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Abstract 

Advances in the field of targeted proteomics and mass spectrometry have significantly improved assay sensitivity and 
multiplexing capacity. The high-throughput nature of targeted proteomics experiments has increased the rate of data 
production, which requires development of novel analytical tools to keep up with data processing demand. Currently, 
development and validation of targeted mass spectrometry assays require manual inspection of chromatographic 
peaks from large datasets to ensure quality, a process that is time consuming, prone to inter- and intra-operator vari-
ability and limits the efficiency of data interpretation from targeted proteomics analyses. To address this challenge, 
we have developed TargetedMSQC, an R package that facilitates quality control and verification of chromatographic 
peaks from targeted proteomics datasets. This tool calculates metrics to quantify several quality aspects of a chroma-
tographic peak, e.g. symmetry, jaggedness and modality, co-elution and shape similarity of monitored transitions in 
a peak group, as well as the consistency of transitions’ ratios between endogenous analytes and isotopically labeled 
internal standards and consistency of retention time across multiple runs. The algorithm takes advantage of super-
vised machine learning to identify peaks with interference or poor chromatography based on a set of peaks that have 
been annotated by an expert analyst. Using TargetedMSQC to analyze targeted proteomics data reduces the time 
spent on manual inspection of peaks and improves both speed and accuracy of interference detection. Additionally, 
by allowing the analysts to customize the tool for application on different datasets, TargetedMSQC gives the users 
the flexibility to define the acceptable quality for specific datasets. Furthermore, automated and quantitative assess-
ment of peak quality offers a more objective and systematic framework for high throughput analysis of targeted mass 
spectrometry assay datasets and is a step towards more robust and faster assay implementation.
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Background
Targeted proteomics using mass spectrometry (MS) is a 
powerful technology for quantitation of candidate bio-
markers for clinical research and development [1, 2]. Tar-
geted MS methods such as multiple reaction monitoring 
(MRM) [1, 3–5] and parallel reaction monitoring (PRM) 
[6, 7] enable multiplexing of tens or hundreds of target 
proteins to report absolute quantitative levels of puta-
tive biomarkers using stable-isotope labeled standards 

(SILs) [8, 9], eliminating the need for costly and lengthy 
antibody development [1]. Targeted MS has found appeal 
in all phases of biomarker development from discovery 
to validation [10–13]. In the biomarker discovery phase, 
it is essential to consider the pathology of the disease or 
the mechanism of action of the therapeutic under inves-
tigation to create a list of candidates for a targeted panel. 
Unlike what is customary in shotgun proteomics, limiting 
the candidate biomarkers to proteins that are biologically 
relevant at early stages of biomarker discovery increases 
confidence in the utility of biomarkers that are shown to 
be of value in a targeted MS workflow. This selectivity in 
targets also reduces the chance of false positive markers 
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due to multiple hypotheses testing, a common caveat in 
shotgun proteomics [14]. Moreover, the increased speci-
ficity achieved by the targeted approach combined with 
its inherent sensitivity provides a promising tool for bio-
marker validation. All of these advantages have increased 
the utility of mass spectrometry-based assays in clinical 
research beyond the more well-established applications 
of pharmacokinetics [15, 16] and toxicology [17].

With the incorporation of mass spectrometry-based 
targeted proteomics experiments into larger scale studies 
and as the throughput of instruments improves, the need 
for objective, reproducible and scalable solutions for data 
analysis has grown in parallel. Analysis of targeted prot-
eomics data often starts with manual inspection of indi-
vidual peaks to ensure acceptable data quality [12, 18]. 
This quality assessment step, performed independently 
from system suitability monitoring which tracks the per-
formance of the instrument [19], focuses on uncover-
ing interference or matrix effects for individual peptides 
and transitions (Fig.  1a). Several factors are taken into 
account for assessment of peak quality including consist-
ency of retention time for each target peptide, acceptable 
chromatography as reflected by peak shape, consistency 
of transition ratios across samples as well as reasonably 
robust quantitation as demonstrated by the variability of 
peak areas and peak area ratios [12, 20–22]. In cases of 
interference or suboptimal peak picking, the analyst may 
adjust the boundaries of the peaks to remove interference 
and improve the specificity of the measurements. If the 
adjustment of the boundaries is insufficient to effectively 
remove interference, the analyst may remove the pep-
tide from list of reported quantities. Manual assessment 
of peaks is time-consuming, requires extensive training 

of the analysts, and is subject to inter and intra-operator 
variability. Furthermore, decentralized quality assess-
ment and data analysis could further complicate the 
transferability and reproducibility of targeted MS assays. 
Therefore, establishing an analytical framework for qual-
ity assessment of chromatographic peaks in a standard-
ized manner may mitigate issues with large-scale mass 
spectrometry-based studies in the longer term.

The quality assessment process for targeted MS assays 
can be broken down into several components and con-
sists of quality control (QC) at instrument, run, peptide 
and transition levels. Some of the currently available soft-
ware tools have implemented measures to simplify this 
process. Several commercial and open source software 
and computational tools have been made available to the 
community for development of targeted MS assays and 
analysis of the results. Vendor agnostic software tools 
such as Skyline [18] and vendor-specific software tools 
such as MultiQuant provide a toolset, interactive user 
interference and a suite of visualizations for the opera-
tor or analyst to create methods, integrate peak bound-
aries, and perform quantitative analysis of the results. 
Longitudinal system suitability monitoring tools such as 
MSstatsQC [23] and AutoQC [24], which integrate with 
Skyline through Panorama, enable monitoring of the 
instrument performance over time and thereby facilitate 
earlier intervention for troubleshooting at the instru-
ment level. Statistical tools such as MSstats [25] uses 
overall variations in the intensity of analytes across mul-
tiple runs for quality assessment at individual run level 
to identify issues with injection or sample quality. Addi-
tionally, Skyline takes advantage of multivariate statisti-
cal tools such as mProphet [21] to optimize peak picking 

a b 

Fig. 1  Targeted MS workflow with manual and automated peak quality assessment. a Targeted MS workflows such as selected reaction monitoring 
(SRM), multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) generate chromatographic peak groups, representing relative 
abundance of transitions (peptide and fragment ion pairs). Several factors such as poor chromatography, interference and matrix effects can 
compromise the quality of these peaks and subsequently the accuracy of the reported quantitative results. Therefore, the peaks undergo manual 
inspection by a trained analyst to identify such anomalies, a process that is oftentimes time-consuming and subjective. b In the developed 
automated QC process, a dataset of pre-annotated peaks is used to build a model to predict the quality of the chromatographic peaks generated 
from SRM, MRM and PRM workflows
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and integration and minimize the required manual peak 
adjustment. mProphet is a comprehensive automated 
platform for verification of targeted MS data; however 
it requires acquisition of decoy transitions, which is not 
always practical in a high-throughput workflow. Tools 
such as AuDIT [26] aim to identify interference in tran-
sitions and therefore simplify quality assessment of tar-
geted proteomics data, although due to small number 
of transitions, this method has limited statistical power. 
Combined, these tools have drastically simplified the 
development of targeted MS assays and subsequent anal-
ysis of results. However, the burden of selecting peptides 
and transitions for a targeted panel and quality assess-
ment of the peaks mainly fall on the shoulder of the 
analyst.

Herein, we present TargetedMSQC, a computational 
tool to facilitate high-throughput data analysis for tar-
geted mass spectrometry. This tool has been developed 
with the main objective of automating quality assess-
ment of chromatographic peaks to identify poor chro-
matography or interference (Fig.  1b). TargetedMSQC 
takes advantage of well-established peak quality meas-
ures such as retention time consistency and full-width at 
half-max (FWHM) as well as newly introduced metrics 
such as peak jaggedness, peak modality and isotope ratio 
consistency. TargetedMSQC utilizes these variables and 
multivariate statistical methods for the identification and 
demarcation of peaks with interference or suboptimal 
chromatography. Using TargetedMSQC, the user first 
provides a small subset of the dataset as a training set, 
where chromatographic peaks are manually inspected 
and the ones with poor quality are flagged. TargetedM-
SQC uses machine learning to build a predictive model 
that links the peak quality measures with the quality 
status reported in the training dataset. Finally, the tool 
applies this model on the remaining peaks to predict and 
report the peak quality for the whole dataset. Here, the 
application of TargetedMSQC is demonstrated on a tar-
geted proteomic MRM assay developed to study longitu-
dinal dynamics of cerebrospinal fluid (CSF) biomarkers 
of Alzheimer’s diseases (AD) [27]. By enabling automated 
flagging of low quality peaks, TargetedMSQC elimi-
nates or lessens the burden of manual inspection of all 
peaks for boundary correction or removal from the list 
of reported quantities, improving the throughput of the 
analytical pipeline. It also provides a standardized frame-
work to objectively and quantitatively evaluate qual-
ity across transitions, peptides and samples providing a 
means for mass spectrometry and contract laboratories 
to monitor the performance of their proteomics assays. 
This capability could be particularly valuable in large 
scale, multi-center or cohort studies where standardiza-
tion of data quality control could not only expedite the 

analysis, and simplify optimization of resources, but also 
improve the analytical reproducibility, traceability and 
continuity across multiple laboratories and studies.

Methods
Materials and reagents
CSF samples were purchased from PrecisionMed, Inc. 
(San Diego, CA). All donors provided informed con-
sent for use of these studies with institutional review 
board approval for human collection protocols. Detailed 
description of sample collection protocols are pub-
lished previously [27]. All reagents were purchased from 
Sigma (St. Louis, MO), unless stated otherwise. Stable-
isotope-labeled AQUA™ peptides were purchased from 
Cell Signaling Technologies, (Danvers, MA) for method 
development and to generate calibration curves.

Sample preparation and mass spectrometry analysis
CSF biomarkers of AD
This study was conducted by Wildsmith et al. [27] and the 
dataset was kindly provided by the authors for the evalua-
tion of TargetedMSQC. Sample preparation and targeted 
MS analysis of CSF tryptic digests are described in detail 
in the original publication [27]. Briefly, samples were 
concentrated to 30 μL using a 3 kDa Amicon centrifugal 
concentrator (Millipore, Billerica, MA), denatured in 40% 
trifluoroethanol (TFE) prepared in 100  mM triethylam-
monium bicarbonate (TEABC) for 1 h at 37 °C. Following 
denaturation, samples were reduced with 5  mM dithi-
othreitol (DTT) for 30  min at room temperature (RT) 
and then alkylated with 20  mM iodoacetamide (IAM) 
for 30 min at RT in the dark. This reaction was quenched 
with an additional 5 mM DTT for 15 min at RT. Samples 
were diluted to 10% TFE with 100 mM TEABC followed 
by digestion with trypsin at a ratio of 1:25 for 18  h at 
37  °C. The digestion was stopped by addition of formic 
acid. The final volume of all digests was measured. An ali-
quot of the total digest (48 μL) was spiked with 2 μL of a 
mixture of stable-isotope-labeled AQUA™ peptides prior 
to LC-MS/MS analysis. Heavy AQUA™ peptides to be 
spiked into samples were diluted and pooled before use 
to concentrations that were within tenfold of endogenous 
protein levels and ranged from 2 to 100 fmol/μL depend-
ing on analyte. For method development and generation 
of calibration curves, light AQUA™ peptides were spiked 
into the solution of tryptically digested BSA and heavy 
AQUA™ peptides at varying concentrations.

For LC-MS/MS analysis of the CSF tryptic digests, 2 μL 
of each sample was loaded onto a nanoAcquity UPLC 
(Waters, Milford, MA) at 5  μL/min in 99.5% buffer A 
(0.1% formic acid)/0.5% buffer B (acetonitrile/0.1% for-
mic acid) and then desalted on a Symmetry® C18 trap 
column (180  μm × 20  mm, 5  μm) (Waters) for 3  min 
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prior to separation on a BEH130 C18 (100 μm × 100 mm, 
1.7 μm) (Waters) at a flow rate of 1 μL/min over 60 min. 
The  gradient formation went from 2% buffer B to 30% 
buffer B in 40  min followed by 30–98% buffer B in 
10  min. A 98% solution of buffer B was used to wash 
the column for 5  min prior to reequilibration at 2% 
buffer B for 5 min. Peptides were detected by a QTRAP® 
5500 (AB SCIEX, Framingham, MA) equipped with an 
Advance Captivespray™ source (Michrom Bioresources, 
Inc. Auburn, CA). Scheduled MRM methods were pre-
pared using Skyline v1.3 and imported into Analyst 1.5.2 
(ABSCIEX). The QTRAP® 5500 was operated in positive 
ion mode using the scheduled MRM.

Engineering QC features for peak quality assessment
Thirty-two features were calculated or engineered to 
quantify various attributes pertaining to peak quality, 
including peak area and transition ratio, full-width at 
half-max (FWHM), symmetry, peak similarity, modality, 
co-elution and retention time. A complete list of these 
features and their definitions is provided in Additional 
file  1: Table  S1. The features were calculated using cus-
tom R scripts implemented as part of the TargetedMSQC 
package. The scripts accept chromatograms and peak 
boundaries, exported from Skyline, as input and gener-
ate a comma separated value file (features.csv) with the 
calculated features. Depending on the nature of the QC 
feature, it may be calculated at one or more levels. For 
example, jaggedness is reported at transition, isotope and 
peak group levels, while max intensity is only reported at 
transition level. Features at transition level are reported 
for peptide, fragment ions and isotope label trios. Fea-
tures at peak group level are reported for individual pep-
tides. Features at transition pair level are reported for 
peptide and fragment ion pairs. Features at isotope level 
are reported for peptide and isotope label pairs. It should 
be noted that the model predicts the peak quality for 
each endogenous and spiked-in standard transition as a 
pair. Therefore, the QC features that correspond to a spe-
cific label type, i.e. features at transition and isotope level, 
should be calculated and provided to the model for both 
endogenous and spiked-in standards, which brings the 
total number of features to 52.

Creating the training datasets
The training dataset is a set of peaks with manually anno-
tated quality status, which is used as a guide to build a 
predictive peak quality model. A subset of the runs in 
each dataset is randomly selected for manual annotation 
and the monitored transitions for quantification of all 
of the peptides on the MRM panel are annotated in this 
subset of runs to create a training dataset. This ensures 
that all of the peptides and transitions in the panel are 

reasonably represented in the training set. The required 
number of runs for training is determined empirically. 
Cross validation and resampling are used to estimate 
the model performance and its confidence interval for 
an increasing number of runs in the training set until 
our desired model performance is achieved. Learning 
curves are plotted to help determine the size of the train-
ing dataset to either achieve minimum acceptable model 
performance or observe a plateau in the curve. In this 
study, each training set contains a panel of 36 peptides 
and 144 unique peptide transitions, measured in multiple 
samples. The runs were imported into Skyline daily and 
the chromatograms were exported as a.tsv file. The peak 
boundaries were saved as a.csv file through the export 
and report option in Skyline. Inputs to TargetedMSQC 
are exported from Skyline; therefore this tool is inde-
pendent of MS vendor file formats. The training set was 
created by merging chromatograms and peak bounda-
ries using TargetedMSQC. Additionally, transitions with 
missing isotope pairs and peaks with missing boundaries 
were removed. The transition peaks, characterized by 
run, peptide and fragment ion, were manually inspected 
by an analyst and annotated by ‘ok’ or ‘flag’ labels. The 
following qualities were used during manual inspec-
tion to flag low quality peaks: bimodal peaks, peaks suf-
fering from poor chromatography as indicated by sharp 
and jagged edges, severe tailing, or high background, 
peaks exhibiting signs of interference e.g. by introducing 
inconsistence transition ratios between multiple runs or 
endogenous and standard isotopes, and finally peaks with 
low standard isotope signal intensities. The annotated 
dataset was reviewed by two mass spectrometry analysts. 
The agreement between analysts ranged from 80 to 95% 
depending on overall quality of the data and complexity 
of the QC process. Before training the model, the ana-
lysts reviewed the data to reach agreement on the contro-
versial peaks.

Building the predictive quality assessment model
To build the quality prediction model for each study, 
the QC features were first calculated for the peaks in 
the training set. To optimize the predictive peak quality 
model, several machine learning methods were evalu-
ated. These models include: support vector machines 
(SVM) with linear and polynomial kernels, regularized 
logistic regression, regularized random forest (RRF), and 
K-nearest neighbor (KNN). The caret package in R [28] 
was used to train the models and evaluate their perfor-
mance. Twenty percent of the training dataset was ran-
domly selected as validation set and left out from the 
training process to estimate the performance of the mod-
els on unseen data. The features were mean centered and 
scaled by diving by the standard deviation before being 
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used for training. Repeated tenfold cross validation (3 
repeats) was applied to the remainder of the training set 
to minimize over-fitting. Parameter tuning was employed 
to optimize the model. The model offering the highest 
accuracy was used for subsequent analysis.

Peak quality assessment of targeted MS datasets using 
the predictive model
Once the model with the highest performance was 
selected for each dataset, it was applied to the complete 
dataset. QC features were calculated for every peak in 
the dataset and the model was applied to these features 
using the built-in functionalities in TargetedMSQC to 
flag transition peaks with poor quality. The results of this 
assessment were reported in data tables as well as a.pdf 
report that summarizes the output at sample and peptide 
levels. Additional visualizations were generated by Tar-
getedMSQC and included in the report to help identify 
transitions that show interference or poor chromatogra-
phy across multiple samples.

Developing the TargetedMSQC R package
This analysis has taken advantage of several scripts to 
clean up the Skyline chromatograms and peak bounda-
ries, calculate the engineered QC features, create tem-
plates for the training dataset, merging the training 
dataset with QC features and train and apply the peak 
quality model. All these scripts and examples on how 
to use them are included in the TargetedMSQC tool, an 
open source R package. This package is freely available 
on GitHub (https​://githu​b.com/shadi​eshgh​i/Targe​tedMS​
QC).

Results
Engineered QC features quantify the quality 
of chromatographic peaks
Poor chromatography and interference compromise the 
quality of a peak. The factors most affected by this com-
promise are peak shape, symmetry, jaggedness, FWHM, 
retention time shift, and the consistency of the ratios of 
peptide transitions. TargetedMSQC calculates quality 
features that have been engineered to capture changes 
in peak quality. A total of thirty-two features have been 
developed to describe the peak quality. These features 
can be categorized into nine main groups of jagged-
ness, peak similarity, symmetry, FWHM, modality, shift, 
intensity, area ratio and retention time. Additional file 1: 
Table S1 lists these QC features and their definitions in 
detail.

Figure  2 depicts several representative examples of 
chromatographic peaks and their corresponding QC fea-
tures. For instance, jaggedness is defined as the fraction 
of time points across a peak where the signal changes 

direction, excluding the peak apex and therefore, returns 
a value of 0.0 for a smooth peak, whereas jaggedness 
scores closer to 1.0 indicate a noisy peak (Fig. 2a). Simi-
larity score between two peaks is determined by the 
Pearson correlation coefficient between the peak intensi-
ties, which yields a value of 1.0 for highly similar peaks 
that mirror the shapes of one another and lower values 
for pairs with differences in peak shapes (Fig. 2b). Sym-
metry score for a peak quantifies how symmetric a peak 
is along its time midpoint and yields values close to 1.0 
for perfectly symmetric and lower scores for asymmetric 
peaks (Fig. 2c). FWHM and FWHM to peak base width 
ratio are well-known quality metrics for chromatographic 
peaks that can deviate from a normal range due to inter-
ference resulting in peak shoulders or poor chromatog-
raphy (Fig. 2d, e). Modality score is defined as the largest 
dip in the peak, normalized by peak height. For example, 
the three transitions represented in Fig. 2f show varying 
levels of bimodal behavior with modality scores ranging 
from 0.0 for the smooth y4 transition to 0.3 for the highly 
bimodal y7 transition. Peaks with high intensities at the 
peak boundary may be subject to interference and there-
fore the peak intensity at the boundary was introduced 
as a QC feature in this schema (Fig. 2g). Additionally, all 
the fragment ions that belong to the same peptide must 
co-elute. Therefore, observing a shift in the elution of one 
transition flags the peak for manual reanalysis. This shift 
in elution is quantified by shift score as shown in Fig. 2h. 
Finally, an important attribute of peak groups in a mass 
spectrometry experiment is consistency of relative ratios 
of transitions not only between endogenous and standard 
isotopes, but also across samples. Pair ratio consistency 
is one of the metrics that quantifies this feature and is 
able to identify transitions where this ratio deviates from 
expected values as shown for y3 transition in Fig. 2i.

An ensemble of these QC features enables a quanti-
tative way to evaluate peak quality. For instance, a peak 
that may suffer from nothing more than tailing will result 
in low symmetry scores while showing close to perfect 
scores for all the other features, whereas interference in a 
peak may manifest in poor similarity, modality, shift and 
isotope ratio consistency scores. TargetedMSQC uses 
supervised learning based on a set of manually annotated 
peaks with similar features to train a model that is capa-
ble of predicting peak qualities in new samples, which is 
particularly useful for performing QC on large datasets.

Peak quality assessment of CSF biomarkers in artificial 
matrix
To demonstrate the feasibility of developing a predic-
tive peak quality model, our approach was first applied 
to a dataset of AQUA™ peptides of CSF candidate 
biomarkers spiked into bovine serum albumin (BSA) 

https://github.com/shadieshghi/TargetedMSQC
https://github.com/shadieshghi/TargetedMSQC
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as an artificial CSF matrix. This experiment was used 
for optimization of the CSF biomarker panel. Samples 
were analyzed by an MRM panel of 144 unique peptide 
transitions to quantify 36 peptides using stable-isotope 
labeled internal standards.

Training dataset
Four runs were used to generate the training set con-
taining a total of 288 peak groups (144 endogenous and 

144 spiked-in internal standards) and 576 transition 
pairs. A minimum accuracy of 90% was agreed upon as 
acceptable performance in this study. The learning curve 
for this dataset (Additional file  1: Figure S1) shows that 
at least 400 transition pairs are required to achieve this 
performance. Of the 576 peaks in the training set, 199 
were flagged by an analyst for quality issues pertaining to 
interference, poor chromatography or low signal. Charac-
teristics such as bimodality, jagged edges, severe tailing, 

High jaggedness score  
IsotopeJaggedness: 0.28 
Training set median: 0.00  

Low similarity score  
PairSimilarity: 0.84 
Training set median: 0.99  

Low symmetry score 
IsotopeSymmetry: -0.25 
Training set median: 0.74  

High intensity at peak boundary  
TransitionMaxBoundaryIntensity (y7): 4.5e6 
TransitionMaxBoundaryIntensity (y8): 1.1e6 
Training set median: 0.6e6  

High shift score  
TransitionShift (y6): 0.26 
Training set median: 0.00  

Low isotope pair ratio consistency 
PairRatioConsistency: 0.51 
Training set median: 0.03  

High FWHM score  
TransitionFWHM2base: 0.40 
Training set median: 0.32  

Low FWHM score  
TransitionFWHM2base: 0.18 
Training set median: 0.32  

High modality score 
TransitionModality (y4): 0.00 
TransitionModality (y5): 0.11 
TransitionModality (y7): 0.30 
Training set median: 0.00   

a b c 

d e f 

g h i 

Fig. 2  Engineered QC features capture anomalies in peak quality. Representative peaks and features are depicted from the following QC metric 
groups: Jaggedness (a), similarity (b), symmetry (c), FWHM (d, e), modality (f), intensity (g), shift (h) and area ratio (i). The represented examples 
provide cases of abnormal values for each feature. The medians of feature values over the training dataset are provided as a reference point for a 
peak that is of acceptable quality. Definitions of the metrics in this figure are described in Additional file 1: Table S1
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variability in transition ratios and low spiked-in standard 
signal were used by the analyst to identify and flag low 
quality peaks. The remaining 377 peaks were considered 
of acceptable quality.

The training dataset consists of a list of peaks identified 
by run, peptide sequence, precursor charge, fragment 
ion, product charge and quality status, which has been 
determined manually by an analyst. Peak quality met-
rics were calculated for the training set; violin plots for 
the distribution of each metric are shown in Additional 
file 1: Figure S2. The training set was used as a guide to 
build a predictive model that can identify low quality 
peaks based on an ensemble of QC features such as peak 
symmetry, similarity, modality, jaggedness, co-elution 
and FWHM. Distribution of features for this dataset 
(Additional file  1: Figure S2) provides a quick glance at 
the overall quality of peaks in this set as judged by the 
analyst. As shown in Additional file 1: Figure S2, major-
ity of the features exhibit a pattern in relationship to the 
quality status determined through manual inspection. 
For example, flagged peaks tend to have higher scores for 
features such as modality, shift, isotope pair ratio con-
sistency, coefficient of variation and intensity at the peak 
boundary and lower scores for features such as symme-
try, similarity, and correlation between peak area ratios 
of endogenous and standard isotopes. However, there 
is a not a single feature that can effectively discriminate 
between high and low quality peaks, further emphasizing 
the importance of utilizing multiple features and multi-
variate statistical methods to identify peaks with poor 
quality. The training dataset in this study contains peaks 
on a diverse quality spectrum. Therefore, by including a 
diverse set of peaks in the training dataset the capability 
of the predictive model to identify a wider range of qual-
ity issues is enhanced.

Predictive peak quality model development
After calculating the QC features for the peaks in the 
training dataset, several supervised learning methods 
were examined to construct a peak quality predictive 
model: Regularized logistic regression, regularized ran-
dom forest (RRF), K-nearest neighbor (KNN) and sup-
port vector machine (SVM) with linear and polynomial 
kernels. When applicable, regularization was used to 
simplify the model and reduce the risk of overfitting. 
The models were built based on 80% of the data ran-
domly sampled from the training set and their perfor-
mances were further verified by testing the models on the 
remaining 20% of the data, named validation subset. The 
performances of the models were estimated by compar-
ing the predicted peak qualities for each model with the 
observed qualities as determined by the analyst.

The performances of these models are summarized 
in Additional file 1: Table S2 and Figure S3. Among the 
five investigated methods, regularized random forest 
achieved the highest performance with an accuracy of 
94.5% to distinguish flagged from high quality peaks in 
the training subset, and sensitivity and specificity rates 
of 97.4% and 98.7% on the validation subset, respectively. 
The negligible difference between model classification 
accuracy on the training and validation subsets suggests 
minimal overfitting. The performance of the other four 
models was reasonable as well, ranging from accuracies 
of 89.8% for linear SVM to 93.4% for the KNN models; 
however most of them showed low sensitivity for detec-
tion of poor quality peaks in the validation subset. In 
general, considering that training of an RRF model is 
computationally expensive, it takes longer to build an 
RRF model compared to the other methods employed in 
this study. For example, training the RRF model, includ-
ing cross validation and parameter tuning, took ~ 40 min 
on a single processor. In comparison, training of the 
KNN model with the same cross validation method and 
similarly sized parameter tuning set was six times faster. 
Therefore, alternative methods may still be worthwhile 
to explore for different applications or datasets. Addi-
tional file  1: Figure S4 shows the relative importance of 
the QC features in determining the quality outcome for 
a peak in the RRF predictive model. As shown in this fig-
ure, compared to jaggedness, shift and modality metrics, 
features that quantify peak intensity, isotope ratio con-
sistency, peak similarity and FWHM seem to play a more 
crucial part in determining the outcome of the predictive 
peak quality model. One explanation could be that this 
particular dataset has very few jagged or bimodal peaks 
and therefore, metrics such as jaggedness and modality 
do not play a defining role in distinguishing high and low 
quality peaks.

The high sensitivity and specificity of the model for dis-
tinguishing low quality peaks suggest that the developed 
QC features are capable of capturing the peak quality in a 
similar way to manual inspection of the peaks. These fea-
tures can subsequently be leveraged by machine learning 
to make predictions about peak quality in unseen data, as 
long as the training set provides a fair representation of 
the range of peaks in the dataset under examination by 
the model. This example demonstrates great agreement 
between the manual inspection calls and the model out-
come. In this example, the rare instances of disagreement 
between the model and the analyst are marginal cases 
(Additional file 1: Figure S5) where the peak quality lies 
in the gray zone and does not have a tangible effect on 
the quantitative outcome of the experiment.
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Peak quality assessment of longitudinal CSF biomarkers 
of AD dataset
To further evaluate the practicality and performance of 
the proposed quality assessment framework, TargetedM-
SQC was applied to a dataset from a longitudinal study of 
candidate progression biomarkers of Alzheimer’s disease 
in procured CSF samples of AD patients. Samples were 
analyzed by the same MRM panel in the previous exam-
ple, quantifying 36 peptides using stable-isotope labeled 
internal standards.

Training dataset
The original dataset included 70 runs of a panel of 36 
peptides in procured CSF samples from patients with 
Alzheimer’s disease. Eight runs were selected at ran-
dom to be annotated for the training dataset. Poor 
quality peaks including, jagged peaks, peaks with high 
background or interference were flagged in the training 
dataset. This resulted in a set of 1128 transition pairs, 
with 615 ‘ok’ and 513 ‘flagged’ peaks. The learning curve 
for this dataset (Additional file  1: Figure S6) shows that 
at ~ 900 transition pairs the curve plateaus. The engi-
neered features were calculated for each transition pair 
in the training set as shown in Additional file  1: Figure 
S7. The patterns for the distribution of features were as 
expected. Flagged peaks had higher jaggedness, modality, 
shift, peak area CV% and lower symmetry and similar-
ity scores. Additionally, they showed higher normalized 
intensities at the peak boundaries, as well as poor con-
sistency in FWHM across samples and isotopes and poor 
consistency in pair isotope ratios across samples.

Predictive peak quality model development
The training set was used for development of five mod-
els using different statistical approaches, including RRF, 
regularized logistic regression, SVM with linear and pol-
ynomial kernels and KNN methods. Similar to the previ-
ous example, the training set was split into training (80%) 
and validation (20%) subsets. The model was built using 
the training subset, while the validation subset was used 
for unbiased evaluation of the performance of the model. 
Using the validation subset for performance evaluation 
helps diagnose issues with overfitting and therefore is of 
great importance in choosing the final model.

Performance of the five developed models was com-
pared in the training as well as the validation subset 
(Additional file 1: Table S3 and Figure S8). The RRF model 
yielded the highest classification accuracy, achieving an 
accuracy of 89.1% and 91.1% in the training and valida-
tion subsets, respectively. The accuracy of the other tested 
models ranged from 80.1% in the linear SVM model to 
87.0% in the KNN model. However, the sensitivity of the 
RRF model for flagging peaks with low quality significantly 

outperformed that of the other four models and therefore 
RRF was selected as the final predictive model for peak 
quality assessment in this dataset. Furthermore, receiver 
operator characteristics (ROC) analysis of the outcome of 
the RRF model on the validation subset returned an area 
under the curve (AUC) of 0.975, which also demonstrates 
the high performance of the predictive model (Additional 
file  1: Figure S9). Depending on the difference between 
the distribution of individual QC features in low and high 
quality peak groups, each of these metrics plays a role in 
determining the output of the model. In this dataset, QC 
features that measure attributes such as peak intensity, 
modality, correlation and consistency of isotope peak area 
ratios, peak area CV%, FWHM, and symmetry appear to 
have a more prominent impact on the output of the model 
(Additional file  1: Figure S10). Alternatively, jaggedness 
and shift scores do not seem to play a crucial part in deter-
mining the peak quality in the RRF model.

It should be noted that applying the model devel-
oped in the artificial matrix to assess the quality of the 
longitudinal biomarker data and vice versa shows poor 
performance. This can be attributed to the complexity 
of the biological matrix in the experiment. The highly 
complex human CSF matrix containing endogenous 
biomarkers poses a greater challenge for the LC-MS/
MS method when compared to the artificial CSF matrix, 
which consists of bovine serum albumin with spiked-in 
standard isotope-labeled peptides. The matrix effect, bio-
logical variability of samples and unpredictable interfer-
ence from the endogenous analytes in CSF compromises 
the chromatography in the longitudinal biomarker study. 
This ambiguity complicates the definition of acceptable 
peaks in the dataset and creates a gray zone, where the 
assessment of the peak quality may be more subjective. 
In contrast, using BSA as an artificial CSF matrix creates 
a controlled sample, where the difference between high 
and low quality peaks is clearer. This clarity further sim-
plifies annotation of the training set and subsequently 
optimization of the performance of the model. Moreo-
ver, the concentrations of spiked-in AQUA™ peptides in 
the artificial CSF samples were greater than the limit of 
quantitation for the vast majority of the peptides, which 
generates peaks with higher intensities and fewer jagged 
or irregular peaks. Considering that the peaks that are 
close to the limit of quantitation are more anomalous 
in shape and quality, it is expected that a dataset of high 
intensity peaks, as seen in the experiment with artificial 
matrix, leads to a more simplified quality assessment 
process both through manual and automated workflows.

Additional file  1: Figure S11 highlights the transitions 
that were misclassified by the model in the longitudi-
nal biomarker study in red. Of the 1128 transition pairs 
in the training set, 7 were misclassified as ‘ok’ (S9 A–F) 



Page 9 of 13Toghi Eshghi et al. Clin Proteom  (2018) 15:33 

and 13 were misclassified as ‘flagged’ (S9 G–R) by the 
model. A majority of misclassified peaks fall into the 
gray area between a high and low quality peak. Ambigu-
ity surrounds the annotations of flagged data by both the 
model and through manual inspection. To confirm this 
hypothesis, we can evaluate the class probabilities for the 
misclassified peaks. Class probability for each transition 
pair is the likelihood of that transition falling into a cer-
tain class as estimated by the RRF model. For example, 
a ‘flag’ class probability of 0.5 or higher for a transition, 
results in flagging of that transition by the model as a low 
quality peak. Transitions with class probabilities closer to 
0.5 are considered marginal cases. The ‘flag’ class prob-
ability of the transitions correctly flagged by the model is 
0.91 ± 0.10, whereas the probability for low quality mis-
classified transitions is 0.65 ± 0.13, indicating a higher 
level of uncertainty about the peaks that were misclassi-
fied. Similarly, the ‘ok’ class probability of the transitions 
that correctly passed QC by the model is 0.91 ± 0.09, 
while this probability for the low quality transitions that 
were misclassified as high quality is 0.70 ± 0.15. Many of 
the misclassified transitions are low intensity peaks that 
are either below or very close to the limit of quantitation. 
At such low concentrations, the quality of the peak could 
be compromised not due to poor chromatography or 
interference, but only because of the low intensity of the 
peak and limitations of the detector in resolving the peak. 
Therefore, defining more rigorous quality assessment cri-
teria at these low levels may decrease the uncertainty of 
the model and therefore improve its performance.

Peak quality assessment in large targeted MS datasets using 
the predictive model
The optimized RRF model was applied to the CSF bio-
marker longitudinal study dataset. The QC features were 
calculated for each transition pair for 36 peptides quanti-
fied in 70 runs and used as the input to the model. Tar-
getedMSQC generated a report based on the output of 
the model summarizing the QC results for the complete 
dataset and at sample and peptide levels. Additionally, for 
each peptide with an isotope pair, model output was visu-
alized for individual transitions and samples. Here, two of 
these peptides are discussed in more details as examples 
of how this tool can assist the analyst in method develop-
ment and data analysis. The full TargetedMSQC report 
for the CSF biomarker longitudinal study is provided in 
the Additional file 2.

Figure  3 shows the QC results summary for peptide 
LGPLVEQGR. Four transitions, y4, y5, y6 and y7, were 
monitored for quantification of this peptide. The heat-
map in Fig. 3 shows the output of the model for individ-
ual transitions across 70 samples included in the study. 
The peak groups for 6 of these runs are depicted in the 
figure as representatives of the dataset. Sample S30 shows 
an example of a high quality peak, which has correctly 
passed QC by the model. As shown in Fig. 3, three of the 
transitions, y4 (red), y6 (blue) and y7 (purple) passed QC 
by the model in almost all of the samples. On the other 
hand, y5 (green) is flagged in the majority of the samples, 
including samples S22, S55, S60 and S64. LGPLVEQGR 
shows an example of a peptide that could be accurately 

Fig. 3  QC results summary for peptide LGPLVEQGR. The heatmap shows the model output for each transition pair and each sample. With the 
exception of transition y5, the peptide passes QC in almost all the samples and therefore can be accurately quantified. Transition y5 seems to be 
systematically flagged across many of the samples. Manual inspection of y5 reveals that this transition is affected by interference in most of the 
samples. The peak groups for 6 of the 70 runs in this study are depicted to compare the model output with manual evaluation of these peaks
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quantified across multiple samples by removing the tran-
sition with interference (y5) from the quantitative analy-
sis. Upon manual inspection of y5 across these samples, 
we observed that this transition had interference in many 
of the flagged samples similar to what is seen in S22 and 
S64. The interference resulted in high background at the 
peak boundary (S22: normalized intensity at boundary 
of 0.17 compared with 0.02 as the median of the dataset) 
and low similarity between the endogenous and stand-
ard pairs (S64: pair similarity score of 0.06 compared 
with 0.98 as the median of the dataset) and high modal-
ity score (S64: transition modality score of 0.34 com-
pared with 0.00 as the median of the dataset). Sample S55 
shows an example of a peak with poor chromatography 
and shoulders, where at least three of the transitions have 
been flagged due to a shoulder, particularly in the stand-
ard peptide. Sample S60 shows an example of a peak with 
bimodal transitions that has also been correctly flagged 
by the model. All the transition pairs in this group suffer 
from jaggedness, poor modality and low similarity scores, 
all of which are likely the main driving force behind the 
output for this peak. Although the model performs well 
in a majority of the samples, there are examples where 
the output is not as expected. Sample S2 shows a peak 
group where the y5 transition has interference and needs 
to be flagged; however the model failed to flag this transi-
tion as a low quality transition. It should be noted that 
the model has predicted a value of 0.492 as the ‘flag’ class 
probability for this transition, which indicates that the 
QC features calculated for this transition place it on the 

verge of being flagged. A solution to improving the sen-
sitivity of the model for detection of marginal low qual-
ity peaks such as y5 in sample S2 is to lower the default 
threshold of 0.5 as the cut-off class probability for flagged 
peaks in the RRF model. At the expense of increasing the 
rate of incorrectly flagging high quality peaks, lowering 
the threshold could help flag more peaks and transitions 
in the marginal gray area between the two classes.

Figure  4 shows the QC results summary for peptide 
VLSLAQEQVGGSPEK. Unlike the LGPLVEQGR exam-
ple, none of the transitions have been systematically 
flagged across majority of the samples. However, all four 
monitored transitions seem to be flagged in a number of 
samples. One could conclude from this data that in these 
samples the transitions cannot be used to reliably quan-
tify the target peptides. Many of the flagged peaks seem 
to have failed quality assessment due to low intensity, 
jagged and tailing peaks. This is particularly evident for 
the heavy standard isotopes. This is represented in sam-
ples S10 and S32. Both have slightly jagged, bimodal and 
low intensity standard signals. Samples S47 and S61 are 
highly jagged, slightly tailing and have very low standard 
signals. Sample S14 is jagged and tailing and therefore 
flagged for poor quality. Finally, sample S69 shows an 
example of a peak that has correctly passed QC. It should 
be noted that although this peak is tailing, the peak qual-
ity is otherwise acceptable and therefore similar peaks in 
the training set were marked as acceptable.

Fig. 4  QC results summary for peptide VLSLAQEQVGGSPEK. The heatmap shows the model output for each transition and each sample. In 
this example, several samples suffer from poor quality across all the transitions and therefore the quantitative results in these samples may be 
compromised. The peak groups for 6 of the 70 runs in this study are depicted to compare the model output with manual evaluation of these peaks
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Discussion and conclusion
In this study, a framework and toolset for quality assess-
ment of large proteomics targeted MS datasets has been 
presented. This framework entails building and applying 
a predictive QC model tailored to the proteomics panel 
as well as the matrix used in the study to flag low qual-
ity peaks and transitions. The predictive model is opti-
mized based on a subset of pre-annotated peaks from 
the dataset, which provides guidelines on what repre-
sents an acceptable peak. A step-by-step guide for the 
QC process using TargetedMSQC in a laboratory setting 
has been provided as a vignette in the R package. This 
framework can benefit the study in several ways. First, 
using the same model for peak quality assessment of 
the whole dataset ensures that quality standards are not 
altered during the course of the study. Given the inter- 
and intra-operator variability of manual peak assessment, 
the prolonged duration and multi-center nature of many 
proteomics studies, this model provides a unified way to 
standardize data QC and perform more robust analysis. 
Second, an automated QC approach reduces the time 
spent by the analyst on manual inspection of every peak. 
This algorithm allows the analyst to focus on peaks that 
have been flagged by the model. For instance, applying 
the predictive model for QC of our dataset of 70 sam-
ples, 36 peptides, and 144 transitions, the process took 
less than 30 min, whereas manual inspection would have 
lasted days. It should be noted that an analyst should still 
review and adjust the boundaries on peaks that have been 
flagged by TargetedMSQC. However, this manual step is 
greatly reduced increasing the overall efficiency of the 
QC process. The TargetedMSQC framework is designed 
to be generic and not limited by instrument or platform 
and the QC process and standards can be optimized 
for each individual dataset. Providing such an agnostic 
framework allows for use in the quality assessment of 
large datasets and for the optimization of method devel-
opment, by flagging transitions or peptides that might be 
poor performing or have low reproducibility. Finally, as 
demonstrated in this study, the rate of low quality peaks 
that were missed by the model is low, which speaks to the 
sensitivity of the developed models for identification of 
interference, poor chromatography and other peak qual-
ity issues. The problem at hand, which is automated flag-
ging of peaks with poor quality, has a higher tolerance for 
false positives than false negatives. In other words, mis-
takenly flagging high quality peaks imposes a lower cost 
than mistakenly passing a low quality peak. Therefore, it 
is advisable to prioritize the sensitivity of the model over 
its specificity during model optimization and selection. In 
the representative examples, the peaks that were incor-
rectly marked as ‘ok’ were usually marginal cases where 
the imperfection in the peak quality did not significantly 

impact the outcome of the quantitative results. Moreo-
ver, if the data contains significantly fewer ‘flagged’ peaks, 
accuracy may be a misleading performance metric for 
selecting the best model. For training a model based on 
imbalanced data, it is recommended to use ‘ROC’ as 
performance metric. TargetedMSQC allows the users to 
choose between accuracy and ROC for model selection.

The proposed framework provides several benefits 
for streamlining the QC process in targeted MS work-
flows. It should be noted that this framework does have 
some limitation. One of the most time-consuming steps 
of building a quality assessment model using Target-
edMSQC is in fact building a training dataset to guide 
model development. Currently, annotation of the train-
ing set is conducted manually and takes a few hours to 
complete. Although this may be time-consuming for a 
small experiment, for a large datasets that require days 
of analysis time, a few hours spent on creating a training 
set can be considered acceptable. Additionally, integrat-
ing this framework into software tools such as Skyline, 
could simplify generation of the training set by enabling 
the user to simply click a peak to flag it in the training 
set. Annotation of the training set can be accelerated by 
automating some of the annotation steps. Peaks with 
high background can be identified by higher intensities 
at the boundary. This value is included as one of the QC 
features calculated by TargetedMSQC and automated 
flagging of all peaks with high background as defined by 
this metric could simplify the annotation step. Another 
limitation of the TargetedMSQC approach is that, simi-
lar to any supervised learning method, the quality of the 
model depends on the quality of the training set. In other 
words, the model still inherits the subjectivity or bias of 
the individual who annotates the training set. The effect 
of such bias is usually more pronounced when the train-
ing dataset is small. To overcome these biases, training 
sets should always be reviewed by multiple analysts. This 
would be particularly beneficial for multi-center studies. 
Additionally, increasing the size of the training set could 
further mediate the impact of bias in the annotation step.

It should be noted that annotation and classification 
of transitions that do not clearly belong to either of the 
high and low quality classes is a challenging task. This is 
due to the fact that the quality of each peak is a continu-
ous variable, not a binary one. The RRF model assigns 
‘flag’ and ‘ok’ class probabilities between 0 and 1 to each 
transition. For visibly high or low quality peaks, the flag 
class probability is close to 0 and 1, respectively. How-
ever for marginal cases, the class probability falls closer 
to the midpoint of 0.5. By default, the model uses a 
cut-off threshold of 0.5 to assign a class to each transi-
tion according to its class probabilities. As shown in the 
example in Fig. 3, this may result in misclassification of 
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marginal cases that fall very close to the cut-off point. 
For this reason, it would be beneficial for the users to be 
able to manually adjust the cut-off threshold. To help the 
users decide on an acceptable threshold, ROC analysis 
can be performed to estimate the sensitivity and specific-
ity of the model to identify low quality peaks in the train-
ing set at each cut-off value (Additional file 1: Figure S9). 
This helps the user choose a cut-off that tunes the rates of 
false positives and false negatives according to their tol-
erance for each group. It should be noted that since the 
ROC analysis does not cross-validate the estimated sen-
sitivity and specificity, these values should be taken into 
account with caution. To estimate confidence intervals 
for sensitivity and specificity, users may choose ROC as 
performance metric for training the model. Another way 
to address the challenges of classifying marginal peaks 
is including more examples of such cases in the train-
ing set, which may enable the model to better resolve 
low and high quality peaks. This could be achieved by 
first applying the model built on the initial training set 
to the dataset, identifying marginal cases based on their 
class probabilities, and prompting the analyst to further 
annotate these cases. The extended training set then may 
be used to further adjust the model. Additionally, since 
the process of annotating the training set is manual and 
therefore prone to human error, evaluating the output of 
the initial model may enable identification and correction 
of peaks that have been incorrectly annotated and there-
fore improve the quality of the training set and subse-
quently, the performance of the model. It should be noted 
that the goal of this step is to improve the quality and 
diversity of the training set by informing the user of the 
model output. This should not be mistaken as a step to 
enforce the manual annotations to match with the model 
output, as this may result in overfitting.

Given the increasing interest in targeted MS analysis 
for identification, validation and quantitation of clinical 
biomarkers, improving and providing tools for reliable 
analysis of targeted MS data is both a challenge and an 
opportunity. Methods to standardize and streamline this 
process are highly needed. TargetedMSQC provides a 
QC framework that can be customized for specific pan-
els, instruments and sample types in an automated, time-
efficient, and reproducible manner and therefore is a step 
towards more robust targeted MS data analysis.
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