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Abstract 

Background:  Language plays a major role in human behavior. For this reason, neurodevelopmental and psychiatric 
disorders in which linguistic ability is impaired could have a big impact on the individual’s social interaction and gen-
eral wellbeing. Such disorders tend to have a strong genetic component, but most past studies examined mostly the 
linguistic overlaps across these disorders; investigations into their genetic overlaps are limited. The aim of this study 
was to assess the potential genetic overlap between language impairment and broader behavioral disorders employ-
ing methods capturing both common and rare genetic variants.

Methods:  We employ polygenic risk scores (PRS) trained on specific language impairment (SLI) to evaluate genetic 
overlap across several disorders in a large case-cohort sample comprising ~13,000 autism spectrum disorder (ASD) 
cases, including cases of childhood autism and Asperger’s syndrome, ~15,000 attention deficit/hyperactivity disorder 
(ADHD) cases, ~3000 schizophrenia cases, and ~21,000 population controls. We also examine rare variants in SLI/
language-related genes in a subset of the sample that was exome-sequenced using the SKAT-O method.

Results:  We find that there is little evidence for genetic overlap between SLI and ADHD, schizophrenia, and ASD, the 
latter being in line with results of linguistic analyses in past studies. However, we observe a small, significant genetic 
overlap between SLI and childhood autism specifically, which we do not observe for SLI and Asperger’s syndrome. 
Moreover, we observe that childhood autism cases have significantly higher SLI-trained PRS compared to Asperger’s 
syndrome cases; these results correspond well to the linguistic profiles of both disorders. Our rare variant analyses 
provide suggestive evidence of association for specific genes with ASD, childhood autism, and schizophrenia.

Conclusions:  Our study provides, for the first time, to our knowledge, genetic evidence for ASD subtypes based on 
risk variants for language impairment.

Keywords:  Specific language impairment, Autism spectrum disorder, Attention deficit/hyperactivity disorder, 
Schizophrenia, Polygenic risk score, Exome sequencing
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Background
One of the most fundamental aspects of human behavior 
is communication through language. At the same time, 
it is also one of the most remarkable ones; children can 
acquire their mother tongue with ease and without con-
scious effort, and, yet, the mechanisms underlying this 
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ability are largely unknown. There are many theories as 
to the nature and structure of human language, and they 
differ from one another from both the organizational and 
the representational perspectives. This, in turn, may have 
implications for accounts of language acquisition which 
use frameworks and concepts anchored in those theo-
ries [1]. However, from the molecular or genetic point of 
view, we do not need to presuppose much about the lin-
guistic nature of the mechanisms which allow the child 
to acquire language or their relation to other cognitive 
domains. All the same, using genetics to investigate them 
may help answer some questions which pertain to higher 
levels of linguistic ability. Furthermore, it may also help 
answer questions which pertain to the links between lin-
guistic ability and other behavioral or even physiologi-
cal traits, in much the same way in which links between 
other behavioral and physiological traits and disorders 
have been found [2]. Thus, by exploring the genetic rela-
tionship between a primary form of language impairment 
and broader behavioral phenotypes, we could potentially 
identify pathways that may affect both language and 
other traits, which could, in turn, inform theories of lan-
guage acquisition and development as well.

It has long been known, from twin studies and other 
family-based studies, that language ability and some lan-
guage disorders are heritable [3]. For developmental spo-
ken language disorders, pooling together twin data from 
across several studies obtained overall concordance rates 
of 83.6% for monozygotic twins and 50.2% for dizygotic 
twins, indicating a strong genetic component [3]. Twenty 
years ago, FOXP2 became the first gene implicated in a 
speech and language disorder [4]. While the disorder 
was multi-faceted in terms of its behavioral phenotype, 
its genetic cause was a point mutation in a single gene. 
However, there are other disorders in which language is 
or may be impaired, and these may be complex, meaning 
that several genetic and environmental factors may com-
bine to confer an increased risk of having them. Some 
complex disorders involve a child’s broad behavioral neu-
rodevelopment, and they include, among others, autism 
spectrum disorder (ASD) and attention deficit/hyper-
activity disorder (ADHD), both of which are heritable 
[5] and may involve language deficits [6, 7]. In contrast, 
another disorder, namely, specific language impairment 
(SLI), is diagnosed when linguistic development is below 
age expectation in an otherwise typically developing child 
[8]. In recent years, the diagnostic criteria have changed, 
implementing a shift towards less exclusionary criteria 
and resulting in a new label: developmental language dis-
order1, although ASD remained an exclusionary criterion 
[9]. Like ASD and ADHD, SLI is a complex disorder [10]. 
In contrast to the aforementioned monogenic speech 
and language disorder, FOXP2 was not found to play a 

major role in SLI susceptibility, thus suggesting a differ-
ent genetic architecture and, perhaps, a more complex 
one [11]. Interestingly, several linguistic domains may 
also be impaired in schizophrenia [12], a psychiatric dis-
order not typically diagnosed in children, and language 
deficits in schizophrenia show familial aggregation [13]. 
Some studies implicated FOXP2 either in either  schizo-
phrenia itself [14] or in language ability in schizophrenia 
patients [15], whereas other studies found no such asso-
ciations [16, 17]. Of note, the SNP-based heritabilities of 
ASD, ADHD, and schizophrenia were recently estimated 
to be ~10%, ~20%, and ~13%, respectively, in the iPSYCH 
sample (which was also used in this study) [18].

Especially in the case of SLI and autism (autism being 
part of and arguably the core disorder within ASD), the 
(perhaps, superficial) similarities in linguistic impair-
ment led to the question being raised of whether SLI and 
autism were on one continuum [19]. Until recently, most 
studies trying to answer this question focused on the lin-
guistic deficits in SLI and autism, with some reporting 
similar linguistic domains being impaired in both dis-
orders, and others reporting that children with SLI and 
children with autism are impaired on different domains 
[19–23], but it is generally said that the core deficits in 
SLI involve spoken language production and compre-
hension and the domains commonly affected in SLI are 
“structural” (phonology, morphology syntax and seman-
tics), whereas the core linguistic deficit in autism affects 
mostly pragmatics (language use and hence social com-
munication), although some children with SLI may 
exhibit some overlaps in the affected domains with chil-
dren with autism, and vice versa [24]. What further com-
plicated things was that some genes were linked to both 
disorders; for example, CNTNAP2 (itself a FOXP2 target 
[25]) was one of those genes [25, 26] (of note, it was also 
linked to schizophrenia [27]). Moreover, the top associa-
tions in the first genome-wide association study (GWAS) 
of SLI, in the model for child genetic effects, were with 
variants in genes previously implicated in ASD (and 
even in ADHD and schizophrenia) [28]; these included 
CNTN5 [29], RBFOX3 [30], and THRB [31, 32] (see Sup-
plementary Table S1 for the top 10 SNPs from the discov-
ery analysis from this study, i.e., with the updated dataset 
as per below, and corresponding genes). It was suggested 
that such observations (both linguistic and genetic) could 
be explained by a model incorporating genetic interac-
tions, rather than only additive genetic overlaps; this 
type of model could account for genetic overlaps, while 

1  We use the term SLI in this paper, as the studies cited here are from before 
the change took place and used the more stringent definition and diagnostic 
criteria.
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maintaining distinct linguistic profiles for SLI and autism 
[33]. It is worth mentioning that the reported genetic 
overlaps concerning specific genes were not always of the 
same nature across disorders; for example, common vari-
ants in CNTNAP2 were associated with a language trait 
in children with SLI [25], but for ASD, a rare variant in 
that gene was also reported [34]. However, this is in line 
with theoretical accounts of disease-causing genes and 
also with experimental data showing associations with 
common variants in genes which are involved in related 
monogenic diseases [35]. This implies that both common 
and rare variants, the latter possibly having stronger del-
eterious effects, should ideally be examined when assess-
ing genetic overlaps between disorders.

Polygenic risk scores as a tool for investigating 
cross‑disorder genetic overlaps
A polygenic risk score (PRS) is an aggregate score that 
reflects an individual’s genetic predisposition to a trait 
or a disease, as estimated based on prior genetic associa-
tion data (typically from a GWAS for the given trait or 
disease). A PRS trained on a sample comprising cases and 
controls for a given disease is often used as a predictor 
for the same disease in an independent sample, but a PRS 
trained on one disease can be used to try to predict the 
risk of having another disease. This is known as a cross-
disorder analysis and has been done for several psychi-
atric disorders; it provides a way of assessing genetic 
overlaps across disorders [36].

Polygenic risk scores in the clinical setting
Since their first use in a study of human disease [37], 
PRSs have become a popular tool in research. The nature 
of the PRS, i.e., being one aggregate score capturing an 
individual’s genetic predisposition to having a particular 
trait, also means it can be readily used by researchers in 
disciplines typically far removed from genetics, such as 
the social sciences, where it can be incorporated into sta-
tistical models, thus allowing the integration of genetic 
information and social outcomes [38]. But although PRSs 
have been successfully used in research contexts, typi-
cally allowing to differentiate cases and controls at the 
group level, they cannot, as of now, be used as predic-
tors for disease at an individual level [39]. Nonetheless, 
integrating PRSs into the clinical setting remains one of 
the main goals of PRS research, and, even though a PRS 
cannot stratify individuals from the entire population 
based on the individual probabilities of their develop-
ing a disease, it could, together with clinical risk factors, 
potentially help identify a group of individuals with a par-
ticularly high risk for some diseases [40]. One example 
of a successful application of this approach was using a 
PRS to identify individuals at high risk of coronary artery 

disease; using a PRS, the authors were able to identify a 
group of individuals (8% of the population) with high risk 
of developing coronary artery disease, with an odds ratio 
≥ 3 [41].

Polygenic risk scores in studies of language‑related traits
In psychiatry, where the clinical presentation of various 
conditions might be more complex, PRSs could be used 
for distinguishing subtypes of psychiatric disorders. A 
PRS for schizophrenia has been shown to differentiate 
schizoaffective bipolar disorder cases from the rest of the 
bipolar disorder sample in one study [42]. However, when 
it comes to prognostic value, a recent study found no 
significant improvement in using a PRS for schizophre-
nia when predicting poor outcomes (proxies for a poor 
clinical trajectory, including: aggressive behavior, requir-
ing in-patient psychiatric treatment, prescription of two 
or more unique antipsychotics, prescription of clozapine, 
self-harm and homelessness), relative to current stand-
ards of care [43], even for models in which the PRS was 
significantly associated with the proxy (i.e., it significantly 
explained some of the variance in those traits), which 
was the case for the first two out of the above six out-
comes. This example illustrates the fact that, even if the 
PRS is significantly associated with an outcome, it does 
not mean that adding it to the prediction model would 
improve the performance of the model relative to includ-
ing only clinical features.

As in the general case of psychiatric disorders 
described above, studies of language-related disorders 
are also plagued by the heterogeneity of the disorders, 
which, in turn, may also influence clinical diagnosis and 
treatment, even in terms of access to support services in 
the first place [44]. In this respect, studying the genetic 
architecture of the disorder could be informative as to 
the boundaries (and similarities) between disorders with 
overlapping phenotypes. Studies applying PRSs to lan-
guage-related traits or disorders in the clinical context 
are scarce, but attempts have been made to investigate 
the potential use of PRSs in these settings. A PRS based 
on several language measures was shown to explain a 
small proportion of the variance in language and psy-
chosocial problems in 8-year-old children, although this 
PRS was not genome-wide and consisted of markers in 
preselected candidate genes [45]. Another recent study 
examined the potential application of a genome-wide 
PRS for educational attainment to identifying children 
with language and literacy problems at an early devel-
opmental stage. The PRS for educational attainment sig-
nificantly explained a small proportion of the variance 
of language and literacy at age 12, but its predictive abil-
ity was overall low and deemed not useful in the clinical 
setting [46]. In the neighboring field of speech and voice 
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disorders, the use of genetic information in the clinical 
setting has also been advocated [47]. In addition to inves-
tigating the direct association between PRS for a relevant 
trait and developmental outcomes, clinical practice may 
also benefit, albeit not immediately, from studies into the 
genetic overlaps across language-related disorders and 
traits. For example, previous investigations which used 
PRSs in a cross-disorder setting identified genetic over-
laps between ADHD and reading-related traits (showing 
a negative association) [48]. Interestingly, these traits also 
showed a positive association with PRSs for educational 
attainment in the same study.

In our own previous study (hereafter referred to as 
the pilot study), which included a family-based cohort 
comprising children assessed for language, intelligence, 
and other behavioral traits through test batteries and 
interviews, we used a PRS trained on the SLI GWAS in 
trying to predict risk of ASD and ADHD, using case-con-
trol datasets for these disorders from among the unre-
lated children of the cohort (N = 391). In our study, we 
observed that, overall, the PRS significantly predicted 
some risk of SLI, used as a positive control in the tar-
get sample, but it did not predict risk of ASD (mutually 
exclusive with SLI) or ADHD—or height, used as a nega-
tive control [49]. Thus, at least when it came to common 
variants, we did not observe a genetic overlap between 
SLI and ASD, or between SLI and ADHD, as captured by 
a genome-wide PRS. The biggest limitations of the previ-
ous study were the sample size and the fact that the ASD 
diagnosis encompassed children with varying language 
profiles (as determined from their performance on a 
receptive language test). The aim of this extended study 
is thus fourfold: (i) to apply SLI-trained PRS to a much 
larger sample, which comprises more than ten thousand 
cases each of ASD and ADHD; (ii) to see whether dif-
ferent results are obtained when examining childhood 
autism and Asperger’s syndrome (which differ in their 
linguistic profiles, in this case, based on International 
Classification of Diseases (ICD) criteria) separately, and 
to assess whether this could potentially be used to guide 
clinical diagnosis; (iii) to extend the analysis to include 
schizophrenia; (iv) to examine potential genetic over-
laps between SLI and the other disorders using exome 
sequencing data which include rare variants in SLI candi-
date genes and other language-related genes.

Methods
Study population and phenotypes
The individuals in this study are part of the Danish 
iPSYCH case-cohort sample [50], which comprises 
individuals selected either for having at least one of six 
disorders (ASD, ADHD, schizophrenia, bipolar disor-
der, depression and anorexia) or as part of a random 

population sample. The iPSYCH samples underwent 
extensive quality control (QC) procedures based on 
both genetic data and registry data to remove ances-
try outliers, duplicate samples, individuals with cryptic 
relatedness, and individuals with low-quality genotype 
measures, as described in an earlier study [18]. This 
resulted in a sample of 65,534 unrelated Danish indi-
viduals, as used in previous studies [51–53]. The phe-
notypes used in this study include the 2016 dataset of 
diagnoses from the Danish Psychiatric Central Research 
Register for these 65,534 individuals. The diagnoses cor-
respond to the following ICD-10 [54] codes: ASD (F84.0, 
F84.1, F84.5, F84.8, and F84.9), childhood autism (F84.0), 
Asperger’s syndrome (F84.5), ADHD (F90.0), and schizo-
phrenia (F20). Equivalent ICD-8 [55] codes might have 
been used for schizophrenia (295.x9 excluding 295.79) 
and childhood autism (299.00), depending on when the 
individual received the diagnosis. For each phenotype, 
cases were defined as having the respective diagnosis 
as per the above codes, and controls were defined as (i) 
not having the diagnosis in question and (ii) having been 
included in iPSYCH as part of the random population 
sample, i.e., an individual who is included only in the 
case subset of iPSYCH will not be included as a control 
for another case diagnosis (which they do not have), but 
they are considered a case for the diagnosis they do have. 
Individuals in iPSYCH may be cases for more than one 
disorder.

Genetic quality control
The samples were genotyped on the Illumina PsychAr-
ray v1.0. Preliminary QC steps on the raw genotype data 
(based on call rates and the Gentrain score) are described 
in the original iPSYCH paper [50] and subsequent QC is 
described in a later iPSYCH study [56]. The marker data-
set used in this study was filtered further with PLINK 
[57] v1.90b3o to remove markers with rare variants 
and non-autosomal markers, and later with v1.90b3.34 
to remove one marker from every pair of markers with 
duplicate positions. The final dataset had markers with 
a minimum minor allele frequency (MAF) of 0.009632 
and maximum missingness of 0.01257. All but 218 mark-
ers had Hardy-Weinberg equilibrium p value > 1×10−6 
in controls. We report these numbers and not thresh-
olds, as the QC steps were performed in a larger subset 
of the iPSYCH sample (a homogeneous sample of Euro-
pean ancestry) than that used in this study, which was 
selected for the purpose of QCing the markers prior to 
imputation for another study. Further details are given in 
that study [18] and in a subsequent study [58]. In total, 
242,077 markers were retained following these steps, and 
239,582 markers remained after removing markers from 
the major histocompatibility complex (MHC) region. 



Page 5 of 15Nudel et al. Journal of Neurodevelopmental Disorders           (2021) 13:54 	

Note that the above QC describes the marker QC; the 
final sample used in this study comprised only individu-
als passing the sample QC as mentioned in the previous 
section and as described in [18].

Polygenic risk scores and regression models
The summary statistics used in the construction of the 
PRS were taken from an updated analysis of a previous 
SLI GWAS [28]. To our knowledge, this is currently the 
only GWAS of SLI, and it is based on the largest avail-
able sample of SLI families, the SLI Consortium sam-
ple. The dataset used in this study was the most strictly 
QCed one (termed “Correction 1”), as used in our pilot 
study, a recent study of PRS in SLI, ASD, and ADHD, 
which details the complete protocol for this dataset 
[49]. In short, the SLI phenotype in the discovery study 
was based on proband status and/or low receptive or 
expressive language scores from a standardized test. The 
SLI Consortium also employed exclusion criteria which 
included low non-verbal intelligence and/or an indication 
of autism, as detailed in the original papers [28, 59–61]. 
The average numbers of family subsets per single-nucleo-
tide polymorphism (SNP) in the updated GWAS were as 
follows: 150 case-parents trios, 55 case-mother duos, 12 
case-father duos, and 19 cases (and sometimes case par-
ents, but these were few, on average < 1 per SNP). These 
subsets were generated per marker by the PREMIM tool, 
which generates the input to EMIM (the software with 
which the GWAS was performed) [62], in a way that 
prioritizes case-parents trios. For example, if for a given 
marker and for a given family both parents and a case 
have genotypes, then this would be a trio subset. If the 
paternal genotype is missing for this marker, then this 
would be a case-mother duo, and so on. The GWAS was 
family-based (not case-control; only case subsets were 
used as per the above), whereby the effect estimated for 
each SNP in the model used in the GWAS was one effect 
or  risk parameter, R1 (defined as the factor by which a 
child’s disease risk is multiplied if they possess one risk 
allele), so that the increase in risk from carrying two risk 
alleles was defined as the square of R1 [63]. By default, 
the minor allele was defined as the “risk” allele, but it 
could also be protective, in which case the effect param-
eter would be < 1. These effects were used in the calcula-
tion of the PRS, similar to the use of odds ratios (ORs). 
SNPs which had a “warning” value of 1 from EMIM (i.e., 
there was some problem in the models for those SNPs) 
were removed from the summary statistics. Further 
information about the model employed in the discov-
ery GWAS can be found in the supplementary notes for 
this paper. PRSs were generated for iPSYCH individu-
als using PRSice v2.2.6 [64] with the following clump-
ing parameters: r2 value of 0.2 in a 500-kbp window, as 

recommended for psychiatric traits [36], and a p value 
threshold of 1, both to conform to the protocol used in 
the pilot study and to increase the accuracy of the PRS (as 
it has been observed that, when the discovery sample is 
not very large, including all SNPs can lead to better per-
formance, and both experimental and simulation studies 
reported better performance when including all SNPs 
in most cases; this is particularly applicable to cases in 
which the original GWAS did not identify many genome-
wide significant associations) [36, 49, 65, 66]. As before, 
SNPs from the MHC region and ambiguous (A/T and 
G/C) SNPs were excluded. For binary traits, the program 
performs a logistic regression of the phenotype on the 
PRS and outputs Nagelkerke’s R2 as well as an adjusted R2 
(the adjustment is for the proportion of cases and preva-
lence for each phenotype) [67]; to that end, the following 
prevalence values were provided to PRSice for the ASD, 
ADHD, and schizophrenia phenotypes, respectively: 1% 
[68], 5% [69], and 0.4% [70]. In the analyses for the ASD 
subtypes, the prevalence value used for childhood autism 
was 0.4% [68], and for Asperger’s syndrome, it was 0.3% 
[71]. Otherwise, the default parameters of PRSice were 
used. The logistic regressions of the phenotype on the 
PRS were also repeated in R v3.3.1 [72] using PRS scaled 
across the entire sample (using the scale function in 
R  with the default parameters), so that the regression 
odds ratios are derived from coefficients corresponding 
to a change of 1 standard deviation (SD)  in the PRS, as 
presented in the “Results” section. The reported two-
sided p values for the models are for these coefficients’ 
being different from zero, as evaluated by the function in 
R (using the t-distribution for a linear regression (using 
the t-statistic), e.g., for height in the pilot study, and the 
normal distribution for a logistic regression (using the 
Wald z-score), e.g., for ASD, as implemented in the lm 
and glm functions in R, respectively). Confidence inter-
vals (CIs) for the coefficients were estimated using the 
confint function. The sample sizes (cases; controls) for 
the PRS analyses were as follows: ASD (12,884; 21,321), 
childhood autism (3,313; 21,634), Asperger’s syndrome 
(4,710; 21,567), ADHD (15,060; 21,265), schizophrenia 
(2,867; 21,596).

Candidate genes for language disorders and traits and rare 
variant group tests
Since only a very small proportion of the SLI Consor-
tium proband sample was exome-sequenced [73], and 
given the reported genetic overlaps between mono-
genic disorders and common variants in phenotypically 
related disorders, as discussed earlier, we included can-
didate genes implicated through both common and rare 
variants in the exome-sequencing analyses. As a first 
step, we used recent review articles about the genetics 
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of language disorders and related conditions [74, 75], 
as well as a survey of some of the literature from our 
recent work on receptive language [76], to identify stud-
ies in which at least one of the investigated phenotypes 
was spoken language impairment or a spoken language 
trait. We then included two categories of genes in the 
rare variant analyses: (i) genes implicated directly in 
spoken language impairment: CNTNAP2 [25], CMIP, 
and ATP2C2 [77], NOP9 [28], NFXL1 [78], SETBP1 [79], 
NDST4 [80], and OXR1, MUC6, SCN9A, FAT3, KMT2D, 
and PALB2 [73]; (ii) genes implicated in studies of spo-
ken language traits in a general population sample not 
selected for having low language ability: ABCC13 [81] 
and RORB [82]. Human leukocyte antigen (HLA) genes 
were not included due to the complex genetic architec-
ture of the MHC region and the fact that they (and their 
overlaps across disorders) had already been extensively 
examined in past studies of SLI, ASD, ADHD, and schiz-
ophrenia [52, 83–87]. While additional genes have been 
implicated in broader disorders or phenotypes involving 
language, we chose to keep genes reported specifically for 
spoken language impairment or spoken language traits 
not in combination with other traits (e.g., not language 
impairment and reading impairment modeled simultane-
ously or speech-related disorders, and so on). Addition-
ally, we required that the gene be implicated directly, 
that is, through a gene-based analysis, or, in case of an 
association study, that the associated markers be within 
the gene. This was done to ensure that the rare vari-
ant analyses are closer to the PRS analyses (which were 
based on common variants for SLI, i.e., spoken language 
impairment)—even though the two approaches differ 
in methodology and interpretation—and in order to be 
able to draw conclusions regarding the potential overlaps 
between spoken language disorders/traits proper and the 
other phenotypes. Genes were selected from the above 
studies based on reported significance levels within each 
study, or on the gene being the top candidate in a given 
study based on its p value or qualitative measures, e.g., 
genes with co-segregating rare variants or genes high-
lighted through compound heterozygous inheritance in 
the exome-sequencing study of SLI. A flowchart sum-
marizing the selection process can be found in Supple-
mentary Figure S1. The starting point for the rare variant 
analyses was a dataset generated for, and described in 
detail in, a recent iPSYCH study [88]. The genetic data 
(exome variants) for this dataset were generated inde-
pendently of the genotype array data described earlier in 
the “Methods”; however, individuals failing the iPSYCH 
sample QC, e.g., on account of having non-Danish ances-
try, were excluded from the pedigree/phenotype file pro-
vided to the program which performed the tests, so that 
every individual in the exome-sequencing dataset must 

also have passed the general iPSYCH sample QC as ref-
erenced above. The genomic coordinates for the above 
list of genes were obtained from Release 19 (GRCh37.
p13) of GENCODE, and variants in those positions were 
extracted from the iPSYCH VCF file using BCFtools v1.9 
[89]. The new VCF file was annotated using snpEff v4.3t 
[90] with the GRCh37.p13 database. The variants kept 
for downstream analysis were of the following types: 
frameshift variants; missense variants; nonsense (stop 
gained) variants; splice site donor, acceptor, or region 
variants, all with a maximum MAF of 1%. The statistical 
test employed was the optimized SKAT test (SKAT-O) 
[91] as implemented in EPACTS v3.2.6 (with the default 
parameters, apart from the maximum MAF as per the 
above) [92], for which the variants in each gene were 
grouped together. SKAT-O optimally combines the bur-
den test (which collapses the variant counts for all mark-
ers in a region) and the SKAT (which sums up the squares 
of the variant score statistics for all markers in a region), 
both of which examine aggregate variant effects, but per-
form optimally in different scenarios; the burden test is 
most suitable when most variants in a region are causal 
and their effects are in the same direction, and SKAT is 
most suitable when a large proportion of the variants in 
a region are either non-causal, or have effects that are 
in different directions [91]. The p value for the test is for 
the enrichment of rare variant associations per gene, and 
the ratio Rho reflects the optimal combination of the two 
kinds of tests (1 corresponds to a pure burden test, and 0 
corresponds to a pure SKAT). No variants (passing QC) 
were found in CNTNAP2, and the gene was therefore not 
included in the tests. The sample sizes (cases; controls) 
for the rare variant analyses were as follows: ASD (9,579; 
8,782), childhood autism (2,343; 8,987), Asperger’s syn-
drome (3,482; 8,944), ADHD (7,396; 8,816), schizophre-
nia (1,980; 8,968).

Comparison with the pilot study
We present results from analyses which used the pilot 
study [49] sample  (run with PRSice v2.2.3) for compari-
son with the current study, as these results and their 
contrast or similarity with the results from the iPSYCH 
sample are important for the interpretation of the find-
ings from the present study. The pilot study sample 
consisted of unrelated children who were part of a family-
based study, the Danish High Risk and Resilience Study 
– VIA 7, who were assessed for language performance, 
intelligence, and other behavioral traits [93], as detailed 
in our previous publications which used the genetic data 
for these children [49, 76]. The pilot study paper details 
the sample size and the criteria for the affection status 
or measurement for each phenotype included here (note 
that SLI was also termed "narrow language phenotype" 
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in that paper). We include updated and slightly different 
results here as compared to the pilot study as published, 
as subsequent QC in the family-based sample revealed 
some Mendelian errors in child-parent duos not previ-
ously identified (as duos are not checked by default by 
PLINK), as reported in a subsequent study which used 
the same sample [76]. This did not result in the removal 
of any duos that were not removed at a later stage anyway 
(in the relatedness check), but a number of markers and 
genotypes were removed (the conclusions of the original 
study were not affected by this). For the binary traits in 
the pilot study, the regression models were the same as 
those described for iPSYCH, with the same prevalences 
as mentioned earlier for ASD and ADHD, and a preva-
lence of 7% for SLI [94]. For height, a linear regression 
was performed with covariates for the age at measure-
ment and sex. The reported R2 for the PRS was calculated 
as the R2 for the full model (height regressed on PRS 
and covariates) minus the R2 for the null model (height 
regressed on the covariates), as implemented in PRSice. 
Lastly, we report some new analyses which used the pilot 
study sample but were not included in the pilot study, 
as they are relevant for comparison with the iPSYCH 
sample.

Difference in PRS between childhood autism cases 
and Asperger’s syndrome cases
Following the regression analyses and in order to evalu-
ate the difference in PRS between childhood autism and 
Asperger’s syndrome, we performed a Mann-Whitney U 
test with the wilcox.test function in R, using the scaled 
PRS. We performed a one-sided test, as we expected 
cases of childhood autism to have a higher PRS than cases 
of Asperger’s syndrome. For this purpose, we excluded a 
small number of children who had both diagnoses (N = 
175). Area under the curve (AUC) values were computed 
with the auc function of the pROC package v1.17.0.1 in R 
[95]. For the purpose of calculating the AUC, childhood 
autism cases were defined as “cases” (affection status 1) 
and Asperger’s syndrome cases were defined as “controls” 
(affection status 0).

Results
The results of all PRS analyses are shown in Table  1. 
Overall, the SLI-trained PRS, which was previously 
found to be predictive of SLI in an independent sam-
ple in our pilot study, was not predictive of the risk 
of ASD or ADHD (adjusted R2 close to 0%, neither 
of them significant after Bonferroni correction, N = 
5), in line with and thus replicating the results of our 
pilot study; for the additional phenotype of schizo-
phrenia, the PRS was not predictive. While the result 

Table 1  Results of the PRS regression analyses in iPSYCH; updated results from the pilot study sample are shown for comparison

The adjusted R2 includes an adjustment for the prevalence and proportion of cases in each sample, as implemented in the PRSice software. Associations in boldface 
survive Bonferroni correction for multiple testing (not applicable to positive or negative controls). Associations in italic are only nominally significant (not applicable 
to positive or negative controls)

PRS polygenic risk score, CI confidence interval, ASD autism spectrum disorder, ADHD attention deficit/hyperactivity disorder, SLI specific language impairment, NA not 
applicable

The R2 reported for height is a true R2 from a linear regression and not a Nagelkerke’s R2, and the effect is the beta (regression coefficient) and not an odds ratio; it 
should therefore be judged relative to 0 and not to 1. The height variable was collected in different ways at the Copenhagen and Aarhus centers for the VIA 7 study; 
the Aarhus center used, for the most part, a uniform method of measuring height with a special device, but we note that the PRS is not significantly predictive of 
height even if we restrict the analysis to include only children measured in Aarhus. We include this for the sake of completeness, even though the sample size is much 
smaller and thus the estimates are less reliable (R2 = 0.7%, P = 0.419)

*72,932 SNPs were included in the PRS

**80,121 SNPs were included in the PRS

Phenotype R2/Nagelkerke’s R2 (%) Adjusted R2 (%) Scaled PRS beta/ odds ratio 
(95% CI)

P value

iPSYCH sample*

  ASD 0.017 0.007 1.02 (1.00–1.05) 0.037

  Childhood autism 0.079 0.042 1.06 (1.02–1.10) 0.001
  Asperger’s syndrome 0.002 0.001 1.01 (0.98–1.04) 0.552

  ADHD 0.002 0.002 1.01 (0.99–1.03) 0.426

  Schizophrenia 0.002 0.001 0.99 (0.95–1.03) 0.613

Pilot study sample**

  ASD 0.017 0.017 0.97 (0.59–1.57) 0.887

  ADHD 0.008 0.009 1.02 (0.75–1.39) 0.897

  SLI 3.5 5.09 1.60 (1.02–2.54) 0.041

  Height 0.006 NA 0.07 ((− 0.98) –1.13) 0.895
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for ADHD was similar in terms of effect size, R2 and p 
value in both studies, the result for ASD was not. The 
explanatory power of the PRS was close to zero in both 
cases (~0.02% in the pilot study; ~0.01% in the cur-
rent study), but the association in the pilot study was 
in the opposite direction compared to the new result 
for ASD, and the latter was at least nominally signifi-
cant, unlike the former result. Since the current sam-
ple is much larger, the effect estimate is more accurate, 
and the confidence interval is smaller. This new result 
suggests that, while, by large, the genetic overlap (from 
common variants) between SLI and ASD is small, it 
may nonetheless be different from zero, and that at 
least some of the overlapping loci have effects in the 
same direction. This is illustrated more strongly when 
comparing the models for childhood autism and 
Asperger’s syndrome: even though there were fewer 
cases of childhood autism compared to both ASD in 
general and Asperger’s syndrome in particular, the 
model for childhood autism performed better, with R2 
≈ 0.04% and P = 0.001, which survives Bonferroni cor-
rection for multiple testing (N = 5), whereas the model 
for Asperger’s syndrome was not predictive. The above 
models tested each ASD subtype against controls; we 
therefore sought to evaluate the difference between 
the two case groups directly. Our Mann-Whitney U 
test found a significant difference between the child-
hood autism and Asperger’s syndrome case groups 
(W = 7,353,100, difference in location = 0.059, P = 
0.006, lower bound of a 95% confidence interval (CI) 
= 0.02). This corresponds to an AUC of ~52%, which 
is only ~2% over what is considered completely unin-
formative. Of note, using the same approach with the 
updated dataset from the pilot study, we obtain an 
AUC of ~63% for SLI cases versus SLI controls (one-
sided P = 0.025 for the U test), and a similar AUC of 
~63% for SLI cases versus ASD cases (P = 0.09). These 
results are summarized in Table 2.

The results of the rare variant analyses are shown in 
Table 3. Tests for three genes obtained nominally sig-
nificant p values: NDST4 in ASD, RORB in childhood 

autism, and SETBP1 in schizophrenia. However, none 
of these survive Bonferroni correction for multiple 
testing (N = 70).

Discussion
Our extended study replicated the results of our pilot 
study, namely, that, overall, there does not seem to be sta-
tistically significant genetic overlap between SLI and ASD 
or ADHD. However, the degree of overlap between SLI 
and ASD was determined more accurately in this study, 
and the new result was nominally significant, before cor-
rection for multiple testing (P = 0.037). Moreover, we 
observed a difference between the model for childhood 
autism and the model for Asperger’s syndrome in terms 
of the predictive ability of the PRS, suggesting some plei-
otropy between childhood autism and SLI: while still 
explaining only a small proportion of the risk of child-
hood autism, the SLI-trained PRS nonetheless achieved 
statistical significance (surviving Bonferroni correction) 
only in the former case. The analyses in Table 1 for these 
two phenotypes test each case group against controls, 
which may be shared between the two case-control data-
sets and hence are not independent. When we test both 
case groups against each other, we find a significant dif-
ference, with a tendency for the childhood autism group 
to have a higher SLI-trained PRS. Keeping in mind that 
the PRS represented log-additive genetic risk of language 
impairment, this result shows an intriguing correspond-
ence between this genetic difference between childhood 
autism and Asperger’s syndrome, which could be seen as 
a difference in the “genetic load for language impairment,” 
and the language profiles of the two disorders, which 
constitute the major difference between them [96]: ASD 
includes a group of pervasive developmental disorders 
involving abnormal social interaction, abnormal behav-
ior patterns (typically involving restricted, stereotyped 
and repetitive behavior), and impaired communication 
[6]. Childhood autism is characterized by deficits in all of 
the above domains, while a diagnosis of Asperger’s syn-
drome is typically given when there are no evident com-
munication deficits or language delay. In this study, the 

Table 2  Results of group comparisons using the Mann-Whitney U test or AUC analyses

Associations in bold survive Bonferroni correction for multiple testing

AUC​ area under the curve, NA not applicable, ASD autism spectrum disorder, SLI specific language impairment

Group 1 Group 2 Type of analysis Result P value

Childhood autism cases (iPSYCH sample) Asperger’s syndrome cases (iPSYCH 
sample)

Mann-Whitney U test W = 7,353,100; dif‑
ference in location = 
0.059

0.006

Childhood autism cases (iPSYCH sample) Asperger’s syndrome cases (iPSYCH sample) AUC​ 0.5167 NA

SLI cases (pilot study sample) SLI controls (pilot study sample) AUC​ 0.6276 NA

SLI cases (pilot study sample) ASD cases (pilot study sample) AUC​ 0.6303 NA



Page 9 of 15Nudel et al. Journal of Neurodevelopmental Disorders           (2021) 13:54 	

Ta
bl

e 
3 

Re
su

lts
 o

f t
he

 ra
re

 v
ar

ia
nt

 a
na

ly
se

s

Th
e 

nu
m

be
r o

f v
ar

ia
nt

s 
re

fe
rs

 to
 th

e 
nu

m
be

r o
f v

ar
ia

nt
s 

pa
ss

in
g 

Q
C 

an
d 

co
un

t/
fr

eq
ue

nc
y 

th
re

sh
ol

ds
 fo

r e
ac

h 
ge

ne
. A

ss
oc

ia
tio

ns
 in

 it
al

ic
 a

re
 o

nl
y 

no
m

in
al

ly
 s

ig
ni

fic
an

t

AS
D

 a
ut

is
m

 s
pe

ct
ru

m
 d

is
or

de
r, 

AD
H

D
 a

tt
en

tio
n 

de
fic

it/
hy

pe
ra

ct
iv

ity
 d

is
or

de
r, 

N
A 

no
t a

pp
lic

ab
le

Ph
en

ot
yp

e
A

SD
Ch

ild
ho

od
 a

ut
is

m
A

sp
er

ge
r’s

 s
yn

dr
om

e
A

D
H

D
Sc

hi
zo

ph
re

ni
a

G
en

e
N

um
be

r o
f 

va
ri

an
ts

P 
va

lu
e

Rh
o

N
um

be
r o

f 
va

ri
an

ts
P 

va
lu

e
Rh

o
N

um
be

r o
f 

va
ri

an
ts

P 
va

lu
e

Rh
o

N
um

be
r o

f 
va

ri
an

ts
P 

va
lu

e
Rh

o
N

um
be

r o
f 

va
ri

an
ts

P 
va

lu
e

Rh
o

N
O

P9
61

0.
05

9
0

46
0.

10
3

0
49

0.
10

8
0.

5
57

0.
24

2
0

47
0.

11
1

0.
4

KM
T2

D
45

4
0.

22
7

0
36

1
0.

54
5

0
36

1
0.

31
9

1
43

5
0.

53
3

1
33

7
0.

12
6

0.
7

RO
RB

14
0.

24
3

1
11

0.
03

3
1

12
0.

89
4

1
14

0.
30

0
1

11
0.

39
7

1

AB
CC

13
1

0.
13

8
N

A
1

0.
18

0
N

A
1

0.
58

4
N

A
1

0.
38

3
N

A
1

0.
07

9
N

A

N
D

ST
4

45
0.

01
1

0.
4

42
0.

27
0

1
43

0.
11

7
0.

4
48

0.
21

5
1

44
0.

14
2

1

FA
T3

36
1

0.
36

1
1

28
9

0.
54

9
1

29
1

0.
42

0
1

33
7

0.
14

4
0.

6
27

8
0.

72
6

0

CM
IP

22
0.

40
2

1
18

1.
00

0
1

18
0.

63
7

0
23

1.
00

0
0

17
0.

71
5

0

PA
LB

2
83

0.
55

1
0

64
0.

59
2

0
67

0.
82

7
1

75
0.

74
7

1
65

0.
63

3
0

SC
N

9A
13

0
0.

09
3

0
10

3
0.

57
8

0
10

9
0.

39
6

0
12

6
0.

15
3

0
10

2
0.

30
8

1

M
U

C6
31

0.
85

7
1

27
0.

81
6

0
28

1.
00

0
1

32
0.

75
2

1
28

0.
81

5
1

N
FX

L1
26

0.
51

9
1

13
0.

69
5

0
15

0.
23

5
1

17
0.

84
9

1
13

0.
55

9
0

O
XR

1
41

0.
57

2
0.

7
34

0.
87

6
1

34
0.

77
9

1
41

0.
36

5
0

34
0.

49
7

1

AT
P2

C2
16

1
0.

89
5

1
12

2
0.

46
0

0
13

1
0.

31
7

1
15

9
0.

35
9

1
11

8
0.

65
0

1

SE
TB

P1
10

6
0.

77
7

1
88

0.
79

0
1

91
0.

36
5

1
10

5
0.

32
2

1
85

0.
01

8
1

CN
TN

AP
2

0
N

A
N

A
0

N
A

N
A

0
N

A
N

A
0

N
A

N
A

0
N

A
N

A



Page 10 of 15Nudel et al. Journal of Neurodevelopmental Disorders           (2021) 13:54 

childhood autism and Asperger’s syndrome diagnoses 
followed the ICD guidelines (almost exclusively ICD-10 
for the former, and only ICD-10 for the latter). The ICD-
10 criteria for childhood autism specify, among other 
things: the characteristic type of abnormal functioning in 
all the three areas of psychopathology: reciprocal social 
interaction, communication, and restricted, stereotyped, 
repetitive behavior. For Asperger’s syndrome, it states: it 
differs from autism primarily in the fact that there is no 
general delay or retardation in language (https://​icd.​who.​
int/​brows​e10/​2019/​en#/​F84, accessed May 16, 2021). It 
should nonetheless be acknowledged that there may yet 
be some language problems associated with Asperger’s 
syndrome, too [97, 98], only not to the same extent as 
in childhood autism, and some theorize that childhood 
autism and Asperger’s syndrome are quantitatively dif-
ferent, rather than qualitatively different [96]. We also 
observed that a small number of children seemed to 
“transition” from one diagnosis to the other, or get both 
codes, although this could be the result of a misdiagno-
sis or some other kind of error inherent to registry-based 
research. In summary, the results of our PRS analyses 
indicate a subtle, but statistically significant, difference in 
the genetic load for language impairment between child-
hood autism and Asperger’s syndrome. This suggests 
that, at least at the group level, these two ASD subtypes 
can be distinguished by their genetic risk of language 
impairment, although the difference is very small, as 
reflected in the AUC.

In the rare variant analyses, three genes were nomi-
nally significantly associated with a disorder. Variants 
in NDST4 were associated with ASD, variants in RORB 
were associated with childhood autism, and variants in 
SETBP1 were associated with schizophrenia. NDST4 
was included due to its implication in language impair-
ment [80]. The gene belongs to a family of genes called 
GlcNAcN-deacetylase/N-sulfotransferases, which have 
important roles in development [99]. While its connec-
tion to language is not clear, it has been associated with 
traits such as drinking behavior [100] and circulating 
levels of resistin, a hormone involved in inflammation 
[101], and some protein-truncating variants have been 
reported for this gene in the context of schizophrenia 
[102]. RORB was included due to its association with ver-
bal intelligence, namely, with a vocabulary measure [82]. 
The protein encoded by this gene is a nuclear receptor 
[103] and it has been implicated in bipolar disorder [104]. 
Given its association with vocabulary, it is not surpris-
ing that it should show some association with childhood 
autism, as one study showed poor vocabulary growth to 
be associated with autism severity at 6 months from the 
start of the study (the participants’ initial chronological 
ages were 20–71 months) [105]. Notably, this gene has 

been highlighted in a recent ASD exome-sequencing 
study which included the iPSYCH sample but used a dif-
ferent methodology [106]. Lastly, SETBP1 was included 
due to its implication in language impairment [79]. This 
gene is a transcription regulator [107], and it has been 
implicated in several studies of related disorders, such 
as childhood apraxia of speech [108] and developmental 
delay/expressive language delay [109–111]. There is some 
new evidence for its involvement in schizophrenia in a 
recent study [112], and it was also significant in some of 
the analyses of an exome-sequencing study of ASD [106].

Limitations of our study
The training dataset for the PRS used in this study is, to 
the best of our knowledge, the only GWAS of SLI to date. 
As the primary sample was collected about 20 years ago 
and was originally intended for linkage analyses, it con-
sists mainly of families of SLI probands, where unaffected 
individuals are related to affected individuals. The GWAS 
sample included several hundred individuals in sub-
sets of case-parents trios, case-parent duos, cases, and 
so on, and, in the specific family-based GWAS design 
employed, only case subsets were used (i.e., controls 
were not used in the association tests themselves). As 
such, this analysis is inherently different from a standard 
case-control GWAS. While the SLI Consortium sample is 
not large by today’s standards of case-control studies, it 
is not atypical for family-based genetic studies. Another 
limitation is that the iPSYCH sample had no SLI phe-
notype or any kind of standardized language test score. 
However, the results from the pilot study sample that 
we obtained for our positive control (SLI) both in terms 
of the Nagelkerke’s R2 and the adjusted R2 were, in fact, 
higher (Table 1)2 than the maximum value obtained for 
schizophrenia (3.2%) in the study which conceptualized 
PRS analyses for human disease [37]. For schizophrenia, 
the R2 rose to 18.4% with a much larger discovery dataset 
(from a meta-analysis) a few years later [113], but a simi-
lar meta-analysis is currently not feasible for SLI. In sum-
mary, one limitation of our study is the sample size of the 
original GWAS, although it should be emphasized that 
we employed several tests and controls to assess whether 
the PRS predicts what it is supposed to predict, and we 
followed the conventional guidelines for PRS analyses 
in which the discovery sample was small, as explained 
in the “Methods” section. It should also be mentioned 
that, even though the R2 in the aforementioned original 
schizophrenia study was lower than in our study, the PRS 

2  The values rise to Nagelkerke’s R2 = 3.87% and adjusted R2 = 6.05% (P = 
0.024, with the updated dataset), when less stringent criteria are applied to 
SLI controls  (i.e., when controls have language test scores above the thresh-
old defining cases (1.5 SD below the population mean), as opposed to above a 
score defined as 0.5 SD below the population mean, as used in the main analy-
ses), similar to what has been shown previously [49]).

https://icd.who.int/browse10/2019/en#/F84
https://icd.who.int/browse10/2019/en#/F84
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it was based on was nonetheless used in a cross-disorder 
analysis, much like in this study.

A limitation in terms of the applicability of the results 
is that the difference in the SLI-trained PRS between 
childhood autism cases and Asperger’s syndrome cases 
was not large enough for clinical utility; the AUC for this 
model was too small for this at this stage, but, as proof of 
concept, our results are nonetheless promising; they sug-
gest three things: (i) that, as observed in the pilot study, 
an SLI-based PRS is not a good predictor of ASD, mean-
ing that the genetic correlation between the disorders 
is not expected to be large; (ii) that there is, however, a 
small but significant positive genetic overlap between SLI 
and childhood autism in particular, meaning that some 
loci could be shared between the two disorders (which 
could potentially be many loci with small effects)—these 
two results can inform us on the relationship between 
SLI and ASD and childhood autism; and (iii) that those 
overlapping loci could potentially distinguish between 
two types of autism spectrum disorder, one in which lan-
guage is typically impaired, and another in which it is not. 
Given adequate training sets and sample sizes, this could, 
in the future, lead to a way of distinguishing between 
subtypes of ASD using genetic risk scores trained on lan-
guage impairment. In the rare variant analyses, none of 
the tests survived a Bonferroni correction for multiple 
testing, and, therefore, they can provide at most sugges-
tive evidence for association at this stage. This could be 
due to lack of power, as only a subset of the iPSYCH sam-
ple was exome-sequenced, and, by definition, rare vari-
ants are found in low numbers across samples. It should 
be noted that, when genetic correlation is not observed 
(i.e., even if it equals or is close to zero), it does not mean 
that pleiotropy does not exist, as the former depends on 
the directionality of the effects [2, 114]. In this context, it 
is worth noting that PRS cross-disorder analysis typically 
agrees with genetic correlation analysis [36]. It should 
also be noted that, while pleiotropy can give rise to 
genetic correlation, other factors could also influence an 
observed correlation, including misclassification of indi-
viduals into either disease group [115]. The SLI Consor-
tium sample was examined for autism, and samples were 
excluded if they had an indication of autism; similarly, 
the ICD criteria require specific social and behavioral 
impairments for a diagnosis of childhood autism, which 
a child with SLI should not typically exhibit. However, it 
cannot be ruled out that a misclassification did occur.

Conclusions
Our study did not find significant genetic overlaps 
between SLI and ASD, ADHD, and schizophrenia. How-
ever, a small but significant genetic overlap between SLI 
and childhood autism, in particular, was found. As this 

was not observed for Asperger’s syndrome, and the differ-
ence in PRS between the two case groups was significant, 
it may suggest that these two disorders, which differ lin-
guistically, could also be distinguished genetically using 
polygenic risk scores for language impairment. While we 
found some overlaps across candidate genes for SLI and 
ASD, childhood autism, and schizophrenia, these asso-
ciations did not survive Bonferroni correction and can, at 
most, provide suggestive evidence for pleiotropy. Taken 
together, our results may suggest that there is a number 
of loci that influence “pre-linguistic” mechanisms that 
influence neurodevelopment in general and thus may 
have an impact on language ability down the road, or loci 
that influence linguistic ability that is not domain-spe-
cific, which are shared between SLI and ASD, and, in par-
ticular, SLI and childhood autism. However, at this point, 
this is only speculative. Larger discovery samples may be 
needed in order to obtain a more reliable PRS, and larger 
exome-sequenced samples may be needed to detect the 
effects of rare variants, although our results may also sug-
gest that rare variants in language-related genes may not 
have pleiotropic effects on the investigated neurodevel-
opmental disorders.
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