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Abstract
For the development of nanofilters and nanosensors, we wish to know the impact of size on their geometric, electronic, 
and thermal stabilities. Using the semiempirical tight binding method as implemented in the xTB program, we charac-
terized Möbius boron-nitride and carbon-based nanobelts with different sizes and compared them to each other and to 
normal nanobelts. The calculated properties include the infrared spectra, the highest occupied molecular orbital (HOMO), 
the lowest unoccupied molecular orbital (LUMO), the energy gap, the chemical potential, and the molecular hardness. 
The agreement between the peak positions from theoretical infrared spectra compared with experimental ones for all 
systems validates the methodology that we used. Our findings show that for the boron-nitride-based nanobelts, the 
calculated properties have an opposite monotonic relationship with the size of the systems, whereas for the carbon-based 
nanobelts, the properties show the same monotonic relationship for both types of nanobelts. Also, the torsion presented 
on the Möbius nanobelts, in the case of boron-nitride, induced an inhomogeneous surface distribution for the HOMO 
orbitals. High-temperature molecular dynamics also allowed us to contrast carbon-based systems with boron-nitride 
systems at various temperatures. In all cases, the properties vary with the increase in size of the nanobelts, indicating that 
it is possible to choose the desired values by changing the size and type of the systems. This work has many implications 
for future studies, for example our results show that carbon-based nanobelts did not break as we increased the tempera-
ture, whereas boron-nitride nanobelts had a rupture temperature that varied with their size; this is a meaningful result 
that can be tested when the use of more accurate simulation methods become practical for such systems in the future.
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1 Introduction

Carbon atoms can present three different forms of hybridization (sp, sp2 , and sp3 ), and the way in which they can 
combine with other elements is the basis of countless research studies [1, 2]. The combination of this element on a 
nanometric scale gave rise to structures called nanocarbons [3]. They are characterized by showing different geomet-
ric and dimensional configurations, such as fullerenes, carbon nanotubes, graphene nanoribbons, graphene oxides, 
and nanodiamonds [1, 4]. Such structures have attracted interest for promising applications in nanobiomedicine [5, 
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6] and optoelectronics [7, 8]. Furthermore, carbon-based nanomaterials are highly biocompatible with living organ-
isms and the environment [9].

According to their size and/or different topologies, these nanomaterials cause different reactivity when in contact 
with other substances [2, 10], favored or not, according to the geometry of the nanomaterial, which varies according 
to the increase in the pyramidalization angle and misalignment of the � orbitals between the C atoms [2]. Thus, dif-
ferent syntheses and functionalization have been carried out to obtain different nanostructures to achieve greater 
compatibility with other materials, as we seek to improve and expand nanotechnological applications [5, 10–12].

Povie et al. made a breakthrough with the synthesis of carbon nanobelts (CNBs), whose simple structure in the 
form of a ring or belt generates two faces, one internal and one external, not convertible to each other [13]. Carbon 
nanobelts represent segments of single-walled carbon nanotubes containing a benzene ring cycle with p orbitals 
aligned in a plane [14]. Such behavior allows them to be classified as armchair, zigzag, or chiral nanoribbons accord-
ing to the chirality index [14, 15]. In addition to the ring shape, carbon nanobelts are interesting structures due to 
their synthetic challenges and differentiated properties [16, 17]. Its formulation covers concepts of conjugation, 
aromaticity, and strain, as well as important information on chirality and bottom-up synthesis of C nanotubes, which 
continues to be a challenge and has caused limitations in its applications [18]. For the synthesis of nanobelts, three 
steps are typically considered: the first consists of macrocyclization from carbon sources; the second is the formation 
of the belt in order to create the double-stranded structure; and finally, the induction step for the bending of the sp2 
hybridized carbon skeleton into a cylindrical topology [13, 19].

In addition, CNBs can be “twisted” to acquire a Möbius topology. The first organic systems synthesized with Möbius 
topologies were Möbius annulenes [20, 21] and thereafter, Möbius molecules of various types have been created and 
investigated since then [18, 22–25].

Möbius carbon nanobelts (MCNBs), manifest different properties and molecular movements when compared to 
common nanobelts [13]. Density functional theory (DFT) calculations show that MCNBs have a higher strain energy 
than ordinary CNBs of the same size [18]. However, producing torsion in ordinary CNBs can be difficult to control, as 
the strain energy is the major obstacle in the synthesis of MCNBs [13]. For this, saturated ligands (-CH2O-) or chalco-
gen atom ligands (-S-) are used to reduce and control the stress caused by the Möbius shape [26, 27]. Nonetheless, 
calculations of strain energies showed that MCNBs are synthetically accessible and that strain decreases with increas-
ing MCNB size [21]. Data from nuclear magnetic resonance spectroscopy and theoretical calculations show that the 
torsion structure of the Möbius band moves rapidly in solution [18]. Furthermore, chirality arising from the Möbius 
structure has been demonstrated experimentally using chiral separation by high-performance liquid chromatography 
(HPLC) and circular dichroism (DC) spectroscopy [18]. Besides, spectroscopy data on excitation at 380 nm showed 
blue–green fluorescence beyond 10% quantum yield [18].

Carbon atoms in carbon-based nanostructures can be replaced by boron and nitrogen atoms, resulting in boron-
nitride (BN) isoform structures, for example, carbon nanotubes (CNTs) can be replaced by boron-nitride nanotubes 
(BNNTs) [28]. With an analogous structure to CNTs, BNNTs have similar mechanical properties [28, 29] and they are 
electrically insulating, with a forbidden band between 5.0−6.0 eV, independent of chirality [28, 30]. In addition, the 
thermal properties are improved due to boron-nitride having high atmospheric stability, especially at high tem-
peratures [31]. This makes BNNTs excellent candidates for applications in electronics [32–36], sensors [37], hydrogen 
storage [38], medicine [39, 40], and also water purification [41–46], among others.

Boron-nitride nanobelts (BNNBs), an inorganic analog of cyclophenazine, were synthesized in 2017 [47, 48]. Aro-
matic BNNBs have radially oriented p orbitals with photoluminescent properties and are excellent UV absorbers, 
suggesting that such systems can be used as UV detectors [13, 48, 49]. In addition, boron-nitride nanobelts have high 
chemical stability, thermal stability with positive vibrational frequencies, and insulating character with an estimated 
gap of around 5 eV [48, 50]. Several, in vitro and in vivo studies were conducted with boron-nitride nanostructures of 
different shapes and sizes in order to determine their cytotoxicity. The studies concluded that the pristine forms of 
boron-nitride structures without coatings turn out to be bio-compatible in vitro and in vivo. This makes BN materials 
attractive for bio-applications [51–54].

In this work, for the first time, the structural and electronic properties as well as thermal stabilities of Möbius and 
ordinary carbon and boron-nitride nanobelts are investigated as a function of their size for up to five different sizes. 
Knowing how the size affects the nanostructure properties [55–59] allows us to control such properties by modifying 
the growth processes.
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2  Materials and methods

In this work, two types of CN nanobelts and two types of BN nanobelts were used: ordinary and Möbius (twisted) nano-
belts for each case. Structures were generated starting with a cell with 2 units of (10,0) nanosheets repeated n times (10, 
15, 20, 25, and 30) in the z-direction and then wrapped 360◦ . After that, the periodicity was removed, and the atoms at 
the borders were passivated with hydrogen. In the case of Möbius nanobelts, after repetition, the nanobelts were twisted 
180◦ and then wrapped. All the structures were generated using the Virtual NanoLab Atomistix ToolKit software [60]. 
The nomenclature to identify the systems is described as follows: BNNBn (CNBn) for boron-nitride (carbon) nanobelts 
and MBNNBn (MCNBn) for Möbius boron-nitride (carbon) nanobelts. In all cases, n indicates the number of repetitions.

Using the semiempirical tight binding method as implemented in the xTB (eXtended Tight Binding) program [61], the 
electronic and structural parameters were calculated. The calculations were done using the GFN2-xTB method (GFN is an 
acronym for geometries, frequencies, and noncovalent interactions, and the number 2 corresponds to the version of the 
method). GFN2-xTB is an accurate self-consistent method that includes multipole electrostatics and density-dependent 
dispersion contributions [62], with an extreme optimization level that ensures a convergence energy of 5 × 10−8  Eh and 
a gradient norm convergence of 5 × 10−5  Eh/a0  (Eh is the Hartree unit, and  a0 is the Bohr radius). The files with the orbital 
information were treated with the ORBKIT software [63] that creates the correct inputs for visualization with VMD [64].

For each optimized structure, the highest occupied molecular orbital, HOMO ( �H ); the lowest unoccupied molecular 
orbital, LUMO ( �L ); the energy gap ( Δ� ) between HOMO and LUMO orbitals ( Δ� = �H − �L ); the chemical potential ( � ); 
the molecular hardness ( � ); and the infrared spectra were determined.

Considering the approximation that ignores orbital relaxation after an electron is removed from the system (Koop-
mans’ s theorem [65–68] together with Janak’ s theorem [69]), it is possible to estimate the chemical potential ( � ), the 
molecular hardness ( � ) [70], and the electrophilicity index ( � ) [71] from the HOMO and LUMO energies �H and �L as follows:

3  Results and discussion

Figures 1 and 2 show the top view of the optimized structures. Panel A shows the ordinary nanobelts, and Panel B shows 
the Möbius nanobelts. With the increase in repetitions (n), the diameter increases too, starting from 13.81 Å (13.77 Å) 
to 40.79 Å (40.77 Å) for boron-nitride (carbon) nanobelts. The minimum number of repetitions used was 10 to avoid 
stressed structures. 

The calculated infrared spectra for each system are shown in Figs. 3 and 4. At first sight (Fig. 3), the spectra for both 
systems, BNNB and MBNNB, are very similar, indicating that the torsion on the Möbius nanobelts did not appreciably 
change the principal oscillation modes. In both cases, B-N stretching (in-plane and out-of-plane) and radial R mode (out-
of-plane buckling) are observed. The oscillations around 800  cm−1 correspond to the out-of-plane buckling mode. All 
the resonances in the high-frequency regime above 1200  cm−1 consist of transverse optical (T) and longitudinal optical 
(L) phonon modes. Oscillations around 1200  cm−1 and 1380  cm−1 correspond to bond-bending or T modes, and around 
1340  cm−1 and 1420  cm−1 correspond to bond-stretching or L modes [72–75].

The case for the carbon nanobelt systems, (CNBs and MCNBs), is different. For both systems, the fingerprint region 
( 1500 − 600  cm−1) is visible, but the peaks have very dissimilar intensities, being greater for the MCNB structures. For 
carbon-based organic systems, the resonances around 900 − 675  cm−1 were identified as out-of-plane C–H oscillations, 
the resonances around 1500 − 1400  cm−1 were identified as C–C stretches (in-ring modes), and the resonances around 
3100 − 3000  cm−1 were identified as C–H bond stretches [76]. These results indicate that the MCNBs vibrate more than 
the CNBs. 
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The electronic properties of boron-nitride and carbon-based systems are shown in Fig. 5. Figure 5a and b show the 
energies of the HOMO and LUMO boundary orbitals. To some extent, from the energies of these orbitals, it is possible 
to know how reactive the system is. The electron-donor character (electron-donor capacity) is measured by the HOMO 
energy, whereas the electron-acceptor character (resistance to accepting electrons) is measured by the LUMO energy. 
From these figures, we can see that, in the case of HOMO energy, the BNNB and MBNNB have opposite behavior. With the 
increase in the number of repeat units, the capacity to donate electrons decreases for the MBNNB system and increases 
for the BNNB. On the other hand, the behavior of LUMO energy with an increase in system size is similar, increasing the 
resistance to accept electrons.

The top view of the three-dimensional (3D) diagrams of the HOMO and LUMO surfaces for the BNNB20 and 
MBNNB20 are shown in Fig. 6 (the 3D diagrams for all the structures are shown in Additional file 1: Figures S1 and 
S2 of the Supplementary Material). The distribution of HOMO and LUMO surfaces for the BNNB is, as expected, in 
accordance with the symmetry of the system, being distributed homogeneously over the entire structure. In the 
case of the MBNNB, the torsion of the nanobelt induced a strain on the structure, which in turn modified how the 
orbitals were distributed. Because of the torsion, the distance between atoms alters, which is reflected in the strain 
produced. The distance distribution between atoms in systems with n = 20 is illustrated in Additional file 1: Figure 
S5 of the Supplementary Material (the distance distribution was calculated with OVITO software [82]). In contrast to 
BNNB20, the distance distribution peaks for B–N, B–B, and N–N exhibited a modification in MBNNB20. We no longer 
have precisely defined positions, but rather a new distribution that extends to greater and smaller distances. A reduc-
tion in the superposition of wavefunctions occurs as the atoms undergo separation. Conversely, the superposition 
of wavefunctions increases as the distance between atoms decreases. This modification is stronger for the HOMO, 

Fig. 1  Top view of: A Boron-
nitride nanobelts (BNNBs) 
with minimum/maximum 
diameter and repetition. 
B Möbius boron-nitride 
nanobelts (MBNNBs). Image 
rendered with VMD software 
[64]

Fig. 2  Top view of: A Carbon 
nanobelts (CNBs) with mini-
mum/maximum diameter and 
repetition. B Möbius carbon 
nanobelts (MCNBs). Image 
rendered with VMD software 
[64]
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where the orbital volume is redistributed into regions with smaller or greater volumes. For this iso-value, the larger 
volume suggests a larger probability of finding the electrons, the electron-donor regions change too, with low- or 
high-localized HOMO zones. On the other hand, the LUMO surface shows very little inhomogeneity. This behavior is 
the same for all the MBNNB, as shown in Additional file 1: figure S2 of the Supplementary Material.

Fig. 3  Calculated infrared 
spectra for boron-nitride 
nanobelts
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The gap ( Δ� ), chemical potential ( � ), molecular hardness ( � ), and electrophilicity index ( � ) can be used to estimate 
the chemical reactivity and hardness of the system together with its molecular stability. Molecules with a high (or low) 
gap are those with high (or low) molecular stability [77].

Fig. 4  Calculated infrared 
spectra for carbon nanobelts
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Fig. 5  Calculated electronic 
properties for boron-nitride 
nanobelts
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Positive values of � signify an energetically unfavorable redistribution of electrons within the molecule. Additionally, 
an increase in value corresponds to a greater degree of chemical stability in the molecule, which consequently makes 
electron rearrangement more difficult [78]. The molecule’ s energy reduction resulting from the maximum electron flow 
between its surroundings and itself can be quantified using the electrophilicity index ( � ) [71].

Comparing the values of Δ� , � , � , and � for the BNNB and MBNNB systems, we can see that the values are on the same 
order of magnitude. The main difference is in how these properties change with the increase in the number of repeated 
units used to build the nanobelts. These can be used to design structures with fine control over these properties.

Figure 7 shows the electronic properties of the carbon nanobelts. All the graphs shown a different behavior when 
compared to boron-nitride nanobelts. In this case, the properties for both systems, CNB and MCNB, behave with the 
same monotonic variation.

The 3D top view diagrams of the HOMO and LUMO surfaces for the CNB20 and MCNB20 are shown in Fig. 8 (the 3D 
diagrams for all the structures are shown in Additional file 1: Figures S3 and S4 of the Supplementary Material). Because 
the torsion has a negligible effect on the atomic distribution of carbon nanobelts (refer to Additional file 1: Figure S5 of 
the Supplementary Material), neither system’s orbital surfaces were significantly altered by the torsion on the nanobelt.

The values of Δ� , � , � , and � for CNB and MCNB systems are similar among them, with small variations with the increase 
in the number of repeat units used to build the nanobelts. As the properties also vary with the increase of repeat units, 
the change in n can tailor the electronic properties of the carbon nanobelts.

The inhomogeneous distribution of the HOMO surfaces can be correlated with the molecular hardness, � . As � is 
related to how energetically unfavorable it is to redistribute the electrons in a molecule, higher values imply a harder 
rearrangement of them. Comparing the values of � for the MBNNB (Fig. 5e) and MCNB (Fig. 7e) systems, we can see 
that � is almost eight times bigger for boron-nitride nanobelts than for carbon-based nanobelts. A lower value of 
� implies that the electrons can redistribute easily through the whole structure, resulting in a more homogeneous 
HOMO surface.

The mapped electrostatic (MEP) and lipophilic (MLP) potentials are shown in Fig. 9. The top (bottom) row presents 
the data for carbon (boron-nitride) systems with 20 repetitions. In the case of carbon-based nanobelts, both poten-
tials are homogeneously distributed over the whole system’ s surfaces. On the other hand, the Möbius boron-nitride 
nanobelts show red (negative potential values) and blue (positive potential values) spots in the twist region. The 
former indicates that those regions are better able to interact with other systems.

Fig. 6  Structures, HOMO and 
LUMO surfaces for BNNB20 
and MBNNB20 systems. Red 
(green) color represents 
negative (positive) values. 
Orbital surfaces rendered with 
isovalue equal to 0.001 and 
with VMD software [64]
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Fig. 7  Calculated electronic 
properties for carbon nano-
belts

10 15 20 25 30
-8.94

-8.92

-8.90

-8.88

-8.86

-8.84

-8.82

ε H
 (

eV
)

n (number of repeat units)

 MCNB
 CNB

(a) HOMO energy

10 15 20 25 30
-8.68

-8.66

-8.64

-8.62

-8.60

-8.58

-8.56

-8.54

-8.52

-8.50

-8.48

-8.46

ε L
 (

eV
)

n (number of repeat units)

 MCNB
 CNB

(b) LUMO energy

10 15 20 25 30
0.15

0.20

0.25

0.30

0.35

0.40

0.45

∆ε
 (

eV
)

n (number of repeat units)

 MCNB
 CNB

(c) Energy gap

10 15 20 25 30

-8.76

-8.74

-8.72

-8.70

-8.68

M
ol

ec
ul

ar
 h

ar
dn

es
s,

 η
 (

eV
)

n (number of repeat units)

 MCNB
 CNB

(d) Chemical potential

10 15 20 25 30
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24
M

ol
ec

ul
ar

 h
ar

dn
es

s,
 η

 (
eV

)

n (number of repeat units)

 MCNB
 CNB

(e) Molecular hardness

10 15 20 25 30
150

200

250

300

350

400

450

500

 E
le

ct
ro

ph
ili

ci
ty

 in
de

x,
 ω

 (
eV

)

n (number of repeat units)

 MCNB
 CNB

(f) Electrophilicity index



Vol:.(1234567890)

Research Discover Nano           (2024) 19:63  | https://doi.org/10.1186/s11671-024-03967-0

By altering the size of the nanobelt, we are able to modify every calculated electronic property, including the 
molecular hardness, electrophilicity index, HOMO/LUMO values, surface distribution, gap, chemical potential, and 
electrostatic and lipophilic potentials. In other words, their electronic properties can be manipulated by regulating 
the growth process of the structures. The consideration of these properties is critical in the logical development 
of filters, sensors, drug carriers, and other similar devices, as they directly influence the electronic transport, the 
adsorption and binding processes of small molecules such as clusters of heavy metals, greenhouse gasses, ligands, 
DNA fragments, and so forth. Based on our prior research examining the interactions between heavy metal clusters 
of Ni, Cd, and Pb with carbon and boron-nitride nanobelts [80, 81], we discovered that the Möbius nanobelts con-
sistently exhibit superior interaction characteristics (higher binding energy, more affinity, and stronger bonds) than 
conventional nanobelts. Furthermore, the interacting regions consistently revolve around the torsion.

Finally, in order to study the thermal stability of all the systems, molecular dynamics calculations were done for a 
production time of 20 ps at high temperatures. Figure 10 show the energy per atom as a function of simulation time 
for all the systems at several temperatures ranging from 1000 K to 5000 K at a 500 K step. The carbon-based nano-
belts remain stable at all temperatures during the simulation time, whereas the boron-nitride nanobelts breakout 
at some temperatures.

Figure 11 shows the breakout temperature as a function of repetition units. The highest rupture temperature was 
3500 K for the smaller Möbius boron-nitride nanobelt (10 repetition units) and the lower breakout temperature was 
2000 K for the BNNB15. Three ( n = 10, 15, 30 ) of five MBNNB systems show higher stability than BNNB systems; one 
has the same rupture temperature ( n = 20 ), and one has a higher breakout temperature ( n = 30).

Fig. 8  Structures, HOMO and 
LUMO surfaces for CNB20 and 
MCNB20 systems. Red (green) 
color represents negative 
(positive) values. Orbital sur-
faces rendered with isovalue 
equal to 0.001 and with VMD 
software [64]
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4  Conclusions

In this work, we studied the structural and electronic properties of boron-nitride and carbon-based Möbius nano-
belts and compared their properties with those of common nanobelts. For all systems, the main peaks in the infrared 
calculated spectra are in accordance with the experimental ones, indicating that the theoretical methodology used 
here is suitable to determine other properties.

The electronic properties show differences between both boron-nitride nanobelts. Whereas the LUMO energy 
for both systems, BNNB and MBNNB, has similar monotony, the HOMO has shown opposite behavior (different 
monotony), influencing all the other properties. When compared to BNNBs, MBNNBs have lower values of molecular 
hardness because the HOMO surface is not spread out in the same way. This unevenness in the HOMO is shown by 
the fact that the electrostatic and lipophilic potential surfaces had spots in the parts of the HOMO surface with more 
volume. In the case of carbon-based nanobelts, all the calculated properties show the same behavior for both systems, 
MCNB and CNB. In contrast to what happened with the boron-nitride system, the HOMO and LUMO surfaces are the 
same all over the structure of the carbon-based nanobelts. This is reflected in the electrostatic and lipophilic potential 
surfaces that showed a homogeneous distribution, too. In all cases, the properties vary with the number of repeated 
units, indicating that it is possible to choose their desired values by changing the size and type of the systems.

The higher temperature molecular dynamics reveal that the carbon-based nanobelts are more stable than the 
boron-nitride nanobelts, as they did not break apart with the increase in temperature. The rupture temperature for 
the boron–nitride systems varies with the system size, showing that the MBNNBs have better stability for small sizes 
than the BNNBs.

Fig. 9  Electrostatic and lipophilic potentials mapped on carbon (top row) and boron-nitride (bottom row) systems surfaces. Red (blue) color 
represents negative (positive) values. Image rendered with Jmol software [79]
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