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Abstract
Spin–orbit couplings (SOCs), originating from the relativistic corrections in the Dirac equation, offer nonlinearity in the 
classical limit and are capable of driving chaotic dynamics. In a nanoscale quantum dot confined by a two-dimensional 
parabolic potential with SOCs, various quantum scar states emerge quasi-periodically in the eigenstates of the system, 
when the ratio of confinement energies in the two directions is nearly commensurable. The scars, displaying both quan-
tum interference and classical trajectory features on the electron density, due to relativistic effects, serve as a bridge 
between the classical and quantum behaviors of the system. When the strengths of Rashba and Dresselhaus SOCs are 
identical, the chaos in the classical limit is eliminated as the classical Hamilton’s equations become linear, leading to 
the disappearance of all quantum scar states. Importantly, the quantum scars induced by SOCs are robust against small 
perturbations of system parameters. With precise control achievable through external gating, the quantum scar induced 
by Rashba SOC is fully controllable and detectable.

1 Introduction

Quantum scars which manifest as the localization behavior displaying certain unstable classical periodic orbits exist in the 
high-energy levels in the quantum system with chaotic dynamics being driven in its classical limit. The quantum scar was 
first discovered while studying the quantum eigenstates of the stadium billiard model which drives chaotic dynamics in 
the corresponding classical model [1, 2] and later was named as such by Heller [3]. Quantum scarring has thus far drawn 
great attention and interest [4–7] and has been observed experimentally in various systems, including quantum well 
and microwave resonators [8–13]. The localization nature of quantum scarring without participation of the many-body 
system is convenient to be applied and attracts interest across various fields. On the other hand, the quantum many-
body scars localizing eigenstates to prevent thermalization are expected to be useful in quantum computing [14–19].

Recently, the perturbation induced quantum scars have been studied in quantum dot (QD) systems confined at the 
semiconductor heterostructure with or without an external magnetic field [20–22]. These quantum scars are induced by a 
bunch of impurities which make the (nearly) degenerate states of the QD resonant to localize the electron density along 
the underlying classical trajectories. As an artificial atom [23], the low-dimensional QD [24–28] offers an ideal platform for 
controlling both the spin and the charge of single or multiple electrons. The parabolic confinements of QDs render the 
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system a two-dimensional (2D) quantum harmonic oscillator which holds practical and fundamental significance in phys-
ics. The quantum scars found in QDs also reveal profound connections between the classical and the quantum systems.

Both nonrelativistic and relativistic quantum systems have been found to possess quantum scars [29, 30]. The focus 
has also been on quantum scarring in relativistic quantum systems which are described by the Dirac equation, especially 
in graphene systems [31–34]. However, the experiments in monolayer and bilayer graphene to explore quantum chaos 
have not been successful [35]. On the other hand, the spin–orbit coupling (SOC) is also a relativistic effect originating from 
the Dirac equation. Its corresponding classical Hamiltonian leads to nonlinearity in Hamilton’s equation and it is possible 
to drive chaotic dynamics [36–38]. Exploring quantum scars induced by SOCs could thus offer an intriguing avenue [39].

The studies on QDs with Rashba SOC or/and Dresselhaus SOC have been reported extensively thus far [40–56]. The 
ground states of QDs with SOCs have been studied to explore topological nontrivial features in spin fields [57–60]. Vortex-
like spin textures in the ground states carry different topological charges induced by Rashba SOC or linear Dresselhaus 
SOC. Considering that the Rashba SOC can be conveniently tuned via an external gate [61–65], the spin textured ground 
states could have potential applications in spintronics and quantum information [66–68]. Yet, the excited states in QDs 
with SOCs have not been sufficiently studied, especially in the energy region containing classical chaos.

Here we investigate the excited states as well as the quantum scarring in spin–orbit coupled QDs. The scars can appear 
in the eigenstates quasi-periodically (the period is not fixed and gradually increased with the eigenenergy). We also 
confirm that the condition of scarring in the quantum states exactly follows the chaos condition in the classical limit. 
When the strengths of the Rashba and the Dresselhaus SOCs are equal, the classical Hamilton’s equations are linear and 
no longer lead to chaos, hence there is no scar in the quantum system. Otherwise we observe various quantum scars 
depending on the systematic parameters. It is worth mentioning that the quantum scars induced by SOCs in QDs are 
highly robust against with small perturbations, unlike the classical chaotic behavior and could be referred to its quantum 
feature that the energies are discrete. Comparing with the impurities induced quantum scars, the scars induced by SOCs 
are more tunable, less random, exist at low-energy levels, and spin-involved. We thus expect the corresponding measure-
ments to be more convenient by scanning tunneling spectroscopy [69, 70], scanning gate microscopy [71], scanning the 
NMR experiment [72–74] and the spin-dependent transport [39, 75–77].

2  Model and formula

The Hamiltonian of the quantum dot with both the Rashba and Dresselhaus SOCs is given by
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By solving the canonical equations, chaotic dynamics can appear when the SOC is anisotropic. If there is only Rashba 
SOC present, then HC

SOC
= −g1

√
p2
x
+ p2

y
 . On the other hand, if only Dresselhaus SOC is present, then the classical cor-

respondence is the same as that of Rashba SOC. It implies that whichever SOC is present, the classical behavior remains 
the same. Note that if the confinement trap is isotropic, classical trajectories in the phase space would be regular. The 
way leading to chaotic dynamics is to make the confinement anisotropic, which effectively makes the SOC anisotropic 
in the classical limit. Once chaos appears, the corresponding quantum scar induced by the SOC should be observed in 
the quantum dot. Considering the classical correspondence of the two types of SOCs being the same, the quantum scar 
would also be identical.

The system is highly tunable, as both the Rashba SOC and confinements can be tuned by external gates, and the ratio of 
the Rashba SOC to the Dresselhaus SOC can be modified by applying an in-plane magnetic field [65]. It is worth mentioning a 
special case where g1 = ±g2 , i.e. the two SOCs are present simultaneously with equal strength. The classical correspondence 
becomes HC

SOC
= −g1(px − py) , which is a linear term in the Hamiltonian and does not lead to chaos.

To study the quantum scar of the quantum dot system described by the Hamiltonian in Eq. (1), the eigenstates are calcu-
lated in the exact diagonalization scheme. The Hamiltonian matrix is constructed in the basis of the two dimensional (2D) 
quantum oscillator whose Hamiltonian is H0 =
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quantum oscillator is �n⟩ ≡ �nx , ny , ns⟩ where n is a collective index marking the number of the basis, ns is the spin index in n, 
and nx and ny denote the two quantum numbers in two directions of the 2D quantum oscillator, respectively. The associated 
wave function of this basis is

where the natural lengths in the two directions are �x,y =
√

ℏ∕m∗Ωx,y . In principle, there is no upper limit of nx,y , so that 

the matrix of the Hamiltonian is infinity large. Practically, a truncation of nx,y is necessary and the low-energy states can 
be found accurately.
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Ψm(r) is a two-component spinor. Generally, any observable field is given by
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3  Results

3.1  Isotropic QD with a single SOC

When only one SOC is present and the quantum dot is isotropic, �x = �y = � , the associated classical Hamiltonian 
is HC =

p2
x
+p2

y

2m∗
+

m∗�2

2
(x2 + y2) − g1(2)

√
p2
x
+ p2

y
, which does not lead to chaos [36–38]. In the quantum regime, the 

densities and the spin fields of all eigenstates in the isotropic quantum dot are deformed by the SOC. The rotational 
symmetry does not only exist in the ground state, but also exists in all excited states of the single-particle system, 
due to the symmetry [Lz ± �z∕2,H] = 0 , where Lz is the z component of the angular momentum [57]. The topological 
feature of the spin fields is also retained in the excited states, i.e. nontrivial patterns with nonzero topological charges 
are textured by the SOC.

Our study indicates that the densities of all eigenstates have a circlular shape with topological nontrivial vortex-like 
spin textures (Fig. 1). The Rashba SOC induces a topological charge +1 of the in-plane spin field, while the Dresselhaus 
SOC leads to topological charge −1 [57, 58]. Further, the current fields of the two cases are also shown in Fig. 1, where 
the two SOCs lead to rotating currents with the same vorticity related to their spin fields.

When a perpendicular magnetic field is introduced, the electron has a cyclotron motion in the magnetic field. The 
densities of the eigenstates maintain a circular structure with rotational symmetry when only one SOC is present in 
an isotropic QD. However, the directions of the current may be changed by the magnetic field in different eigenstates.

3.2  Isotropic QD with combination of different SOCs

The chaotic dynamics can be driven in the isotropic dot by combining the two SOCs arbitrarily and |g1| ≠ |g2| . The 
classical Hamiltonian is
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Fig. 1  The density profiles and the spin fields of the 100th eigen states in an isotropic QD ( Rx = Ry = 30 nm) with different SOCs, in the 
absence of external magnetic field. Panels a and c are for the QD with Dresselhaus SOC ℏg2 = 40 nm⋅meV, while panels b and d are for the 
QD with Rashba SOC ℏg1 = 40 nm⋅meV. In a and b, the color represents the density of the electron and the arrows represent the current 
vector (jx (r), jy (r)) . c and d: The color stands for �z(r) and the arrows for the in-plane spin fields (�x (r), �y (r)) with topological charge −1 and 1, 
respectively. All the observable quantities are in units of 1∕R2
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where p�
x
= (py − px)∕

√
2 and p�

y
= (px + py)∕

√
2 . It is obvious that the Hamiltonian governs a linear system only when 

g1 = ±g2 , since its canonical equations are linear. Otherwise, the canonical equations are nonlinear and such systems 
are possible to hold the chaotic dynamics. The isotropically confined QD becomes to an anisotropic system due to the 
arbitrary mixing of the two SOCs. This implies that, in the quantum regime, the quantum scars which is represented by 
the electron density localizing along the classical trajectory can appear in the excited states. The absence of the magnetic 
field conserves the time reversal symmetry and the quantum scar states appear in pair due to the Kramers pair.

In Fig. 2, we show two quantum scars in the excited states of an isotropic QD with a combination of Rashba and Dres-
selhaus SOCs, ℏg1 = 40 nm⋅meV and ℏg2 = 10 nm⋅meV. In Fig. 2a, the density of electron is localized to an axe-shape 
pattern, while an ‘X’-trajectory appears in Fig. 2b. These patterns are different from the array-shaped density profiles of 
states in a QD without SOC significantly (i.e. the densities observed in a 2D quantum oscillator).

3.3  Quantum Lissajous scar in anisotropic dot induced by a single SOC

Another quantum scar, which is called quantum Lissajous scar [22], can emerge in an anisotropic QD where the ratio of the 
2D confinements �x∕�y is a rational number. The two confinement potentials are accessible to be manipulated via gates. 
The original idea to realize the quantum Lissajous scars is by the massive random impurities which induce chaos and 
mix different eigenstates of the basis. The scar indicates the classical behavior of an anisotropic 2D oscillator, so that the 
density of the electron of the quantum scar state localizes around the Lissajous curve corresponding to the ratio �x∕�y.

In an anisotropic QD with Rashba or Dresselhaus SOC, the corresponding classical Hamiltonian also leads to chaotic 
dynamics in the phase space obtained by its Hamilton’s equation. For simplicity, the dimensionless Hamiltonian with 
m∗ = 1 is

without the vector potential, i.e. no magnetic field. The Lyapunov exponent (LE) is employed to estimate the oscillation 
modes under parameter variation. The largest LE being positive indicates the existence of a chaotic state, while the larg-
est LE being negative denotes the system described by periodical states only. In Fig. 3, the largest LE [78, 79] of the two 
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Fig. 2  The quantum scar 
states in an isotropic QD 
( Rx = Ry = 30 nm) with mixing 
of the two SOCs, ℏg1 = 40 nm⋅

meV and ℏg2 = 10 nm⋅meV. In 
a and b, the color represents 
the densities of the electron 
n(r) in the 1028th and 1247th 
eigenstates, respectively

Fig. 3  The largest LEs of the 
two anisotropic systems with 
�x∕�y = 3∕1 and 3/2. These 
LEs are calculated in the 
dimensionless Hamiltonian 
in Eq. (8) with varied g1 and 
fixed g2 = 0 . The chaos of the 
system is related to g1
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examples with �x∕�y = 3∕1, 3∕2 demonstrate chaos in the system, when g2 = 0 and g1 is tuned (equivalent to tuning 
energy of the system). Note that for some g1 the system shows no chaos.

We then demonstrate that the quantum Lissajous scars can be achieved by the relativistic correction, i.e., the SOC. 
In the quantum regime, the emerging quantum scars display the trajectory of a particle confined in a classical 2D 
oscillator. We first discuss the scars related to the specific closed Lissajous curves, (x, y) ∼

(
cos �x t, cos(�yt +

�

2�x
)
)

 , 

where �x,y = �x,y�0 . The open curve obtained by shifting the phase will be discussed in the next subsection. The 
quantum Lissajous scars for �x∕�y = 2∕1, 3∕1, 3∕2, 4∕3 are shown in Fig. 4a–d, respectively. Around the cross points 
in the curves, the interference stripes are clearly visible, indicating both the classical and quantum features. In addi-
tion, the density profiles of the first 2000 states in different cases that the confinement ratios and the SOCs are varied 
are integrated into a video, which can be found in Additional file 1.

In Fig. 5a–d, we also indicate the associated spin fields of the four quantum Lissajous scars (Fig. 4a–d), respectively. 
Although the spin textures are somehow difficult to calculate analytically given that the perturbation calculations 
become complex and are not valid with a strong SOC, we can still numerically determine that the in-plane spins 

Fig. 4  The quantum scar states in an anisotropic QD ( Rx = 30 nm) with only the Rashba SOC, ℏg1 = 40 nm⋅meV. Colors represent for 
the density of the electron, n(r) . a The quantum scar in the 91st eigenstate around the Lissajous curve ∼ (sin 2t, sin t) since Ry =

√
2Rx 

and �x∕�y = 2∕1 . b For the QD with Ry =
√
3Rx and �x∕�y = 3∕1 , the quantum scar in the 535th eigenstate around the Lissajous curve 

∼ (sin 3t, sin(t + �∕2)) . c For the QD with Ry =
√
3∕2Rx and �x∕�y = 3∕2 , the quantum scar in the 331st eigenstate around the Lissajous 

curve ∼ (sin 3t, sin 2t)) . d For the QD with Ry =
√
4∕3Rx and �x∕�y = 4∕3 , the quantum scar in the 1404th eigenstate around the Lissajous 

curve ∼ (sin 4t, sin 3t)) . The dashed lines are the corresponding Lissajous curves drawn for guidance

Fig. 5  The spin fields of the 
quantum scar states in the 
anisotropic QD with the same 
systematic parameters as 
those used in Fig. 4. Colors 
represent �z(r) and the vec-
tors represent the in-plane 
spin fields (�x (r), �y (r))
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exhibit nontrivial patterns. There are numerous spin vortices localized and attached with the density profile, which 
are textured by the SOC.

It is worth noting that some eigenstates do not show any different density profile other than the regular dot-array 
patterns of the 2D quantum oscillator without the SOC. It is because in the corresponding energy region, the classical 
dynamics can be regular without chaos [36–38], resulting in the absence of quantum scar states. The chaotic behavior 
induced by the SOC differs significantly from that induced by random impurities, and so are the quantum scar states. 
Due to the randomness of the impurities sizes and locations, the quantum scar states therein can not be controlled or 
tracked precisely, and only the percentage of scar states among all eigenstates can be approximately estimated.

One cannot predict where the quantum scar states induced by impurities are, which makes detection of the scar states 
challenging. In contrast, in an anisotropic QD with SOC, the emerging quantum Lissajous scars are not random and can be 
accurately predicted. Each two quantum Lissajous scar states (due to the Kramers pair) appear quasi-periodically in a few 
eigenstates. For instance, in the case of �x∕�y = 3∕2 with ℏg1 = 40 nm⋅meV, the quantum scar states with density profile 
similar as those shown in Fig. 4c appear repeatedly in the (157th, 158nd), (167th, 168th), (177th, 178th), (189th, 190th), 
(199th, 200th) eigenstates, with a period of approximate 10 states between the two pairs of quantum Lissajous scar states. 
In higher energies, the Lissajous scar states appear in the (303rd, 304th), (317th, 318th), (331st, 332nd), (347th, 348th), 
(361st, 362nd), (377th, 378th) eigenstates. The separation between the two pairs of the quantum Lissajous scar states 
becomes about 14. The period is not fixed and will gradually increase (not monotonically) with increase of the energy.

Moreover, the quantum Lissajous scars induced by SOC can be found at very low energies, such as the ‘8’ shape Lis-
sajous trajectory shown in Fig. 4a, which can be identified even down to the 15th eigenstate. More importantly, the 
Rashba SOC can be controlled by an external gate allowing for the manipulation of the quantum scar states. These char-
acteristics of the quantum scars induced by SOC imply that SOC, especially the tunable Rashba SOC, greatly facilitates 
the measurement of the quantum scar state.

Considering the nature of the classical chaotic dynamics being sensitive to initial conditions, one might wonder if the 
quantum scar states are similarly sensitive to system parameters. If not, then the quantum scar states are more easily 
detected. We adjust the confinement ratio slightly, for instance, �x∕�y = 3∕2 → 3.01∕2 , and observe that the positions of 
the quantum scar states in all the eigenstates remain unchanged, as do their density profiles. We also examine the effect 
of adding a weak magnetic field, B = 0.05 T. Although the Kramers’ degeneracy is lifted, the quantum scars persist in the 
same eigenstates as in the absence of the magnetic field, with only slight changes in density profiles. Similarly, when 
the SOC strength g1 is slightly tuned, the positions or the density profiles of the quantum scar states remain unchanged. 
As illustrated in Fig. 6a, when the Rashba SOC is increased by one percent compare to that in Fig. 4c, namely ℏg1 = 40.4 
nm⋅meV, the quantum Lissajous scar does not change at all. We note that the current flow direction, displayed in Fig. 6b, 
does not align with the classical Lissajous trajectory, but is relevant to the spin fields shown in Fig. 5c. This character 
underscores the fundamental distinction between the classical behavior and the quantum mechanism.

The robustness of the quantum scar states against the external perturbations relies on the quantum properties of the 
system rather than its classical behavior. It can also be boiled down to the fact that small perturbations do not significantly 
alter the eigen energies of the eigenstates, allowing the corresponding classical behavior to remain within the chaos 
region, thus the scarring is frozen in the discrete-energy quantum system. This feature is also helpful for identifying the 
quantum scar states to make the possible measurement convenient.

Fig. 6  The quantum scar state in an anisotropic QD ( Rx = 30 nm and Ry =
√
3∕2Rx ) with the Rashba SOC, ℏg1 = 40.4 nm⋅meV which is a lit-

tle deviated from that used in Fig. 4c. a The quantum Lissajous scar in 331st eigenstate is the same (both the number of the eigenstate and 
the density profile) as that shown in Fig. 4c. b The current field of the 331st eigenstate
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Given that the classical Hamiltonians are identical for both Rashba and Dresselhaus SOCs, the density profiles of the 
quantum scar states induced by either one of the two SOCs are indistinguishable. Suppose that there are two QDs with 
the same confinement potentials, but one with Rashba SOC and the other with Dresselhaus SOC. The coupling strengths 
in the two QDs are identical, g1 = g2 . Our numerical studies indicate that the quantum scar states appear in the same 
position in the eigenstates of both cases, exhibiting exactly the same density profiles. However, the spin fields of these 
two states are different, providing a signature to distinguish the types of SOC.

3.4  Lissajous curves pair scar

In anisotropic QDs with one SOC, the Lissajous patterns in open curves can also be found in scarring states, albeit with 
much lower probability. However, due to mirror symmetry, x → −x and y → −y without a magnetic field, a single open 
curve of the Lissajous pattern, which has lower symmetry, can not be found in any state. Instead, only a pair of Lissajous 
curves making up this symmetry emerges in a scarred state.

In QDs with �x∕�y = 2∕1, 3∕1, 3∕2, 4∕3 , the pairs of Lissajous curves in the quantum scars are illustrated in Fig. 7a–d, 

where the classical orbits (x, y) ∼ (cos �x t, cos �yt) + (cos �x t, cos(�yt + �∕�x)) are identified, respectively.

3.5  Quantum regular states in anisotropic quantum dots

Finally, we discuss the effect of combining two SOCs in anisotropic QDs. As expected, when g1 ≠ ±g2 , the quantum 
Lissajous scars appear. In Fig. 8, we show that the electron density forms the Lissajous curve in the 781st eigenstate, 
however, the Lissajous curve is not as regular as the case with only one SOC, and is slightly twisted, as does the corre-
sponding current field.

Fig. 7  The Lissajous curves 
pairs in the quantum scar 
states in the anisotropic QD 
with the same systematic 
parameters as those used in 
Fig. 4. Colors represent the 
density of the electron. The 
quantum scars in a the 417th 
eigenstate with �x∕�y = 2∕1 , 
b the 659th eigenstate with 
�x∕�y = 3∕1 , c the 705th 
eigenstate with �x∕�y = 3∕2 , 
and d the 1571st eigenstate 
with �x∕�y = 4∕3 . The 
lines are the corresponding 
Lissajous curves drawn for 
guidance

Fig. 8  The quantum scar 
state in an anisotropic 
QD with Rx = 30 nm and 
Ry =

√
3∕2Rx . The two SOCs 

are all present, ℏg1 = 40 nm⋅

meV and ℏg2 = 10 nm⋅meV. 
a The quantum Lissajous scar 
in 781st eigenstate is similar 
to that in Fig. 4c, but is a bit 
twisted. b The associated cur-
rent field of this eigenstate
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The special case that g1 = g2 has the classical correspondence,

which describes a linear system without chaos. A similar Hamiltonian can be derived for g1 = −g2 . Thus for g1 = ±g2 
whether the QD is isotropic or anisotropic, no classical chaotic dynamics occur and no quantum scar appears. Our numeri-
cal calculation also confirms that all the density profiles of the eigenstates are alike dot-array, which are the same as the 
densities of the eigenstates of the QD without SOC, as shown in Fig. 9. The array-like densities are totally induced by 
the Hermite polynomials in the basis wave functions. The difference of the two cases is that the in-plane spin fields are 
nonzero in the QD with SOCs while the spin field is only polarized in the z direction in the QD without SOC.

When the external magnetic field is weak, the quantum Lissajous scars persist for g1 ≠ ±g2 . However, when the mag-
netic field is increased, the scars are overwhelmed by the cyclotron motion. In the case of g1 = ±g2 , due to the lack of 
chaotic dynamics, the densities of all the eigenstates form circles with rotational symmetry induced by the magnetic 
cyclotron motion in an isotropic dot. Nevertheless, the densities of the eigenstates remain arrays in an anisotropic QD 
when the magnetic field is weak, but evolve to elliptical shapes with increase of the magnetic field.

4  Conclusion

In summary, we have studied the quantum scar states in quantum dots induced by relativistic effects, viz. the SOCs. For 
isotropic quantum dots, only the combination of Rashba and Dresselhaus SOCs can induce quantum scars, since the 
anisotropy and chaotic dynamics arise from the interplay between the two SOCs. In an anisotropic quantum dot, either 
one SOC or a combination of the two SOCs can lead to quantum Lissajous scar which may consist of one or a pair of 
Lissajous curves. We have to emphasize a special case where g1 = ±g2 (the two SOCs have the same strength), which 
corresponds to a linear classical system without chaos. Thus, regardless of the confinement of the quantum dot, there is 
no quantum scar appearing in this case.

The quantum scars induced by SOCs are robust against small perturbations of the external conditions, such as small 
alterations in the confinement ratio �x∕�y , weak magnetic fields, or variation in the strengths of the SOCs. The quantum 
Lissajous scars induced by SOCs emerge quasi-periodically in the eigenstates and can manifest at very low energies in 
particular. It implies that tuning the SOC is a stable and controllable way to obtain predictable quantum scars, unlike sys-
tems where quantum scars induced by a bunch of random impurities distribute randomly in the high-energy eigenstates. 
Given that the quantum scars discussed here appear in low-energy states and the direct observation of the orbit of the 
ground state of a quantum dot is already realized [80], our work paves the way to observe the quantum scars directly in 
such nanoscale systems, regardless of the materials, as long as the SOC is present. Furthermore, if direct observation is 
difficult currently, other indirect detection methods, such as spin polarization measurements, may also be useful due to 
the robustness of the associated quantum scars and the tunable property of the Rashba SOC. Especially, transport signals 
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Fig. 9  An example of array-like density in anisotropic QD with Rx = 30 nm and Ry =
√
3∕2Rx . The colors represent the density of the elec-

tron. The 390th eigenstate is selected for the cases a with equal Rashba and Dresselhaus SOCs ℏg1 = ℏg2 = 10 nm⋅meV, and b without SOC. 
The arrows in a represent the in-plane spin field of the state, while the in-plane spin field in b is zero
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may be utilized to determine the scarring trajectory in quantum dot systems with SOCs, and spin-involved transport 
could prove beneficial for spintronics applications.
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