu-
noassays. Plasma has a wide dynamic range of more than 
ten orders of magnitude in protein abundances, with only 
22 proteins constituting 99% of the protein content [145]. 
These protein concentrations range from serum albumin 
(50  mg/mL), immunoglobulins and coagulation factors 
down to small protein hormones and cytokines (pg/mL) 
[144]. This large dynamic range has made it difficult to 
study the plasma proteome due to the masking of often 
low abundant potential disease biomarkers by the few 
very highly abundant proteins. Advances in MS-based 
proteomic detection technology and sample preparation 
have helped to partially overcome these issues.
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Immunodepletion and fractionation has expanded the 
number of detected plasma proteins into the thousands 
[146]. Immunodepletion of high abundance proteins can 
be achieved through immunoaffinity-based [147–149] or 
dye-based depletion [150, 151]. Depletion methods have 
many limitations including off-target capture of other 
proteins or the depletion of proteins bound to abundant 
proteins like albumin [151]. More recently, Geyer et  al. 
[152] performed a single-shot label free proteomic strat-
egy from 1  µL of blood plasma through a single finger 
prick, without immunodepletion that resulted in detec-
tion of over 300 proteins. These included more than 40 
FDA-approved biomarkers, inflammatory markers and 
gender-related proteins with high reproducibility.

After establishing the human proteome atlas project 
(HUPO) in 2001 [153], the Human plasma proteome pro-
ject (HPPP) was initiated in 2002. The collaboration of 32 
labs across 13 countries aims to generate an open source 
data repository of the human plasma and serum pro-
teome via MS [154]. Additionally, the project evaluates 
various sample preparation workflows, MS instrumen-
tations and analysis platforms across different laborato-
ries. The multi-centre data was integrated and resulted in 
9000 proteins detected by one or more peptides, or 3020 
proteins detected more stringently by two or more pep-
tides [154]. HPPP provided the first initiative for char-
acterizing the human plasma proteome. More recently, 
Geyer et al. [155] acquired deep proteomic data of whole 
blood, platelet-enriched plasma and erythrocytes from 
20 individual samples and compared it with the estab-
lished plasma and serum proteomes. This resulted in the 
detection of more than 6000 proteins, and insights into 
the proteome of each blood compartment. The aim of 
the project was achieved in establishing a reference pro-
teome which could identify the proteins from contami-
nating cell types and plasma.

Various studies have investigated the blood (plasma 
and serum) proteome from patients with various types of 
cancer, as summarized in Table 3. In one of these studies, 
Pan et al. [156] analysed the blood from healthy control 
and pancreatic cancer samples. The serum and plasma 
were isolated, immunodepleted and labelled with light 
and heavy-labelled acrylamide. The samples were pooled, 
fractionated by reversed-phase LC, tryptic digested and 
further fractionated by strong-cation-exchange (SCX) 
chromatography. This detected 1300 different proteins 
with several proteins differentially expressed in can-
cer compared to controls. Several of these differentially 
expressed proteins were confirmed using ELISA in an 
independent sample cohort with strong correlation to 
MS quantitation [157]. Proteins like TIMP1, ICAM1, 
AZGP1, APOA2 and LTF showed better predictive 
power than CA19-9 in differentiating the pancreatic 

samples from healthy controls, which is a gold standard 
blood biomarker for pancreatic cancer.

In a squamous cell lung carcinoma study, blood sam-
ples coming from the pulmonary artery and vein of non-
cancerous and cancerous lung regions were obtained 
during surgery. The plasma was immunodepleted and 
fractionated and peptides were quantified by iTRAQ. 
The results showed 50 proteins to be abundant in the 
vein draining part of the cancerous regions compared 
to the noncancerous sectors [158]. In another study 
done by Ahn et  al. [159] one hundred plasma samples 
from different stages of CRC and healthy controls were 
pooled to create a SWATH library. Similarly, the abun-
dant proteins were depleted and peptides were further 
fractionated. In total 37 proteins were differentially 
expressed in higher stages of CRC, and seven of these 
proteins were further validated by ELISA and western 
blot analysis.

Circulating tumor cells (CTC) are tumor cells that 
shed from the primary tumor into the circulatory sys-
tem and can lead to metastasis in different organs, 
but provide a unique source of potential biomarkers 
[160]. The occurrence of CTCs in blood is quite rare, 
which is estimated to be one CTC per millilitre [161]. 
Different approaches have been reported for the isola-
tion and detection of epithelial based CTCs through 
antibody-based EpCAM-coated ferromagnetic beads. 
This method has been FDA-approved for advanced 
PCa [162], breast cancer [163] and CRC [164] metas-
tasis studies. The other CTC isolation methods include 
chip-based isolation [165, 166] and MagSweeper [167]. 
Alternative methods like micro-fluidic immunofluo-
rescence [168] and microfluidic western blotting [169] 
detect a limited number of proteins in the CTC sam-
ples. Advances in MS-based analysis, especially recent 
single cell proteomics approaches [170] could poten-
tially provide proteome-wide insights of these CTCs to 
identify novel protein markers for their detection and 
insights into tumour heterogeneity, cancer progression 
and treatment outcomes. Isolating minute amounts 
of these cells is a challenging task and all the methods 
mentioned above come with limitations such as leuko-
cyte crosslinking [161], which leads to contamination 
of the target CTC proteome. Recent advancements in 
moving toward single-cell proteomics will improve cov-
erage of the CTC proteome in future studies. A recent 
study by Li et  al. [171] spiked varying amounts of 
MCF-7 cells in blood to mimic CTC amounts and were 
isolated with anti-EpCAM microbeads primed with 
antibodies specific to MCF-7 surface proteins. These 
captured MCF-7 cells were further prepared for LC–
MS where 1327 proteins were detected from 50 spiked 
cells and 2026 proteins from 100 cells.
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The plasma glycoproteome from various carcinomas 
were studied by Sajic et  al. [172]. In this study, blood 
samples from 284 subjects from four different types 
of carcinomas (CRC, lung, PCa and pancreatic) and 
their own control groups were compared by SWATH-
MS. This identified 1151 plasma glycoproteins from 
4347  N-glycopeptides. Among the various expres-
sion similarities and differences that were revealed, an 
increased THBS1 expression was found to be common 
between all carcinomas. Cima et al. [173] analysed the 
effect of PTEN inactivation on the N-glycoproteome 
during PCa progression. The N-glycopeptides from 

serum and prostate tissue of wild-type and KO (PTEN) 
mice models were enriched and analysed by LC–MS. 
This generated a total of 757 N-Glycoproteins. The 
comparison between WT vs KO sera and tissue short-
listed 49 biomarker candidates. These candidate pro-
teins were selected for SRM-based targeted assay in 
143 patient serum samples (disease and control). In 
the end, 33 proteins were quantified by SRM in 80–105 
patient samples. An additional nine proteins were vali-
dated by ELISA, totalling 39 proteins as potential PCa 
biomarkers.

Table 3  Summary of the urine and blood-associated clinical proteomic studies highlighted in this review

Liquid biopsy Protein quantitation MS model Sample preparation Clinical question Proteins 
detected

Patient 
cohort

References

Plasma Isotopic label LTQ Orbitrap Immunodepletion, filtra-
tion, SCX fractionation

Pancreatic cancer, pan-
creatitis and healthy control 
plasma

1300 3 [156]

Label-free DDA LTQ Orbitrap & 
5500 Q-trap

PDX, N-glycopeptide 
enrichment, SRM vali-
dation in human sera

Ovarian cancer biomarker 
development

906 224 [175]

Label-free SWATH 5600 TOF Immunodepletion, SCX, 
SAX, RPF, size-exclu-
sion chromatography

Early diagnosis of CRC​ 427 100 [159]

5600 TOF N-glycopeptide 
enrichment, Off-gel 
fractionation

Five different cancer types 
and their matched controls

1151 284 [172]

Serum Label-free DDA LTQ Orbitrap PDX, N-glycopeptide 
enrichment, Targeted 
validation in human

PCa diagnosis 775 8 [173]

QE HF PDX, N-glycopeptide 
enrichment, PRM vali-
dation in human sera

High grade serious ovarian 
cancer biomarkers and 
longitudinal monitoring

2200 20 [87]

iTRAQ 5600 TOF Immunodepletion, 
SWATH verification

Proteins leaving lung cancer 
tumours into pulmonary 
veins

1000 50 [158]

Urine Label-free DDA 5600 TOF Gel fractionation, RPF, IEF Characterization of the 
healthy urine proteome

6085 24 [176]

QE MW-filtration, SCX, PRM 
validation

Renal cell carcinoma prog-
nostic biomarkers

2589 115 [183]

LTQ Gel fractionation Identify novel therapeutic 
targets for Wilms tumour

6520 49 [184]

QE Gel fractionation Profiling urine from lung 
cancer patients and other 
tumors

7408 46 [185]

Post-DRE urine iTRAQ OV Ultracentrifugation, RPF Discovery of new biomarker 
for high Gleason PCa

4710 18 [191]

Label-free DDA QE Ultracentrifugation Characterizing EVs from 
EPS in urine from PCa and 
healthy patients

877 24 [189]

SRM TSQ Vantage MW filtration, TFE Targeted proteomics identi-
fies signatures for extracap-
sular prostate cancer

232 74 [188]

Qtrap5500 FASP Biomarker validation for early 
detection and stratification 
of PCa

64 107 [192]
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In a recent study by Sinha et  al. [87], potential bio-
marker discovery for high-grade serous ovarian carci-
noma (HGSC) recurrence was performed using PDX 
models. Briefly, HGSC recurrent tumor tissues were 
engrafted into immune-compromised mice. Serum 
from unengrafted animals served as controls. N-glyco-
peptides were enriched from serum and tumor tissues 
using hydrazide chemistry and analyzed by label-free 
proteomics. This resulted in 3675 N-glycopeptides corre-
sponding to 2200 proteins containing the Asn-X-Ser/Thr 
N-glycosylation sequon. Following species-assignment 
and bioinformatic prioritization the authors systemati-
cally developed targeted proteomics assays and applied 
them to two longitudinal cohorts of HGSC serum sam-
ples. This study reports four putative biomarkers for the 
early detection of HGSC recurrence. The study reports 
on a novel strategy for the discovery of tumor-derived 
proteins using a combination of N-glycoproteomics and 
PDX models. A similar study was performed by Hütten-
hain et  al. [174]. Genetically engineered ovarian cancer 
mouse models and control mice samples were used for 
the selection of N-glycoproteomic biomarker candidates 
which were quantified by SRM in 124 patient sera with 
epithelial ovarian cancer and 110 healthy controls. A 
protein signature consisting of IGHG2, L1CAM, THBS, 
DSG2 and LGALS3BP outperformed CA125, a known 
marker, in the detection of ovarian cancer.

Urine‑based proteomics
Urine is another commonly sampled human body fluid 
because it is produced in large volumes and can be eas-
ily collected in a non-invasive manner. From a proteome 
perspective, urine is less complex than blood, with a 
narrower dynamic range, and is less prone to proteo-
lytic degradation allowing for more stable storage over 
longer periods of time [175]. Improvements to LC–MS 
instrumentation have led to a series of studies report-
ing an increasing number of proteins that constitute the 
healthy human urine proteome, with Zhao et  al. [176] 
reporting more than 6000 proteins. This has caught the 
attention of organizations seeking non-invasive biomark-
ers, including HUPO which has dedicated the Human 
Kidney and Urine Proteome Project (HKUPP) specifi-
cally to the analysis of urinary biomarkers [177]. The 
challenges associated with urinary proteomics studies 
include inter-patient variability since urine protein con-
centrations depend on kidney filtration and reabsorption 
performance which greatly fluctuates within a popula-
tion. Secondly, intra-patient variability needs further 
characterization because urinary protein concentra-
tions are affected by time of day, exercise, diet and age. 
For example, a study used capillary electrophoresis (CE-
MS) to profile the urinary peptidomes and found that the 

expression of 112 urinary peptides strongly correlated 
with age in both healthy and diseased groups (mostly 
originating from collagen, uromodulin and fibrinogen) 
[178]. As such, the planning and selection of patient 
cohorts is an important component of urine proteom-
ics studies in the future. Lastly, targeted approaches are 
highly applicable to liquid biopsy proteomic studies but 
do come with some caveats. Fu et  al. [179] highlighted 
that target selection is crucial for accurate quantitation 
when they quantified twelve uromodulin (the most abun-
dant protein in healthy urine) peptides by SRM in urine 
samples. However, only four were robustly correlated 
with ELISA protein concentrations due to the unpredict-
able confounding factors of clinical samples such as pro-
teoform complexity. The urine-based proteomic studies 
detailed below are also summarized in Table 3.

It is estimated that 70% of urine proteins originate from 
the kidney and urinary tracts. As such, this proximity 
makes urine a valuable resource for monitoring urinary 
tract cancers [180]. Currently, bladder cancer relies on the 
detection of urinary NMP22 [181] by ELISA but this test 
suffers from low sensitivity. A second ELISA test for BTA 
[182] lacks specificity since the protein is also detected at 
high concentrations in blood that would yield a false-pos-
itive result in patients with poor filtration performance. 
CE-MS was used by Frantzi et al. [45] to develop a panel 
of peptide markers that distinguish primary from recur-
rent urothelial bladder cancer. The multi-centre discov-
ery cohort was followed by a validation cohort combining 
1357 patients. Intensities were normalized by 29 internal 
standard peptides. The predictive power of the current 
standard, cytology data, was augmented when combined 
with this peptide panel. Ortiz et al. [183] applied a shot-
gun approach to the study of urines from 115 kidney can-
cer patients. While distinctions could be made between 
healthy and cancer patient samples, the analysis dem-
onstrated further diagnostic power by revealing EHD4 
expression is elevated in clear-cell renal cell carcinoma 
relative to a benign oncocytoma. These techniques have 
also been applied to childhood cancers. Wilms tumour is 
the most common form of childhood kidney cancer and 
gel electrophoresis was used to fractionate urinary pro-
teins from 49 patients followed by LC–MS. After valida-
tion in a larger cohort by ELISA, it was determined that 
prohibitin can be used for early disease detection, non-
invasive monitoring of disease progression and as a target 
to block chemoresistance [184].

The remaining 30% of urinary proteins are from the 
glomerular filtration of blood suggesting that urine can 
also provide insight into cancers of distant organs [180]. 
A multi-centre, multi-disease study analyzed the pro-
teomes of 231 patients by label-free proteomics. Prior to 
tryptic digestion, the urine samples were denatured to 
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further release proteins from the uromodulin network. 
From this study, a protein signature was developed that 
not only distinguished lung cancer patients from healthy 
controls and other benign lung conditions such as pneu-
monia, but it was also from the urinary proteomes of 
other cancer types including: lung, bladder, cervical, 
CRC, esophageal, and gastric cancers [185].

Since the urethra passes through the prostate, urine 
is a valuable source of PCa biomarkers. A desirable trait 
of PCa markers is that they originate from the prostate 
rather than from other organs in the male urogenital 
tract. The Early Detection Research Network (EDRN) 
has studied post-DRE (digital rectal exam) urines which 
has been shown to contain a trove of potential biomark-
ers indicative of PCa status, including a non-coding 
RNA transcript, PCA3 [186]. However, these proteins 
are often lower abundance in urine creating the need for 
targeted MS quantitation. This approach was used by Shi 
et al. [187] and demonstrated that it is feasible to accu-
rately multiplex the quantitation of 10 low-abundance, 
PCa-associated proteins in clinical urines. While detec-
tion of these proteins is not as feasible for shotgun pro-
teomics, urine can also be collected after a digital rectal 
exam (DRE), a standard diagnostic test for patients with 
suspected PCa (termed post-DRE urine). The idea is that 
a DRE expels a small amount of prostatic secretions, a 
fluid often referred to as expressed prostatic secretions 
[14] that can then be collected within urine. Post-DRE 
urine is usually collected as the first flow, first catch urine 
(~ 50 ml) following a DRE. Kim et al. [188] used a shot-
gun approach to identify 232 proteotypic peptides that 
were differentially expressed between organ-confined 
and extracapsular PCa in expressed prostatic secre-
tions. These peptides were then used to systematically 
develop targeted proteomics assays for evaluation in 
post-DRE urines. Briefly, SRM-MS assays were devel-
oped using synthetic, stable-isotope labelled peptides 
and subsequently applied to two independent cohorts 
of post-DRE urines. Statistical approaches were applied 
to develop clinical predictive models for PCa diagnosis 
(PCa patients vs. controls) and prognosis (patients with 
organ-confined compared to men with extracapsular dis-
ease). This study provided evidence that computationally 
guided proteomics in combination with richly annotated 
urine cohorts can discover highly accurate non-invasive 
biomarkers [13, 188].

Urinary extracellular vesicles (EVs) have attracted sig-
nificant interest in recent years [189]. Although many dif-
ferent types of EVs (i.e. exosomes, microvesicles, etc.) are 
naturally released from healthy cells, their rate of release 
and cargo expression are reprogrammed in cancer to 
promote proliferation and metastasis while modulating 
the tumour microenvironment and immune response. 

These nanovesicles can be collected from urine through 
differential centrifugation, sucrose gradient density ultra-
centrifugation or filtration techniques [190]. iTRAQ was 
used to quantify 3500 proteins from the EV’s in post-DRE 
urine of PCa patients and identified FABP5 as a poten-
tial high-risk PCa marker. This differential expression 
was further validated by MS in cell line models, MRM 
quantitation and IHC staining [191]. A similar study 
was performed by Sequeiros et al. [192] who used a tar-
geted MS approach to quantify 64 EV proteins by SRM 
from a larger cohort of 107 post-DRE urines composed 
of healthy men and those suffering from low-risk and 
high-risk PCa. A combination of two proteins (ADSV 
and TGM4) distinguished PCa patients from healthy 
controls, while a panel of five proteins (CD63, GLPK5, 
SPHMPSA, and PAPP) accurately classified patients by 
risk group that would help guide further treatment. The 
diagnostic panel was further verified by tissue microarray 
in prostate tissues.

Alternative liquid biopsies sources
Aside from blood and urine, there are a variety of alter-
native human body fluids that could potentially be used 
for biomarker discovery. Some of these non-conventional 
fluid samples are rich sources of organ-specific proteins 
due to their close proximity, but often come at a cost 
of invasive sample collection. Thus, they may not be as 
applicable to routine clinical practices such as early can-
cer detection or longitudinal monitoring of cancer pro-
gression. The aforementioned prostatic secretions (often 
referred to as expressed prostatic secretion—EPS) is a 
fluid naturally produced by the prostate. The EPS pro-
teome is hence a rich source of prostate-derived proteins 
and this fluid’s proteome has been directly profiled in the 
absence of a urinary background [14, 193–195]. One lim-
itation of EPS is that it is in general only collected prior to 
radical prostatectomy, making it not suitable for routine 
clinical assays. It nevertheless provides an opportunity to 
discover prostate-derived biomarkers that can be further 
evaluated in post-DRE urines by targeted proteomics 
assays. Similarly, cerebrospinal fluid (CSF) surrounds the 
brain and spinal cord providing mechanical and immu-
nological protection but is not sampled as often as blood 
in brain cancer treatments due to its invasive collection. 
Nonetheless, CSF cannot be overlooked as a valuable 
biomarker source since it was recently demonstrated to 
contain more than 3300 total proteins, with an enrich-
ment in brain-specific proteins [196]. Spreafico et al. [17] 
analyzed the CSF proteome of 40 patients and identified 
a panel of six proteins that distinguished metastatic pedi-
atric brain cancer from healthy controls. Likewise, ascites 
fluid collection from the peritoneal cavity is invasive but 
it has been sampled to detect biomarkers indicative of 
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malignant gastric cancer [197], ovarian cancer [18, 19], 
hepatocellular carcinoma [198], changes in the N-glyco-
proteome related to epithelial ovarian cancer [199], and 
the proteomes of tumour cells derived from post-chemo-
therapy ovarian cancers [200].

Meanwhile, there exists a subset of alternative bodily 
fluid types that can be collected more readily but their 
proteomes have not been characterized as thoroughly as 
more conventional body fluids. Tears provide an intrigu-
ing biomarker source and only recently have there been 
efforts to characterize its proteome [16]. Tears from both 
eyes of eight healthy controls were analyzed and unsur-
prisingly, a significant proportion of the identified pro-
teins were enzymes [201]. Similarly to urine, a subset of 
tear protein expressions have been reported to correlate 
with age [202]. While tear proteins are sampled more 
commonly for ocular-related diseases, some efforts have 
been made to associate tear proteins with primary breast 
cancer using MALDI [203]. Multiple studies report char-
acterization of the saliva proteome since it is a good proxy 
for oral cancers. These studies often focus on the most 
common oral cancer, oral squamous cell carcinoma, with 
more than 1000 proteins regularly detected in a sample of 
saliva [204]. Label-free quantitation identified 22 overex-
pressed proteins in oral cancer patient saliva with resis-
tin correlating with advanced stage and metastasis [15]. 
Finally, proteomic studies of stool samples have shown 
that feces are another potential source of biomarkers. 
Most notably, CRC escapes early detection since existing 
IHC tests demonstrate limited sensitivity. Komor et  al. 
[205] performed LC–MS/MS on a cohort of nearly 300 
fecal samples from healthy controls, adenoma patients, 
and CRC patients. A panel of proteins included hapto-
globin, LAMP1, SYNE2, LRG1, RBP4, FN1 and ANXA6 
and was able to distinguish the cancerous patients from 
controls with a high degree of specificity and sensitivity. 
Haptoglobin was further verified as a biomarker in a large 
(n = 795) validation cohort by antibody-based assays. 
Similarly, Bosch et al. [206] used MS to detect 834 pro-
teins in feces, of which 29 were statistically enriched in 
CRC patient samples. Combinations of these new poten-
tial biomarker candidates even outperformed the current 
IHC standard hemoglobin.

Moving forward, supplementary inter- and intra-
patient variability studies will be needed to confirm 
proper sample collection protocols and patient selection. 
As clinical fluid sample preparation methods become 
more established and standardized, these alternative 
body fluid proteomes will be characterized in further 
detail as part of the search for robust non-invasive cancer 
biomarkers.

Conclusions and future directions
In summary, recent advances in biobanking and prot-
eomics technologies now enable the robust profiling of 
clinical samples to unprecedented depth. To become a 
mainstream technology in clinical laboratories, similar 
to well-established genomics assays, proteomics tech-
nologies and investigators must embark on large-scale, 
possibly multi-institutional validations studies. Targeted 
proteomics assays are likely to play a central role for the 
validation of tissue or fluid-based biomarkers. Technolo-
gies such as MRM-MS (or more recently PRM-MS) are 
already firmly established in clinical biochemistry labo-
ratories around the world for the detection and quanti-
fication of small molecules. The establishment of protein 
assays is the next logical step, but requires rigorous assay 
development metrics and large richly annotated valida-
tion cohorts.

Recent proteogenomics studies have also demonstrated 
the complementarity of proteomics and genomics tech-
nologies. Interrogation of biomolecules along the central 
dogma are expected to provide novel biological insights, 
multi-omics biomarkers and possible novel drug tar-
gets. While a handful of impressive studies have been 
published in recent years these have mainly focused on 
technical aspects of proteogenomics. What is missing is 
proteogenomics studies with a clear clinical question and 
large tissue cohorts to arrive at statistically powered con-
clusions. Another significant bottleneck of proteogenom-
ics is the current lack of appropriate analyses strategies. 
While the field is capable of generating these large data-
sets, computational analysis strategies will require fur-
ther improvements. This will require close collaboration 
between genomics, proteomics and data science/statis-
tics investigators.

A unique feature of proteomics technologies is the abil-
ity to detect subcellular localizations [207], protein com-
plexes [208] and post-translational modifications [209]. 
These so-called proteoforms [8] must be directly detected 
at the protein level and cannot be simply predicted from 
upstream genomics/transcriptomics data. For exam-
ple, proteogenomics technologies have recently demon-
strated great utility in the area of immune-oncology, in 
particular for the detection of druggable tumor-specific 
antigens [210]. A major hurdle for the development of 
cancer vaccines and T cell-based immunotherapies is 
the direct detection of MHC-associated neoantigens. 
Proteomics technologies have been developed for their 
isolation and MS-based detection. As these technolo-
gies further mature, including the development of more 
advanced analysis pipelines, direct clinical impact is to be 
expected.

Moving forward, the field of clinical proteomics is likely 
to see a rapid expansion of clinical cohort sizes as a result 
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of standardized, high-throughput sample preparation 
techniques. This will minimize the frequency of studies 
that suffer from statistical underpowering and improve 
efficiency of translating biomarker candidates and drug 
targets to clinical application. Proteomics will increas-
ingly become a critical part of cancer systems biology that 
integrate multi-omics data from genomics, epigenom-
ics, transcriptomics and PTMs. This will create demands 
for superior computing power to handle and analyze 
increasingly large amounts of data. Further improve-
ments in MS instrument sensitivity and speed will make 
deep proteome coverage more regularly attainable, espe-
cially without the need for extensive pre-fractionation. 
Improvements in detection/quantitation levels will also 
allow clinical proteomics to expand towards minimal 
input material and single-cell proteomics. Finally, data 
analysis pipeline will continue to enable the detection of 
protein panels and signatures that provide more diagnos-
tics and prognostic accuracy relative to singular markers. 
These advancements will all be required for MS-based 
clinical proteomics to reach its full potential in translating 
research discoveries to improvements to clinical practice.
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