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Abstract

Background: Support for early detection of lung cancer has emerged from the National Lung Screening Trial
(NLST), in which low-dose computed tomography (LDCT) screening reduced lung cancer mortality by 20 % relative
to chest x-ray. The US Preventive Services Task Force (USPSTF) recently recommended annual screening for the
high-risk population, concluding that the benefits (life years gained) outweighed harms (false positive findings,
abortive biopsy/surgery, radiation exposure). In making their recommendation, the USPSTF noted that the moderate
net benefit of screening was dependent on the resolution of most false-positive results without invasive
procedures. Circulating biomarkers may serve as a valuable adjunctive tool to imaging.

Results: We developed a broad-based proteomics discovery program, integrating liquid chromatography/mass
spectrometry (LC/MS) analyses of freshly resected lung tumor specimens (n = 13), lung cancer cell lines (n=17), and
conditioned media collected from tumor cell lines (n =7). To enrich for biomarkers likely to be found at elevated
levels in the peripheral circulation of lung cancer patients, proteins were prioritized based on predicted subcellular
localization (secreted, cell-membrane associated) and differential expression in disease samples. 179 candidate
biomarkers were identified. Several markers selected for further validation showed elevated levels in serum
collected from subjects with stage | NSCLC (n = 94), relative to healthy smoker controls (n = 189). An 8-marker
model was developed (TFPI, MDK, OPN, MMP2, TIMP1, CEA, CYFRA 21-1, SCC) which accurately distinguished
subjects with lung cancer (n =50) from high risk smokers (n = 50) in an independent validation study (AUC =0.775).

Conclusions: Integrating biomarker discovery from multiple sample types (fresh tissue, cell lines and conditioned
medium) has resulted in a diverse repertoire of candidate biomarkers. This unique collection of biomarkers may
have clinical utility in lung cancer detection and diagnoses.
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Background

Lung cancer is the leading cause of cancer mortality in the
United States. Estimates for 2014 indicate that 224,210 in-
dividuals will be diagnosed with lung cancer and 159,260
will die from the disease [1]. The average 5-year survival is
about 17 %, with 79 % of cases being diagnosed as regional
or distant disease. If lung cancer is detected when local-
ized, survival increases to over 50 % [1].

Support for early lung cancer detection has emerged
from the landmark NLST, where LDCT screening was
shown to confer a 20 % reduction in lung cancer mortal-
ity in a high risk population [2]. Despite concerns associ-
ated with the low specificity (73.4 %) of CT screening [3]
and the resulting large number of false-positive findings
for lung cancer (964 %), the USPSTF recently recom-
mended annual LDCT-screening for lung cancer in high-
risk individuals [4, 5]. In their recommendation statement,
the USPSTF stressed the need for more research into the
use of biomarkers to complement LDCT screening. Two
key clinical opportunities exist. First, the use of bio-
markers for early detection of lung cancer could define a
new high-risk population or refine the screening criteria
recommended by USPSTF (age: 55 to 80 years, smoking
history: >30 pack-year). Such biomarkers would serve as a
pre-imaging filter, reducing the overall cost of screening
and lowering the number of false-positive findings and
unnecessary follow-up procedures. The second opportun-
ity lies in improving the accuracy of lung cancer diagnosis.
Given the high frequency of positive findings (pulmonary
nodules) with CT screening [2], new means of accurately
determining malignant risk are urgently required. In the
NLST, 24 % of surgically resected nodules were found to
be benign [2]. By improving the accuracy with which ma-
lignant risk is determined, biomarkers could potentially
enhance diagnostic management by reducing unnecessary
surgical intervention, minimizing the use of costly PET-
CT and lowering radiation exposure associated with CT
monitoring, while enabling detection of lung cancer at an
early, more curable, stage.

A wide variety of approaches have been utilized to dis-
cover new blood-based lung cancer protein biomarkers
[6]. These range from splice variant analysis and the isola-
tion of tumor-enriched transcripts [7], to the development
of novel proteomic platforms with the capacity to resolve
candidate markers in a highly multiplexed fashion [8]. Ad-
vances in mass spectrometry (MS)-based technologies
have also enabled discovery of new lung cancer biomarker
candidates directly in serum or plasma [9-13]. While the
identification of biomarkers directly in blood-based matri-
ces can be problematic due to their complexity and the
presence of multiple highly abundant factors [14], some of
these challenges can be minimized through extensive frac-
tionation [15]. Differentially expressed candidate markers
have also been successfully identified through comparison
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of blood draining from the tumor vascular bed matched
with systemic arterial blood from the same patient [16].

Alternative, “indirect” MS approaches have also been
successfully employed, wherein candidate markers ini-
tially identified in lung cancer tissue specimens, cell lines
or conditioned medium, have subsequently been shown
to be differentially expressed in the peripheral circula-
tion using immunoassay-based methodologies. Pioneer-
ing discovery studies employed conditioned medium
derived from the lung cancer cell line A549 or cell and
organ cultures, followed by confirmation of expression
profiles in serum and plasma [17, 18]. Thereafter, de-
tailed analysis of conditioned medium collected from
multiple lung cancer lines revealed a novel collection of
candidate biomarkers [19]. More recently, subcellular
fractionation and organelle isolation from freshly col-
lected tissue specimens has enabled further candidate
discovery, with verification achieved through multiple
reaction monitoring (MRM) [20].

We have expanded on these approaches, broadening
the scope of biomarker discovery by performing prote-
omic analyses across multiple types of specimens: freshly
resected lung tissues, cancer cell lines and conditioned
medium, enabling the discovery of a diverse collection of
candidate markers. We have confirmed disease-enriched
profiles for several of these candidates in sera collected
from patients with early-stage disease. Moreover, a
multi-marker model has been assembled which accur-
ately distinguishing patients with NSCLC from smokers
with no known malignancies. These studies suggest that
the integration of multiple indirect discovery approaches
may serve as a valuable means of identifying novel
blood-based biomarkers that may be employed in the
early detection and diagnosis of lung cancer.

Results

Tissue/cell-line based biomarker discovery

Three distinct LC/MS-based discovery programs were
established to identify a diverse spectrum of candidate
biomarkers which could serve as the basis for a blood-
based immunoassay for detection or diagnosis of lung
cancer. To enrich for markers destined to be found in the
peripheral circulation of lung cancer patients, discovery
focused on glycoproteins predicted to be located either at
the cell membrane or secreted/shed from lung cancer
cells. Cell-membrane discovery was performed in two
distinct sample types: freshly resected tissue specimens
(n=13), and a collection of lung cancer cell lines (n =17).
The clinical specimens and cell lines studied provide
broad coverage of tumor stage and prevalent histological
cell types (Additional file 1: Table S1 and Additional file 2:
Table S2). To focus discovery on differentially expressed
candidate markers, peptide levels measured in surgically
resected malignant samples were compared with adjacent
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normal tissue. Expression in lung cancer cell lines was an-
alyzed relative to the non-cancerous immortalized lung
epithelial cell line Beas-2B [21]. A third discovery pro-
gram, which served to complement the cell-membrane
analyses, resolved proteins secreted or shed from lung
cancer cells into conditioned medium, in a subset of lines
amenable to growth in serum-free conditions: A549,
H1299, H358, H522, H2291, H520 and Calu-1.

Candidate lung cancer markers were prioritized based
on MS data and predicted subcellular localization. To be
selected, proteins had to: (i) be represented by multiple dif-
ferentially expressed peptides (n>1); (ii) be identified in
multiple malignant samples (# > 1) and (iii) exhibit elevated
expression in lung cancer specimens, with a cancer: control
expression ratio of >4.0. Candidate biomarkers were also
prioritized based on secondary structure, with proteins
predicted to be associated with either the cell membrane
or secreted from the cell being selected; these two com-
partments are enriched with markers destined for the per-
ipheral circulation. 179 candidate markers were identified
which met these criteria (Additional file 3: Table S3).

Each of the cellular systems employed in these studies
yielded a large number of candidate biomarkers: fresh
resected tissues (7 =113), cell lines (n=86) and condi-
tioned medium (n=65). While a small proportion of
these biomarkers were identified in all three sample types
(n=14/179, 8 %), the majority were uniquely resolved in
only one of the three cellular systems (7 = 108/179, 60 %),
highlighting the value of the multi-faceted approach
(Fig. 1). 29 markers were discovered in both conditioned
medium and cell-membrane preparations derived from
lung cancer cell lines. Interestingly, a subset of these
markers (7 =9/29, 31 %), was resolved in the same cell
lines used for both membrane-bound and extracellular
protein discovery. The overlapping detection of 9 markers
in membrane-bound and secreted/shed preparations sug-
gests multiple forms of these proteins may be expressed at
elevated levels in NSCLC.

Lung cancer cell lines (n=17)

>
A

Fresh resected tissue (n=13)

Conditioned medium (n=7)

Fig. 1 Venn diagram showing distribution of 179 candidate lung
cancer biomarkers across 3 discovery platforms
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The Panther based classification system was used to
categorize markers based on Protein Class and Pathway
[22, 23]. Protein classes were defined for 141/179 (79 %)
of the candidate markers evaluated. The most common
classes reported were: receptors (14 %), cell adhesion
molecules (14 %), hydrolases (13 %), defense/immunity
proteins (10 %), proteases (9 %), enzyme modulators
(8 %) and signaling molecules (8 %; Additional file 4:
Figure S1). Further protein class analysis revealed similar
profiles for biomarkers identified in the two cell-surface
based discovery programs, resected tissue and cultured
lung cancer cell lines (Additional file 5: Figure S2).
Panther classification resolved protein categories for 91/
113 (81 %) of the markers identified in tissues and 70/86
(81 %) of those found in cell lines. While some differences
clearly exist, the most abundant protein classes (cell adhe-
sion, defense/immunity, enzyme modulator, extracellular
matrix, hydrolase, protease, receptor, signaling, transfer/car-
rier and transporter) were resolved in both tissues and cell
lines. Panther-based pathway analysis also revealed many
similarities between the two discovery platforms. Pathways
commonly identified in resected tissues (integrin signaling,
inflammation, gonadotropin releasing hormone receptor,
Alzheimer disease-presenilin and plasminogen activating
cascade) were also frequently found in the cell lines studied.
Some differences were resolved between the two sources,
including enrichment of blood-coagulation related proteins
in the tissue based discovery system (22 %) relative to cell
line studies (9 %; Additional file 6: Figure S3).

Serum-based biomarker verification
ELISA analysis was undertaken to investigate whether
the differential expression profiles observed in lung can-
cer tissues, cell lines and conditioned medium, would
also be detected in the bloodstream of subjects with lung
cancer. A small number of candidates were selected for
serological characterization: CEA, MDK, MMP2, SLPI,
TFPI and TIMP1 (Table 1). These biomarkers were se-
lected in part due to the reagent availability, but also,
with the exception of CEA, because they represented
some of the more novel lung cancer markers identified,
with few studies indicating elevated expression in the
circulation of patients with early stage disease [24].
While all six markers had been shown to be present in
plasma [25], they had not been resolved in other prote-
omic studies aimed at identifying differentially expressed
lung cancer markers using alternative biological fluids:
bronchial lavage [26, 27] sputum [28] or pleural fluid
[29, 30], or in profiling experiments aimed at identifying
markers associated with other common lung disorders:
COPD [27], asthma [31] or tuberculosis [32].

With the goal of identifying markers to be used to
screen for early-stage disease, or to guide diagnosis
following CT-based detection, expression levels were
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Table 1 Candidate lung cancer biomarkers identified through MS discovery that were selected for serological characterization

Protein Differentially expressed peptides

Number of samples where differentially expressed  Differential expression Predicted subcellular
peptides observed

(Lung cancer/control) localization

Tissues
(n=13)

Cell lines
(n=17)

Conditioned
medium (n=7)

CEA (CEACAMS) CETQNPVSAR 9
TLTLFNVTRNDTASYK
YNAQCQETIR
EGTCGAQTQR
FENWGACDGGTGTK
VTKPCTPK
YNAQCQETIRVTKPCTPK
ESCNLFVLK
TDKELAVQYLNTFYGCPK
ELAVQYLNTFYGCPK
CGNPDVANYNFFPR
YGFCPHEALFTMGGNAEGQPCK
SCVSPVKA
AGVCPPK
SLPI 3
SCVSPVK
AGVCPPKK
ADDGPCK
QCEEFIYGGCEGNQNR
TTLQQEKPDFCFLEEDPGICR
YFYNNQTK
FVYTPAMESVCGYFHR
HLACLPR
LQSGTHCLWTDQLLQGSEK
LQDGLLHITTCSFVAPWNSLSLAQR
FVGTPEVNQTTLYQRYEIK 11
AKFVGTPEVNQTTLYQR
FVGTPEVNQTTLYQR
SHNRSEEFLIAGK
EPGLCTWQSLR

MDK

MMP2

TFPI

TIMP1

1

204 Cell Membrane

Secreted

3 218 Secreted

55 Secreted

3 10.0 Secreted

4 346 Secreted

Differentially expressed peptides resolved for each marker are listed together with the number of samples (tissues, cell lines or conditioned medium) where
peptides with elevated expression in lung cancer were identified. Median ratio represents the overall level of elevated expression combining levels observed for
each differentially expressed peptide in disease samples relative to appropriate controls

determined in subjects with stage I NSCLC (n =94),
relative to normal smoker controls (z = 189; Table 2).
In an effort to minimize selection of markers associ-
ated with pre-analytical variability, where differential
expression profiles may be derived from serum sample
collection procedures specific to any single clinical
study site, subjects from two independent clinical
studies were combined into a single testing set. The
first study collected at CRCCC (Clinical Research
Center of Cape Cod; West Yarmouth, MA), comprised pa-
tients with stage I NSCLC (n =30) and healthy smoker
controls (7 =99). The second cohort, collected at New

York University (NYU) School of Medicine/Langone
Medical Center, was selected from a high-risk population
with a history of heavy tobacco usage. Serum samples
were collected from patients with stage I NSCLC (n = 64)
and healthy controls (7 = 90).

Levels of five of the six candidate biomarkers tested
(CEA, MDK, MMP2, SLPI, TIMP1, TFPI) were signifi-
cantly higher in serum from subjects with NSCLC than
in controls (Table 3, Additional file 7: Figure S4), serving
to support this indirect discovery approach. Three ex-
tensively characterized markers: CYFRA 21-1, SCC and
OPN were also evaluated. These markers served as a
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Table 2 Demographic and clinical profiles of subjects tested with lung cancer biomarker candidates
Serum verification/model training Model testing
Controls Cases Controls Cases
(N=189) (N=94) (N =50) (N=50)
Gender
Male 109 33 28 28
Female 80 61 22 22
Age
Mean (SD) 62.1 (11.8) 66.6 (9.6) 63.0 (64) 65.6 (6.7)
Smoking Pack Years
Mean (SD) 376 (21.7) 43.9 (20.6) 54.3 (22.4) 54.2 (22.2)
Benign Nodules (n) 22
Lesion Size (cm)
Mean (range) 0.5 (0.2-1.2) 33(08-12)
Stage
I (%) 94 (100) 18 (36)
11 (%) 6 (12)
111 (%) 16 (32)
IV (%) 5(10)
NA (%) 5(10)
Histology
Adenocarcinoma (%) 63 (67.0) 23 (46)
BAC (%) 4(43)
Large Cell (%) 6 (6.4)
NSCLC (%) 4 (43) 6(12)
Neuroendocrine (%) 2.1
Small Cell (%) 4(8)
Squamous Cell (%) 15 (16.0) 17 (34)

Table 3 Expression levels of biomarker candidates in serum collected from

controls (n=189)

patients with NSCLC (n=94) and healthy volunteer

Control Case KS test AUC

Median: ng/mL Median: ng/mL (p-vah

(Interquartile range) (Interquartile range)
CEA (CEACAMS) 1.65 (0.85-2.92) 2.68 (1.85-4.90) <0.0001 0.706
MDK 0.15 (0.04-0.35) 043 (0.20-0.66) <0.0001 0.714
MMP2 207 (184-234) 207 (171-254) 0.1472 0492
SLPI 39.6 (34.8-46.2) 43.3 (35.5-54.5) 0.0036 0.595
TFPI 39.7 (25.6-55.1) 54.1 (29.1-70.3) <0.0001 0617
TIMP1 302 (269-346) 361 (306-440) <0.0001 0.692
CYFRA 21-1 0.58 (0.00-1.05) 1.60 (0.91-3.00) <0.0001 0.816
OPN 19.3 (10.0-31.0) 314 (16.7-52.4) <0.0001 0.666
SCC 0.58 (0.34-0.93) 1.21 (0.55-1.70) <0.0001 0.696

Median levels (ng/mL) and interquartile range are shown. The Kolmogorov-Smirnov test (KS test) was used to compare patient groups. Area under the curve
(AUQ) calculated from receiver operator characteristic (ROC) curve analysis. Markers in the upper section of the table (n = 6) represent proteins resolved through
MS analysis. The lower section (n = 3) represents well-characterized lung cancer biomarkers
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reference in evaluating clinical accuracy of the MS-
identified markers.

Multi-marker model development and testing

The identification of multiple differentially expressed
markers prompted the development of a multi-marker
panel. Elastic net modeling [33] started with all 9 candidate
markers (Table 3). The optimal value of the regularization
parameter, as determined by bootstrap resampling, re-
duced the parameter estimate for SLPI to zero, while
the remaining 8 markers: TFPI, MDK, OPN, MMP2,
TIMP1, CEA, CYFRA 21-1 and SCC, which retained
non-zero coefficients, were selected in the final model.
In the training dataset (Table 2), this 8-marker model
resolved lung cancer patients from smoker controls
with 75 % sensitivity at 90 % specificity (AUC =0.913).
A Dbootstrap validation procedure confirmed clinical
performance of the model, AUC = 0.903.

The accuracy of the 8-marker model was tested in an
independent study (Mayo Clinic). Controls (n = 50) were
selected from the high risk control population evaluated
in the Mayo CT-Screening Trial [34] and included sub-
jects with pulmonary nodules (7 =22). Lung cancer
cases were pre-operative surgical referrals (n =50). Ma-
lignant lesions were significantly larger than screen de-
tected benign nodules. Cases and controls were matched
on age, gender and smoking history (Table 2). EDTA
plasma samples were utilized in this study. Levels of all
markers included in the model had been shown to be
highly correlated in serum and EDTA plasma (Additional
file 8: Table S4). The 8-marker model distinguished pa-
tients with malignant lesions from all smoker controls
with an AUC = 0.775 (Fig. 2), accurately classifying control
subjects with (AUC = 0.745) or without pulmonary nod-
ules (AUC = 0.799).

While the 8-marker model was found to be substantially
correlated with nodule size (r=0.739; p <0.0001), it was
not associated with any of the other clinicopathological
variables tested: age, sex, smoking history (unpublished
data). Elevated expression of the multi-marker model was
observed in tumors with a squamous cell histology, relative
to adenocarcinoma cases (p=0.019), driven in part by
higher levels of CYFRA 21-1 (p <0.0001) and OPN (p =
0.013) in squamous cell carcinomas (unpublished data).

Discussion

LDCT screening of high-risk smokers has been shown
to reduce lung cancer mortality by 20 %, relative to chest
radiography. However, of the 24.2 % of participants with
an abnormal screening test, the vast majority (96.4 %)
were false positives for lung cancer. The low positive
predictive value of LDCT results in (i) higher screening
costs and (ii) unnecessary invasive procedures for benign
disease. Non-invasive biomarkers are urgently needed to
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improve LDCT-based screening. Biomarkers could be
used to refine the high-risk population, thus limiting the
number of individuals being screened by LDCT. Alterna-
tively, biomarkers could be employed following screening,
to distinguish relatively rare malignant nodules from com-
monly found benign nodules. A number of novel blood-
based markers have recently been characterized [7, 35],
some of which have been evaluated in the form of multi-
marker panels [15, 36—-38]. However, to date, very few
have been shown to add value to clinical variables already
being employed in evaluating malignant risk [39].

Marker discovery in blood-based systems (serum and
plasma) has been hampered by the complexity of these
matrices and presence of multiple highly abundant pro-
teins. Alternative “indirect” approaches have successfully
been applied to: freshly resected clinical specimens, pri-
mary cultures, cell lines cultured in vitro and in vivo and
conditioned medium, with collections of candidate bio-
markers identified in each. However, as each of these stud-
ies has been performed in isolation, it has been difficult to
evaluate the relative merits of each of these approaches.
We report, for the first time, a discovery approach that
combines multiple cellular systems: resected tissues, cul-
tured cell lines and conditioned medium. In so doing, we
have identified a number of markers commonly resolved
across the platforms (Fig. 1). It is noteworthy that while
significant overlap across the systems clearly exists, with
similar signaling pathways apparently activated across the
different discovery systems (Additional file 6: Figure S3),
the majority of candidate markers were identified in only
one of the three programs. Integrating discoveries from
the three systems has not only served as a starting point
to understand the relative merits of these distinct ap-
proaches, but has also produced a diverse pool of candi-
date markers for future validation.

All 179 candidate markers selected exhibited at least a
four-fold increased level of expression in lung cancer
samples relative to appropriate controls. While this 4.0X
cut point provided a simple means of identifying the
most differentially expressed biomarkers, additional ap-
proaches using different cut-points and possibly integrat-
ing key clinical variables such as histology and stage, will
likely reveal a more extensive collection of candidates
for future studies.

Analyses of the glycoproteins residing at the cell surface,
in both tissues and cell lines, enabled discovery of cell-
membrane markers that may be shed and released into
the peripheral circulation. CEA (CEACAMS5) provides an
example of this type of cell-surface marker, as it is shed
into the bloodstream and detected at elevated levels in a
wide variety of malignant disorders [40]. While the mo-
lecular mechanism responsible for shedding remains un-
clear [41], CEA is a widely employed serum biomarker
used in prognosis, staging and monitoring of colorectal
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Fig. 2 Multi-marker model resolves lung cancer cases from smoker controls. Receiver Operator Curves are plotted for all controls, nodule controls
and no-nodule controls

cancer. In addition to CEA, several other cell-surface
markers known to be shed into the circulation were
identified in these studies including: MET (c-Met
proto-oncogene product, hepatocyte growth factor
receptor) [42], mesothelin [43], EPCAM [44], and
ICAM-1 [45]. It is noteworthy that many additional
cell-membrane markers, with similar secondary struc-
tures, were also resolved (Additional file 3: Table S3)
and may serve as a valuable pool of candidate markers
for future studies.

While CEA (CEACAMS5) represents a well-characterized
tumor biomarker, the association of other biomarkers with
lung cancer varies considerably, with limited evidence of
differential expression in early-stage disease. Increased ac-
tivity of TFPI, a Kunitz-type serine protease inhibitor, has
been reported in the circulation of patients with late-stage
NSCLC [46]. MDK appears to play a role in both angio-
genesis [47] and lung cancer metastasis [48]. Elevated
levels of MDK, a heparin-binding growth factor, have been
observed in serum collected from patients with a broad
range of solid tumors, including lung cancer [49]. A num-
ber of tumor-stimulating functions have been demon-
strated for TIMP1 [50, 51]. Elevated levels of this
metallopeptidase have been observed in serum collected
from subjects with late-stage NSCLC [52], with the highest
levels reported in squamous cell carcinoma [53]. SLPI, a

member of the Kazal superfamily of serine-proteinases,
appears to play a role in tumor growth and metastasis
[54-57]. Elevated levels of SLPI protein have been ob-
served in the bloodstream of patients with NSCLC [24, 58].
While the matrix metalloproteinase MMP2 appears to play
a role in lung cancer growth and migration [59-61], studies
investigating levels of MMP?2 in the bloodstream have re-
ported inconsistent findings [62—64]. The diverse range of
biological functions observed for markers identified in these
studies are summarized in Table 4.

Our ELISA-based serological studies evaluated six can-
didate markers identified in these LC/MS analyses, along
with three additional markers (CYFRA 21-1, SCC and
OPN) that served as a benchmark of clinical accuracy.
Two of these markers, CYFRA 21-1 and SCC, would
not have been predicted to be resolved in these LC/MS
studies as they lack an N-linked glycosylation site re-
quired for selection in the glycoprotein enrichment pro-
cedure. In contrast, two N-linked glycosylation sites are
present in the mature form of the secreted protein OPN;
as such, we would have expected peptides derived from
this marker to be identified in these studies. It is unclear
why OPN was not resolved; however it is possible that
this marker may not have been differentially expressed
in the samples analyzed, or that OPN-derived peptides
may have been masked in the LC/MS separation.
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Table 4 Biological function of markers identified through mass spectroscopy that were selected for further validation

Gene name  Protein name Protein ID (UniProtkB)  Function

CEA Carcinoembryonic antigen-related P06731 Oncofetal glycoprotein not typically detected in adults. Plays

(CEACAMS5)  cell adhesion molecule 5 role in cell adhesion and intracellular signaling [70, 71].

MDK Midkine P21741 Heparin binding cytokine promotes cellular transformation,

angiogenesis and metastasis [47, 48].

MMP2 72 kDa type IV collagenase P08253 Degrades extracellular matrix, associated with tissue invasion, cell-induced
(Matrix metalloproteinase-2) angiogenesis and tumor growth and metastasis [59-61].

SLPI Antileukoproteinase (Secretory P03973 Protects epithelial cells from serine proteases, promotes
leukocyte protease inhibitor) tumorigenic and metastatic pathways [54-57].

TFPI Tissue factor pathway inhibitor P10646 Serine protease inhibitor involved in clotting homeostasis [72].

TIMP1 Tissue inhibitor of metalloproteinase 1 P01033 Inactivates metalloproteinases by binding to zinc cofactor.

Promotes proliferation and inhibits apoptosis [50, 51].

The ability of the multi-marker model to distinguish
lung cancer cases from control subjects with or without
nodules indicates potential roles for the test, either as an
adjunct to CT- screening, in determining risk of malig-
nancy of pulmonary nodules, or in early lung cancer
screening. Clearly additional studies are required to bet-
ter characterize clinical performance of the current
model and to evaluate of larger numbers of candidate
biomarkers revealed in this study.

Conclusions

Given the low PPV (4 %) of LDCT in screening the high
risk population, there is a pressing need to discover non-
invasive biomarkers to complement radiographic im-
aging in lung cancer screening and diagnosis.

We describe a broad-based discovery platform that has
enabled the identification of a large, diverse collection of
candidate lung cancer biomarkers. A subset of these
markers identified “indirectly” in freshly resected tissue,
cell lines and conditioned medium retained elevated
cancer-associated expression profiles in the circulation
of patients with early-stage disease. A multi-marker
model was developed which accurately distinguished
lung cancer cases from high risk smokers. This unique
collection of markers should serve as a valuable resource
for future clinical validation studies.

Methods

Tissue specimens

Freshly resected lung specimens (malignant lesions and
normal adjacent tissue) were collected from 4 clinical sites
using IRB-approved protocols: 1. Department of Pathology
and Laboratory Medicine, University of Pennsylvania,
Philadelphia, PA; 2. Division of Thoracic Surgery,
University of Maryland Medical Center, Baltimore, MD; 3.
Department of Cardiothoracic Surgery, George Washington
University, Washington DC; 4. Asterand, Detroit, ML. To
enrich for samples likely to produce strong MS signal, tis-
sue specimens with a mass of at least 1 g were selected for
this study. Single cell suspensions were prepared from each

resected sample using a standard methodology before re-
moval of red blood cells through addition of ACK lysis buf-
fer [65]. Epithelial (EpCAM), leukocyte (CD45) content and
cellular viability (PI exclusion) were determined by flow
cytometry analysis (LSR I, BD Biosciences, San Jose, CA).
Epithelial enrichment was undertaken using flow cytometry
based cell sorting (EpCAM, Clone EBA-1, BD Biosciences).
Samples yielding a minimum of 1x10° viable epithelial cells
were submitted for MS analysis.

Cell lines and tissue culture

Lung cancer cell lines obtained from American Type
Culture Collection (ATCC, Manassas, VA) or European
Collection of Cell Cultures (ECACC, Salisbury, UK) were
cultured in the appropriate media as recommended.

Conditioned medium

Cell-lines were cultured to 70 % confluence, transferred
to protein free media (293 SFM II, Invitrogen, Carlsbad,
CA) for 72 h, after which cell debris was removed by
centrifugation.

Blood-based studies

Serum: A total of 283 subjects were evaluated in the
verification/model training study, healthy smoker con-
trols =189 and early stage NSCLC cases n=94
(Table 2). Samples were collected during the period
2003-2008. Histological classification followed WHO
guidelines recommended at the time of diagnosis.

Plasma: EDTA plasma was collected from 100 sub-
jects in the model testing study, controls n =50 and
cases 1 = 50 (Table 2).

Serum: plasma correlations: Blood was drawn from
subjects (7 =10) and collected into serum (red-cap) and
EDTA plasma tubes on the same visit to the clinic
(CRCCC). Concentrations levels were determined for all
candidate biomarkers (7 =9). Marker levels were highly
correlated (Additional file 8: Table S4).
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For all studies, written informed consent was obtained
from each subject. Samples were obtained prior to any
treatment and were stored at —80 °C until use.

Mass spectrometry

The discovery approach combined the enrichment of
cell surface glycoproteins and secreted proteins with a
decoupled (label-free), quantitative proteomics method.
These programs focused discovery on markers contain-
ing short, tryptically-cleaved 5-25 amino acid peptides
encoding either a cysteine residue or an N-linked glyco-
sylation site, providing broad coverage of the proteome.
A quantitative liquid LC/MS analysis of normal and
tumor samples was used to identify peptide ions that
were expressed at >4x levels in the cancer cells relative
to the adjacent normal tissue. In cell line studies tumor
lines were compared to Beas-2B. Subsequent MS/MS
identification focused exclusively on peptides that had a
relative change in abundance. To ensure data quality,
manual inspection of each differentially expressed pep-
tide ion was performed.

Cell surface protein enrichment

Viable cells were incubated with 1 mM sodium period-
ate for 10 min to oxidize glycoproteins [66]. Oxidized
glycoproteins were conjugated to hydrazide resin (Bio-
Rad, Hercules, CA) at 4 °C overnight [67]. After wash-
ing sequentially with: 2 M NaCl, 2 % SDS, 200 mM
propanolamine (0.1 M NaAcetate, pH 5.5), 40 % etha-
nol and 80 % ethanol; bound proteins were reduced
with dithiothreitol, and alkylated with ICAT™ reagent
(Life Technologies/Thermo Fisher Scientific, Applied Bio-
systems, Framingham, MA). Alkylated proteins were
digested with trypsin and cysteine-containing peptides
were captured using an avidin column (Life Technologies/
Thermo Fisher Scientific). In addition to the cysteine-
containing peptide fraction, peptides bound to the resin
were also collected and analyzed. Release of peptides was
achieved through PNGase-F digestion (New England
BioLabs, Ipswich, MA.). While we found some overlap be-
tween the proteins identified in the two fractions, analysis
of both the cysteine -containing fraction and the resin-
bound fraction resulted in complementary coverage of the
cell surface protein population.

Conditioned medium preparation

Samples were lyophilized, reconstituted with deionized
H,O, and dialyzed against 0.6 M Guanidine HCI,
10 mM Tris buffer, pH 8. Proteins were reduced with
Tris (2-carboxyethyl) phosphine and alkylated with ICAT™
reagent (Life Technologies/Thermo Fisher Scientific). Fol-
lowing dialysis (0.1 M NH,Acetate), alkylated proteins were
digested with trypsin. Cysteine-containing peptides were
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purified using an avidin column (Life Technologies/
Thermo Fisher Scientific).

LC/MS analysis

Peptides, including standards used for mass calibration
and retention time normalization, were separated and
analyzed using methods of Kim et al. [68].

Data alignment and expression analysis

Peptide ion peaks of LC/MS maps were aligned based on
mass to charge ratio (m/z), retention time (Rt), and charge
state (z). Retention time normalization was accomplished
in two steps: a primary alignment using the internal stand-
ard peptides and a secondary fine tuning using all of the
common features. lon intensities were normalized across
normal and tumor samples by minimizing the sum of the
differences between the intensities of each of the ions and
the mean intensity for that ion across all maps. Differen-
tially expressed peptide ions were manually verified before
LC-MS/MS-based peptide sequencing. Subcellular predic-
tions determined by UniProt, release 2014_07 [69].

Serum/plasma analyses

Enzyme-linked immunosorbent assay (ELISA) kits were
obtained from a variety of commercial sources: Bio-
Techne/R&D Systems, Minneapolis, MN (MMP2, OPN,
SLPI, TEPI); Siemens Healthcare Diagnostics, Cambridge,
MA (TIMP1); and IBL-America, Minneapolis, MN (CEA,
CYFRA 21-1, MDK, SCC). Assays were performed follow-
ing the manufacturers’ instructions. Plates were read on a
Spectra Max M2 Microplate Reader (Molecular Devices,
Sunnyvale, CA.).

Model development

Logistic regression of lung cancer status on the 9 candidate
markers (ng/mL) via elastic net regularization was
employed to select a final set of markers and their associ-
ated parameter estimates. Elastic net regularization penal-
izes the parameter estimates (shrinks them toward zero)
and performs variable subset selection by allowing suffi-
ciently small parameter estimates to be reduced entirely
to zero. Regularization of the parameter estimates tends
to produce stable regression models with smaller pre-
diction error than those that are not regularized. Boot-
strap resampling (10,000 iterations), and maximization
of the mean area under the ROC curve (AUC) for the
out-of-bag samples, was used to select the optimal
weight of the shrinkage penalty.

Additional files

Additional file 1: Table S1. Demographics and clinical profiles for
subjects selected for fresh tissue discovery study.
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Additional file 2: Table S2. Histology of lung cancer cell lines used for
MS discovery study.

Additional file 3: Table S3. Candidate lung cancer biomarkers (n=179)
identified through LC/MS analysis.

Additional file 4: Figure S1. Panther-based classification of protein
class for candidate lung cancer markers (n = 179).

Additional file 5: Figure S2. Panther-based classification of protein
class comparing lung cancer markers identified in tissues and cell lines.

Additional file 6: Figure S3. Panther-based classification of protein
pathways comparing lung cancer markers identified in tissues and cell
lines.

Additional file 7: Figure S4. Expression levels of biomarker candidates
in serum collected from patients with NSCLC (n =94) and healthy
volunteer controls (n = 189).

Additional file 8: Table S4. Correlation of marker levels in serum and
plasma.
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