
Vol.:(0123456789)

 Discover Nano           (2024) 19:66  | https://doi.org/10.1186/s11671-024-04012-w

Discover Nano

Review

Recent advances in membrane technologies applied in oil–water 
separation

Jialu Huang1 · Xu Ran1 · Litao Sun2 · Hengchang Bi1 · Xing Wu1

Received: 4 December 2023 / Accepted: 9 April 2024

© The Author(s) 2024    OPEN

Abstract
Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health 
risks, has become an important research field. Membrane separation technology has emerged as a key area of investiga-
tion in oil–water separation research due to its high separation efficiency, low costs, and user-friendly operation. This 
review aims to report on the advances in the research of various types of separation membranes around emulsion perme-
ance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered 
in oil–water separation membranes are examined, and potential research avenues are identified.

Keywords  Membrane separation technology · Water purification · Oil water separation · Antifouling · Stimulus 
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1  Introduction

Membrane separation technology is a highly efficient method of separation that combines materials science and media 
separation technology. It offers several advantages, including high separation efficiency, simple equipment, energy 
savings, room temperature operation, and no pollution [1–4]. The technology is widely used in various industrial fields, 
particularly in the areas of food, medicine, and biochemicals [5–9]. As shown in Fig. 1, membrane separation technology 
can be used for gas–gas, solid–gas, solid–liquid, and liquid–liquid separation depending on the substance to be sepa-
rated [10–13]. Membranes can be classified as either polymer (organic) or inorganic based on their materials. Polymer 
membranes are commonly used in membrane separation technology due to their high selectivity, ease of control, and 
uniform structure [14–16]. According to the polymer materials, the polymer membranes can be divided into polyamide 
(PA) membranes [17], polysulfone (PSU) membranes [18], polyvinylidene fluoride (PVDF) membranes [19], polyether-
sulfone (PES) membranes [20] and polyacrylonitrile (PAN) membranes [21]. Inorganic membranes have a wide range of 
applications in the field of membrane separation due to their high temperature stability, chemical inertness, and resist-
ance to contamination [22–24]. Therefore, based on the advantages of organic and inorganic membranes, both have 
been widely studied in oil–water separation.

Currently, 10% of the global populace in countries face high or serious water scarcity due to population expansion and 
water pollution, especially oily wastewater from different industries [25]. Recent studies demonstrate the generation of a 
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substantial volume of oily wastewater from oil and gas extraction, processing, and transportation operations. For instance, 
shale oil extraction yields around 15 billion barrels of oily wastewater in the United States each year [26]. Moreover, failure 
to appropriately manage contaminated oily wastewater can result in a global economic loss of $4.5 trillion by the year 
2050 [27]. Therefore, it is now critically important to separate oil from oily wastewater. Based on the diameter (d) of oil 
in oily wastewater, it can be categorized into free oil (d > 150 μm), dispersed oil (20 μm ≤ d ≤ 150 μm), and emulsified oil 
(d < 20 μm) [28–30]. For free oil and dispersed oil, traditional water treatment methods, such as gravity separation, cen-
trifugation, flotation, adsorption, and coagulation [31–36], can easily separate them from the oil–water mixture. However, 
common standard separation technologies find emulsified oil challenging to remove because surfactants stabilize the 
minuscule oil droplets, significantly lowering the interfacial tension between oil and water [28, 37–39]. Consequently, it 
is evident that the development of membrane separation technology is essential to treat oil–water emulsion.

Oil–water separation is a common liquid–liquid separation technique. Compared to traditional methods, Membrane 
separation technology allows for precise separation by adjusting the pore size according to requirements. The process 
is driven by pressure differences, making it simple to operate and energy-efficient [40, 41]. Furthermore, the membranes 
in membrane separation technology are carefully composed of suitable materials to treat oily wastewater effectively 
[42–44]. The ideal separation membranes usually satisfy the following performance requirements: high permeance, high 
separation efficiency, high antifouling efficiency. The researchers have conducted extensive research on improving each 
performance [38, 45–49]. However, the membranes with the aforementioned excellent performances simultaneously are 
still hard to achieve due to a lack of comprehensive understanding of each performance. When assessing pressure-driven 
separation processes, key factors like pH, transmembrane pressure (TMP), pore characteristics, fouling, temperature, and 
feed composition are critical [50–55]. PH affects membrane stability, while TMP impacts permeation rates and selectivity. 
Pore size influences permeability and selectivity, and fouling reduces membrane flux and selectivity. Temperature affects 
fluid properties and membrane performance, and feed composition directly influences separation efficiency. Understand-
ing and optimising these factors can lead to improved performance and efficiency in separation processes. Therefore, 
it is necessary to provide a detailed description of each performance and its underlying mechanisms. Several existing 

Fig. 1   Applications schemat-
ics of the membrane separa-
tion technologies
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reviews on oil–water separation membranes are mainly elaborated from the perspectives of materials and applications 
[42, 56]. However, no review currently comprehensively and systematically introduces the performances of emulsion 
permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness.

This review summarizes the latest research on oil–water separation membranes with diverse properties to emulsion 
permeability, separation efficiency, fouling resistance, and stimulus responsiveness (Fig. 2). These properties are essen-
tial for evaluating the separation performance of membranes. The detailed definition of these properties is described 
in Fig. 2. Each property is elaborated based on typical works from preparation methods, morphological characteristics, 
structural features, and work mechanisms of the membranes. Moreover, the issues encountered by oil–water separation 
membranes are highlighted, and the paper proposes future directions for development.

2 � Emulsion permeance

The emulsion permeance of oil–water separation membranes directly reflects the separation process’s efficacy. It is 
crucial to enhance the membrane’s emulsion permeance to manage the large volume of oily wastewater. Additionally, 
increased emulsion permeance results in higher water flow through the membrane per unit of time. This decreases the 
water residence time on the membrane surface, reduces its resistance to flow, and decreases the pressure difference 
between the two sides of the membrane. As a result, the operating pressure is reduced, lowering energy consumption 
and operating costs [57–60]. Thus, improving the emulsion permeance of membranes has become a crucial aspect in 
advancing oil–water separation membranes.

Permeation theory suggests that the water permeation rate through a membrane is directly linked to the membrane’s 
porosity and inversely proportional to its thickness [61]. Optimizing these physical properties is crucial in designing effec-
tive membranes for oil–water separation. The perfect membranes have high flux while maintaining good selectivity. It 
has been found that researchers have made progress towards achieving this goal. Electrostatic spinning is an effective 
technology for constructing membranes with high permeation. The electrostatic spinning parameters can be fine-tuned 
to precisely adjust the fibers’’’’ diameter in the resulting fiber membrane, effectively separating the oil–water mixture. 
Nanofibrous membranes produced through electrospinning technology exhibit a thin separation layer with nanoscale 
thickness and high porosity (> 90%), which endows the membrane with excellent emulsion permeability during the 
process of oil–water separation [62–65].

By utilizing electrospinning technology, Shao and his colleagues developed biodegradable supersaturated membranes 
composed of polylactic acid nanofibers and polyethylene oxide hydrogel (H-PLA-AS membranes) [66]. The membrane 
exhibited a uniform stacking structure of nanofibers with micron-sized bead formations as observed through field 
emission scanning electron microscopy (FE-SEM) (Fig. 3a). Figure 3b illustrates a noteworthy increase in both emulsion 

Fig. 2   Properties of oil–water 
separation membranes
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permeability and separation efficiency of H-PLA-AS membranes when compared to the original PLA membranes. Specifi-
cally, the emulsion permeability of H-PLA-AS membrane increased 61.9 times (2.1 × 104 L m−2 h−1 bar−1), and the separa-
tion efficiency achieved an impressive 99.6%. Figure 3c shows the potential Mechanism for the improved permeation 
performance of the H-PLA-AS membrane. Specifically, PEO increased the number of hydrogen bonds, enhancing the 
hydrophilicity and Permeability to water. Furthermore, the thinner selective layer also contributed significantly to the 
heightened Permeability.

Fig. 3   a FE-SEM of the supporting layer of the H-PLA-AS membrane (14 wt% of PLA–10 wt% of PEO). b Separation performance of PLA-
based membranes for n–octane–in–water emulsions. c The possible mechanism of the improvement in permeance of H-PLA-AS mem-
branes. d SEM micrographs of PAN-PPG-AS. e Emulsion permeances of all kinds of PAN-based membranes for n-octane-in-H2O emulsion 
(N/E) and toluenein-H2O emulsion (T/E). f Schematic diagram of the oil–water separation process
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Cheng and his co-workers designed a super hydrophilic PAN asymmetric nanofibrous membrane (PAN-PPG-AS) by 
electrostatic spinning with an in situ hybridized multi-hydrophilic functional network as the sole selective layer [67]. 
Microscopic examination revealed that the coarse nanofibers of the support layer were situated beneath the fine nanofib-
ers of the selective layer in the PAN-PPG-AS membrane’s cross-section. The diameter of the nanofibers in the support 
layer measured approximately 900 ± 20 nm, and in the selective layer was about 340 ± 20 nm (Fig. 3d). The PAN-PPG-AS 
membranes exhibited higher permeation fluxes for n-octane-water emulsion and toluene-water emulsion, achieving 
22,206 L m−2 h−1 bar−1 and 29,840 L m−2 h−1 bar−1, respectively. These results were 239% and 194% higher than the pure 
PAN membranes (Fig. 3e). Furthermore, the authors have illustrated that the separation of oil–water emulsions is influ-
enced not only by the size-sieving effect but also by the disparity in inherent hydrophilicity between the membrane 
and the liquid (Fig. 3f ).

3 � Separation efficiency

Separation efficiency is another crucial metric when assessing the efficacy of oil–water separation membranes. Oil–water 
separation membranes have displayed remarkable separation efficiency for free and dispersed oil–water mixtures, sur-
passing 95% [68–70]. However, their separation performance for emulsified oil–water mixtures with smaller droplet 
sizes of the dispersed phase is not good, especially for stable emulsions with droplet sizes less than 20 μm, which are 
stabilized by surfactants, and this requires a smaller pore size and strong wettability for the oil–water separation mem-
branes [71–73].

More and more researchers are preparing polymer membranes with high separation efficiency by various methods. For 
example, some researchers have prepared ultrafiltration and nanofiltration membranes by using green solvents through 
phase inversion methods [74–76]. In addition, Xu et al. [77] proposed a practical method based on mussel-inspired dip-
coating for building a stable hydrophilic polymer network on membrane surfaces, which involved sequential immersion 
of the substrate membrane into aqueous solutions of polydopamine (PDA) and catechol-functionalized hydrophilic 
polymer (CFHP). SEM revealed the formation of rough hierarchical nanostructures on the surface of the prepared CFHP/
PDA-modified membranes (Fig. 4a). After being pre-wetted with water, the polymer network swells with water to cre-
ate a thin and stable aqueous film layer, serving as a hurdle to oil penetration (Fig. 4b). Figure 4c and d demonstrate 
that the CFHP/PDA modified membranes separated various oil–water mixtures and oil-in-water emulsions stabilized by 
surfactants effectively with outstanding separation performance (99.98% separation efficiency).

Fu and his co-workers created a new polyimide (PI) nanofiber membrane to efficiently purify oily wastewater [78]. The 
membrane incorporated a composite of zeolitic imidazolate framework-8@thiolated graphene (ZIF-8@GSH), which was 
formed using a straightforward process of electrostatic spinning and in situ hydrothermal synthesis. The microscopic 
characterization revealed that the PI nanofiber surface gradually became covered by a continuous ZIF-8@GSH compos-
ite as ZIF-8 develops in situ (Fig. 4e). As demonstrated in Fig. 4f, the ZIF-8@GSH/PI exhibited outstanding separation 
efficiency (> 99%), low water content (< 100 ppm), and durability. Figure 4g depicts the schematic membrane diagram 
implemented for separating oil–water mixtures and water-in-oil emulsions. When separating oil–water mixtures, the 
superhydrophobicity of the membrane enables water droplets to repel easily from its surface. In contrast, oil droplets 
progressively wet the membrane and infiltrate the micron/nanoscale grooved portion constituted by the membrane’s 
super-hydrophilicity. The successful separation of oil and water mixtures has been achieved. However, when dealing 
with surfactant-stabilized water-in-oil emulsions, the membrane’s superhydrophobicity and superlipophilicity cause 
the emulsion to become destabilized upon contact with the membrane surface. On the other hand, surfactant prevents 
water droplet aggregation and allows the membrane to effectively block the micro/nano water droplets enclosed in the 
oil. Consequently, the capillary effect efficiently captures and spreads out the oil.

Membrane distillation (MD) shows potential for water treatment, particularly in seawater desalination, as it can sepa-
rate water from contaminants through vapor-phase transport using hydrophobic membranes [79, 80]. MD operates at low 
temperatures, preserving water quality and energy efficiency, and exhibits high selectivity, making it suitable for various 
applications [81, 82]. The modular and scalable nature of MD allows for deployment in diverse settings, from decentral-
ized systems to large-scale industrial use [83]. However, MD faces challenges such as lower water flux and fouling, which 
limit its throughput and increase operational costs [84, 85]. To address these limitations, future trends in incorporating 
inorganic materials focus on enhancing membrane resistance to wetting and fouling. Strategies to improve mechanical 
strength, selectivity, and resistance to fouling and scaling include integrating superhydrophobic coatings, nanomaterials, 
and nanocomposite membranes that utilize graphene oxide or metal–organic frameworks (MOFs) [86, 87].
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Furthermore, researchers have developed membranes with high separation efficiency for treating water-in-oil emul-
sions. For instance, Liu et al. created a new tubular polyvinyl chloride (PVC) hybrid nanofiber membrane with a three-
dimensional structure composed of three-dimensional microspheres and two-dimensional nanofibers interwoven by 
an electrostatic spinning process [88]. The membrane that has been prepared exhibits a high separation efficiency of 
over 95% and excellent reusability in water-in-oil emulsions. Huan and his colleagues successfully created composite 
membranes with a hierarchical structure using electrostatic spinning technology [89]. These membranes consist of a 
selective layer of polyvinylidene difluoride (PVDF) nanofibers, a layer of polymethylmethacrylate (PMMA) microspheres, 
and a support layer of polyacrylonitrile (PAN) nanofibers. The membrane exhibits high separation efficiency, porosity, 
and flux, and can effectively separate water-in-oil emulsions through gravitational means.

Improving the balance between selectivity and permeability is a crucial objective in the development of separation 
membrane materials. To enhance selectivity without compromising permeability, several strategies can be employed. 
One such strategy is the chemical crosslinking of polymer chains, which can improve membrane stability and selectivity 
[90]. Crosslinking polymers usually reduces the mobility of the chains, thereby limiting the diffusion of larger molecules 
through the membrane matrix. Functionalization of polymeric membranes can increase their affinity for specific mol-
ecules, thereby improving selectivity, which can be achieved by introducing specific functional groups [91]. Mixed matrix 
membranes (MMMs) can be fabricated by incorporating inorganic fillers into a polymer matrix. The addition of filler 
molecules provides additional diffusion paths, improving selectivity while maintaining high permeability [92]. Thin film 
composite (TFC) membranes can achieve high selectivity without sacrificing permeability by optimizing the thickness 
and composition of the selective layer [93]. Advanced processing techniques such as phase inversion, electrospinning 
and layer-by-layer deposition allow precise control of the structure and morphology of the membranes, improving 
selectivity by reducing defects and enhancing the molecular sieve effect [94–96]. Researchers are using these strategies 
to overcome the inherent limitations of the trade-off between selectivity and permeability.

4 � Antifouling efficiency

Membrane fouling is a common problem in water purification [97, 98]. Membrane fouling occurs when oil droplets 
adhere to the membrane surface or gather in the pore channels, preventing water from passing through the membrane, 
thereby reducing the water permeation flux, decreasing the efficiency of the separation process, and increasing energy 
consumption [38, 99, 100]. Membrane fouling is a self-accelerating process that degrades membrane performance and 
prevents stable long-term operation [74, 101]. Frequent chemical cleaning or air flushing is necessary to solve this issue 
[102–104]. However, these approaches result in a noteworthy cost increase and a reduction in the membrane’s service 
life. Therefore, producing oil–water separation membranes with proficient fouling resistance has emerged as a popular 
research subject.

Dong and his colleagues propose a "double-defense" design, where poly amphiphilic brushes and hydrogels 
are layered on the membrane surface to form an effective oil barrier [105]. The PVDF-pHEMAgel-pSBbrush membrane 
prepared by this method had outstanding resistance to oil contamination and self-cleaning capability. Figure 5a 
depicts the membrane microstructure as observed via scanning electron microscopy. The PVDF-pHEMAgel-pSBbrush 
membrane contained micron-scale sponges with a thin polymer coating on the ridges surrounding the holes. PVDF-
pHEMAgel-pSBbrush, PVDF-pHEMAgel, and PVDF-pSBbrush membranes were evaluated for their separation efficacy of 
surfactant-stabilized oil-in-water emulsions under staggered flow conditions (Fig. 5b). The test results indicated strong 
stability in the separation performance of the PVDF-pHEMAgel-pSBbrush membrane for two hours under an applied 
pressure of 0.2 bar. Permeate flux remained consistently above 1100 L m−2 h−1 bar−1. The membrane boasted a high 
effective flux recovery rate (FRR) of 99.1% after two filtrations, demonstrating excellent antifouling capabilities. Fig-
ure 5c illustrates the "double defense" mechanism of the PVDF-pHEMAgel-pSBbrush membrane. In this membrane, the 
outermost flexible poly(sulfobetaine) (pSB) brushes were firmly hydrated to prevent oil adhesion and formed the "first 
defense" layer. Another "second defense" layer is provided by the poly(hydroxyethyl methacrylate) hydrogel overlay 

Fig. 4   a SEM micrograph of the CFHP/PDA-coated membrane. b Working mechanism of the CFHP/PDA-coated membrane in oil–water 
separation. c Separation efficiency towards different oil–water mixtures. d Separation efficiency of different oil-in-water emulsions. e SEM 
image of ZIF-8@GSH/PI nanofibrous membrane. f The cycle separation efficiency of the membrane for various water-in-oil emulsions. g 
Schematic diagram for the separation of oil–water mixture and water-in-oil emulsion

▸
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Fig. 5   a SEM images of PVDF-pHEMAgel-pSBbrush. b Real-time water permeating flux variation of PVDF-pHEMAgel-pSBbrush, PVDF-pHEMAgel 
and PVDF-pSBbrush, respectively. c Schematic illustrating "double-defense" Mechanism against oil fouling of the PVDF-pHEMAgel-pSBbrush 
membrane. d Schematic diagram of the production of the F-hGO membranes. e TEM and corresponding EDS mapping images of the 
F6-hGO membrane without the substrate. f Antifouling performance of the GO, hGO, and F-hGO membranes
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film (PVDF-pHEMAgel) to enhance resistance against the oil. A "double defense" barrier is effectively established on 
the surface of the membrane, which highly covers and repels oil adhesion and accumulation.

The solution to the oil–water membrane fouling issue is to minimize the interfacial interaction between the 
membrane surface and the pollutants [106–108]. The prevalent method utilizes hydrophobic substances, typically 
fluorine-based and silane materials, applied onto hydrophilic surfaces, creating an appropriate amphiphilic interface 
that promotes fouling resistance [109–112]. Jiang et al. proposed a molecular engineering approach involving hydro-
phobic chains [113]. They sequentially assembled hydrophilic phytic acid (PA) and hydrophobic perfluorocarboxylic 
acids on the graphene oxide (GO) surface, forming a surface having both continuous hydrophilic and discontinuous 
hydrophobic regions (F-hGO membrane). By adjusting hydrophobic chain length, interfacial interactions between 
the membrane and oil droplets were regulated, leading to improved antifouling performance of the membrane 
(Fig. 5d). Figure 5e demonstrates that perfluorocarboxylic acid is uniformly distributed across the membrane surface 
as observed through energy dispersive X-ray spectroscopy (EDS). The prepared membranes were evaluated for fouling 
resistance by separating the hexadecane-in-water emulsion. As shown in Fig. 5f, the F-hGO membrane demonstrated 
FRR up to 99.8% and the total flux decline ratio (DRt) down to 6.8%. These results reflected a considerable improve-
ment over GO membranes and phytate-modified membranes (hGO), with a 1.4-fold and 1.1-fold increase in FRR and 
a 90% and 80% reduction in DRt, respectively. The data indicates that incorporating perfluorocarboxylic acid can 
improve GO membranes’ fouling resistance.

In addition, an increasing number of researchers are creating oil–water separation membranes with high fouling 
resistance through surface modification of ceramic membranes. Ceramic membranes are an inorganic material that 
can be used for oil–water separation in harsh environments due to their high chemical stability, excellent mechani-
cal strength, and super hydrophilicity. The performance of ceramic membranes can be effectively improved and 
oil–water separation membranes with high fouling resistance can be prepared by modifying their surface. Gao and 
Xu successfully constructed nanostructured silver coatings grafted with hexadecanethiol on the surface of ceramic 
membranes using a dopamine-assisted nanoparticle encapsulation process [114]. The modified membranes exhib-
ited superior anti-fouling properties compared to the original membranes. Fan et al. developed anti-fouling ceramic 
membranes using a two-step grafting method to attach amphoteric ions to the surface of the ceramic membranes 
[115]. This modification resulted in a significant improvement in antifouling performance by reducing irreversible 
contamination during oil–water emulsion separation.

Furthermore, incorporating nanofillers into membranes is also a promising approach to improve the antifouling 
efficiency and separation performance. Nanofillers, such as nanoparticles or nanotubes, can enhance membrane 
properties through various mechanisms, including increased surface area, improved mechanical strength, and 
enhanced selectivity [116]. Jose R. Aguilar Cosme et al. [117] found that inorganic nanoparticles’ high adsorption 
capacity enabled nanocomposite membranes to outperform previous pristine membranes in removing dyes, metal 
ions, humic substances, and more. In addition, Vantanpour et al. [118] modified cellulose acetate nanofiltration 
membranes with zeolite imidazoline framework-8 (ZIF-8) nanoparticles for water treatment applications. The study 
found that the ZIF-8 nanoparticles’ high surface area and adsorption capacity reduced fouling caused by organic 
compounds, thereby enhancing the membrane’s stability and fouling resistance.

5 � Stimulus responsiveness

Stimulus responsiveness plays a crucial role in developing oil–water separation membranes toward more advanced 
areas. Compared to traditional oil–water separation membranes, which feature fixed pore structure and surface prop-
erties, stimuli-responsive oil–water separation membranes can detect, analyze and adapt to various environmental 
stimuli, resulting in changes in physiochemistry, morphology, structure, and molecular conformation of membranes, 
which in turn alter the wetting properties of the membrane surface and the liquid transport channels [119–123]. As a 
result, these membranes can selectively exhibit either hydrophobicity or hydrophilicity, thereby achieving controlled 
oil–water separation. Standard external stimuli, such as electricity [124, 125], gas [126, 127], ion [128], light [129, 
130], magnetism [131], pH [132, 133], and temperature [134], each possess unique response mechanisms and could 
potentially be used in developing stimuli-responsive membranes for separating oil and water.
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5.1 � Gas stimuli‑responsive membranes

Gas stimuli-responsive membranes can demonstrate switchable wettability in response to external gas stimuli. These 
membranes are cost-effective, environmentally friendly, easily reversible, and uncontaminated solutions [135, 136]. 
Gases commonly used as stimuli include oxygen (O2), carbon dioxide (CO2), nitrogen (N2), and methane (CH4). CO2 is 
regarded as the most desirable gas stimulant among these irritants because of its non-toxicity, low cost, and renewability 
advantages [137–139].

Drawing inspiration from the natural capillary phenomenon, Dong et al. developed a strategy to fabricate CO2-sensitive 
membranes that can effectively separate different oil and water systems, driven by capillary forces and involving a lim-
ited self-assembly process that results in scalable and robust membranes [140]. The prepared membrane attached the 
CO2-responsive copolymer poly(diethylaminoethyl methacrylate-co-methyl methacrylate (PMMA-co-PDEAEMA) to the 
basement membrane’s surface uniformly using capillary force. Further, the wettability of the membrane was altered by 
protonating and deprotonating amine groups in the PDEAEMA chain segments of the copolymer under the stimulation 
of CO2 or N2 (Fig. 6a). As shown in Fig. 6b and c, the produced membrane can effectively separate various oil–water sys-
tems, such as immiscible mixtures, oil-in-water emulsions, water-in-oil emulsions, with exceptional separation efficiency 
(> 99.9%), recoverability, and self-cleaning properties.

5.2 � pH stimuli‑responsive membranes

pH stimuli-responsive membranes have several benefits, such as eco-friendliness, low energy consumption, outstand-
ing reversibility, and fast response, rendering them increasingly prevalent in molecular recognition, biosensors, and 
material separation fields [141–145]. The pH-stimulated response behavior of membranes relies on pH-sensitive 
polymers or copolymers applied to the membrane surface. Common polymers or copolymers used in pH stimuli-
responsive membranes include poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(dimethylaminoethyl 

Fig. 6   Is a schematic illustration of the surface-wetting mechanism mechanism of the membrane under CO2/N2 stimulation. Separation pro-
cess of the immiscible oil–water combination under CO2/N2 stimulation at 25 °C. c Multi-emulsion separation process under CO2/N2 stimula-
tion.
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methacrylate) (PDMAEMA), and so on. These polymers or copolymers acquire or release protons depending on the 
pH conditions, which alters the wetting properties of the membrane surface and enables the membrane to switch 
between hydrophilic and hydrophobic states [146–150].

Luo and his co-workers generated membranes that respond to PH stimuli via precipitation of the pH-responsive 
copolymer poly(methyl methacrylate)-block-poly(4-vinylpyridine) (PMMA-b-P4VP) onto stainless steel mesh using 
electrostatic spinning (Fig. 7a) [151]. As illustrated in Fig. 7b and c, the electrostatic spinning led to integrating a high-
density, fiber-based layer onto the surface of the stainless steel mesh, forming the three-dimensional macroporous 
lattice structure that enhances the liquid transport rate within the membrane. Figure 7d illustrates the oil–water 
separation process of the membrane in response to pH stimulation. When the membrane was wetted with acidic 
water (PH = 3), the pyridine group of P4VP was protonated and gradually extended to the membrane surface. As a 
result, the membrane transitioned from being initially hydrophobic-oleophilic to hydrophilic-oleophobic. Further-
more, the membrane retained superior separation efficiency in both hydrophobic and hydrophilic conditions (Fig. 7e).

5.3 � Temperature stimuli‑responsive membranes

Temperature stimuli-responsive membranes are created by modifying membranes with temperature-responsive poly-
mers that correspond to fluctuations in external temperature, resulting in transformed surface or internal structures 
of the membrane [152–154]. These membranes possess a critical solution temperature (CST), which can be classified 
into lower and upper critical solution temperatures (LCST, UCST). Temperatures below or above the CST will prompt 
the thermo-responsive polymer chains on the surface of the membrane to either inflate or deflate in solution, sub-
sequently influencing the porosity of the membrane and thereby modifying water flux, resulting in changes in the 
membrane’s hydrophilicity and hydrophobicity [145, 155–158].

Zhang et al. [159] used a hydrothermal method to create temperature-sensitive poly(N-isopropyl acrylamide)-
coated nylon membranes (PNIPAAm coated membranes). As shown in Fig. 8a, the membrane showed hydrophilicity, 
and the separation of oil-in-water emulsion could be realized when the temperature was lower than LCST. Conversely, 
when the temperature exceeded the LCST, the membrane became hydrophobic and can separate water-in-oil emul-
sions. The prepared membranes demonstrated outstanding separation performance for oil-in-water and water-in-
water emulsions as shown in Fig. 8b and c.

Fig. 7   a The picture of the as-prepared PMMA-b-P4VP fiber membrane. b SEM image of original stainless steel mesh. c SEM images of fiber-
coated stainless steel mesh. d Schematic illustration of pH switchable oil–water separation. e Separation efficiency of different mixtures
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5.4 � Multi‑stimuli‑responsive membranes

Single-stimulus-responsive membranes react exclusively to a single environmental stimulus signal, while dual- or 
multi-stimulus-responsive membranes possess the capability to respond to multiple environmental stimuli, thus 
endowing them with new functions and applications and enabling them to adapt to more complex surroundings 
[160–163].

Wu and her co-workers developed pH-responsive and UCST-type temperature-responsive nanofiber membranes 
through a one-step co-mingled electrostatic spinning strategy [164]. SEM examination results showed that the 
prepared membranes were composed of nanofibers that exhibited a disordered stacked structure (Fig. 9a). Fur-
thermore, micro- and nanospheres were observed on the membrane surface, with connecting points between the 
microspheres and nanofibers. Figure 9b demonstrates that the nanofiber membrane demonstrated outstanding 
separation efficacy for oil-in-water emulsions, with a permeate flux of up to 60,528.76 L m−2 h−1 bar−1, and a 99.5% 

Fig. 8   a The manufacture of 
the PNIPAAm coated mem-
brane and the Mechanism of 
the thermo-responsive mem-
brane. b Separation efficiency 
of the membrane for oil-in-
water emulsions. c Separation 
efficiency of the membrane 
for water-in-oil emulsions
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separation efficiency. Furthermore, Fig. 9c depicts that the multi-stimulation response of the membrane is attributed 
mainly to the temperature responsiveness of poly(acrylonitrile-co-acrylamide) (P(AN-co-AM)) and the pH response 
of P4VP. At the temperature of 25 °C (< UCST) and the pH of 7 (> VPTpH), the P(AN-co-AM) chains undergo collapse, 
and the P4VP chains disintegrate due to the deprotonation of N atoms, making the membrane hydrophobic. On the 
other hand, when the temperature rises to 55 °C (> UCST) and the pH drops to 3 (< VPTpH), the P(AM-co-AM) chains 
gradually dissolve and are encompassed by a multitude of water molecules. The P4VP chains simultaneously increase 
in size due to the pyridine group protonation. Both of these changes make the membrane become hydrophilic.

5.5 � Other stimuli‑responsive membranes

There are electric stimuli-responsive membranes, light stimuli-responsive membranes, ion stimuli-responsive mem-
branes, and so on. Electric stimuli-responsive membranes comprise electroactive polymeric materials, with precise control 
over surface wettability achieved by adjusting the contact angle of droplets via altering the electric field and introduc-
ing conductive droplets and counter electrodes [165]. Du et al. [166] fabricated electro-responsive CMs-P membranes 
by coating carbon nanofiber membranes with poly(3-methylthiophene) (P(3-MTH)). The prepared membranes were 
reversibly doped and de-doped with P (3-MTH) by ClO4− under electrical stimulation to realize the mutual transition 
of hydrophilicity and dehydration of the membranes (Fig. 10a). Light stimuli-responsive membranes can be irradiated 
with ultraviolet light (UV) or visible light (Vis) to alter the surface wettability of the membrane. Employing light as an 
external stimulus offers excellent selectivity, rapid reaction times, and controllability, making photostimulable responsive 
membranes a cost-effective and easily operated option with high stability [167–169]. Chen and his co-workers proposed 

Fig. 9   a SEM image of the nanofibrous membrane. b Permeability and separation efficiency of different membranes. c Mechanism of the 
membrane with the dual UCST-type thermo/pH stimulus responses
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the grafting of azobenzene groups on silica (SiO2) roughened polypropylene (PP) membranes (SiO2 NPs-grafted PP). By 
combining SiO2 NPs-grafted PP membranes and photosensitive 7-[(trifluoromethoxyphenylazo)-phenoxy]-pentanoic 
acid (CF3AZO), PP-g-SiO2 NPs/CF3AZO membranes that are also photoresponsive were prepared [170]. PP-g-SiO2 NPs/
CF3AZO membranes can be alternatively irradiated with UV and visible light, resulting in the conversion of cis and trans 
states of CF3AZO and accomplishing alternate hydrophilic and hydrophobic interchanges on the surface of the mem-
brane (Fig. 10b). Ion stimuli-responsive membranes are commonly synthesized using polymers carrying charged groups 
that can switch between hydrophilic and hydrophobic by cation/anion exchange or by adding ions to the membrane 
surface [128, 171]. Poly(ionic liquid)s (PILs) are used as the main ion-stimulating responsive polymers due to their favora-
ble characteristics, including good thermal stability, solubility, catalytic activity, and non-flammability [172, 173]. Gao 
et al. prepared the hydrophilic poly(1-vinyl-3butylimidazolium acrylate)-based membrane (PILM-1) and the hydrophobic 
poly(1-vinyl-3octylimidazolium hexafluorophosphate)-based membrane (PILM-5) by controlling the length of the alkyl 
chains of cations and anions of the PILs using a one-step photopolymerization method (Fig. 10c). Both membranes 
exhibited excellent separation efficiencies. They could be assembled to achieve continuous oil–water separation [174].

6 � Conclusion

Membrane separation technology, recognized for its simplicity, cost-effectiveness, and efficiency, is considered one 
of the most effective means of separating oil and water. This article presents fundamental design concepts and the 
research advancements in oil–water separation membranes, including high-flux, high-efficiency, fouling-resistant and 
stimuli-responsive oil–water separation membranes. Despite significant progress in the research on oil–water separa-
tion membranes, challenges remain.

(1)	 The critical problem is membrane fouling. Oil is highly susceptible to adsorption on the membrane, leading to pore 
clogging, which rapidly decreases flux and separation efficiency. Therefore, the antifouling ability of the membrane 
is of utmost importance. Improving the long-term anti-adhesive contamination ability of the membrane surface 
to oil and surfactant in the continuous separation process, and realizing the practical application of the oil–water 
separation membrane is among the challenges for future research.

Fig. 10   a Schematic illustration of the mechanism of the electro-responsive carbon membrane. b Schematic illustration of light switchable 
oil–water separation. c Mechanism of the s PIL-based membranes (PILMs)
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(2)	 The field requires scalable processes for membrane fabrication such as interfacial polymerization(IP) [175]. In order 
to make membrane fabrication processes such as the IP process more scalable not only in the field of liquid separa-
tion but also in other fields, several approaches can be considered. One of these approaches is the choice of mate-
rials, which involves identifying compatible monomers and substrates for the desired application. To explore the 
versatility, monomers with different chemical functions can be selected to meet the requirements of various fields. 
The process should be optimized, and the process parameters, such as temperature, pressure, and reaction time, 
should be tailored to the specific requirements of different applications to achieve the desired material properties 
and performance characteristics. In addition, the process can be used to achieve membrane surface modification 
and functionalization to fabricate tailor-made coatings with specific properties (such as hydrophobicity, biocompat-
ibility or antimicrobial activity) for applications in different fields.

(3)	 Further in-depth investigation into the mechanism of oil–water separation is required. Currently, most research is 
focused on membrane design and preparation, with little understanding of how oil droplets are demulsified and 
coalesced on the membrane surface during oil–water separation. Exploring the mechanism of oil–water separation 
can provide a theoretical direction for designing high-performance membranes, thus breaking through the applica-
tion bottleneck of oil–water separation membranes in the future. Liquid phase transmission electron microscopy 
can provide new insights into membrane fouling and oil–water separation mechanism at the nanoscale, which may 
address the aforementioned challenges from a micro perspective. This paper aims to increase researchers’ interest 
in this field and aid in the future research and development of oil–water separation membranes.
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