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Abstract
Urine test paper is a standard, noninvasive detection method for direct bilirubin, but this method can only achieve 
qualitative analysis and cannot achieve quantitative analysis. This study used Mini-LEDs as the light source, and direct 
bilirubin was oxidized to biliverdin by an enzymatic method with ferric chloride  (FeCl3) for labeling. Images were captured 
with a smartphone and evaluated for red (R), green (G), and blue (B) colors to analyze the linear relationship between 
the spectral change of the test paper image and the direct bilirubin concentration. This method achieved noninvasive 
detection of bilirubin. The experimental results demonstrated that Mini-LEDs can be used as the light source to analyze 
the grayscale value of the image RGB. For the direct bilirubin concentration range of 0.1–2 mg/dL, the green channel 
had the highest coefficient of determination coefficient (R2) of 0.9313 and a limit of detection of 0.56 mg/dL. With this 
method, direct bilirubin concentrations higher than 1.86 mg/dL can be quantitatively analyzed with the advantage of 
rapid and noninvasive detection.
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Mini-LEDs  Mini-light-emitting diodes
LOD  Limit of detection
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R2  Coefficient of determination coefficient
BOD  Bilirubin oxidase
GrONPs  Graphene oxide nanoparticles
CHIT  Chitosan
H2  Halogen
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D2  Deuterium
CoA  Certificate of analysis
SDS  Safety data sheet

Introduction

Bilirubin is a yellow pigment produced by the catabolism of hemoglobin in red blood cells, and it is eventually metabo-
lized by the liver to be excreted from the body [1–3]. Bilirubin in human serum is mainly classified according to whether 
or not it is esterified by enzymes. Bilirubin that is not bound to other substances such as glucuronic acid is called indirect 
bilirubin or free bilirubin. Indirect bilirubin binds to albumin and is transported in the plasma to the liver for metabolism. 
Once it reaches the liver, it is combined with other substances, such as esterified compounds and glucuronic acid in liver 
cells, where it is then called conjugated bilirubin or direct bilirubin. These two types of bilirubin are collectively called total 
bilirubin [4]. Since the kidneys only filter direct bilirubin and excrete it into the urine, and indirect bilirubin is insoluble 
in water, the values obtained are mostly direct bilirubin. High concentrations of total bilirubin in the body can cause 
skin and other tissue lesions and yellow discoloration, resulting in a condition called jaundice or hyperbilirubinemia [5].

Medically, the jaundice disease of newborns is called neonatal jaundice. The rate of neonatal jaundice is relatively 
high, at about 60%, especially higher in premature babies. Therefore, bilirubin tests are routine for every newborn [6–8]. 
Neonatal jaundice symptoms are divided into physiological jaundice and pathological jaundice. Physiological neona-
tal jaundice is mainly caused by the poor metabolic function of neonatal livers and will gradually subside due to the 
improvement in neonatal metabolic function over time [9–11]. Most cases of physiological neonatal jaundice do not 
cause serious sequelae, but abnormally high values of bilirubin can potentially lead to neurotoxicity, neurodevelopmental 
abnormalities such as hearing loss, variable spasms, athetosis, and even mental deficits [12]. There are two main reasons 
for the occurrence of pathological jaundice. One is biliary atresia, and the other is neonatal hepatitis. The symptoms of 
biliary atresia require early diagnosis and surgical intervention to prevent the symptoms from worsening and eventually 
necessitating liver replacement [13, 14]. When neonatal jaundice lasts for more than 2 weeks, it is clinically called delayed 
jaundice. At this time, further examination is required to confirm whether there is a possibility for pathological jaundice.

Currently, the bilirubin detection methods used in hospital laboratories are primarily oxidase and diazo methods 
[15, 16]. In the diazo method, bilirubin and diazonium ions are coupled in a strong acid environment to form a dark 
red azo compound. A photometer is then used to measure the fluorescence intensity and compares it with the ratio of 
bilirubin concentration color [17]. Edachana et al. proposed a direct bilirubin diazo detection method for urine samples 
by dropping chloroauric acid into bilirubin. This method utilizes the reduction of gold (III) ions by bilirubin and the 
formation of gold nanoparticles resulting in a color change from yellow to purple with an optimal absorption peak at 
530 nm. It functions in the bilirubin concentration range of 5.0 to 1000 mg/mL with a detection limit of 1.0 mg/mL and 
a sample recovery rate of over 95% [18]. Lano et al. proposed the use of co-oximetry (Radiometer (R) ABL90) to analyze 
total bilirubin concentration. The samples were centrifuged and analyzed for total bilirubin in plasma with diazonium 
reagents. The mean deviation over the range of total bilirubin levels was − 1.0 μmol/L [19]. Although the diazo method 
of bilirubin detection is inexpensive and easy to automate, it is easily affected by other substances and the pH value of 
the environment, making the measured bilirubin concentration inaccurate and increasing the overall detection time 
[20–22]. Bilirubin oxidase (BOD) is a multi-copper oxidase belonging to the class of oxidoreductases. It uses metal ions 
to catalyze the oxidation of bilirubin to biliverdin and has been widely used as a reagent for testing bilirubin [23]. Rawal 
et al. proposed immobilizing BOD on graphene oxide nanoparticles (GrONPs) to fabricate a bilirubin biosensor. For a 
bilirubin concentration range of 0.01 to 600 μM, it had a correlation coefficient r of 0.9939 [24]. Zhang et al. proposed 
the development of Bacillus subtilis pore coat protein A (CotA) to measure bilirubin. CotA exhibits a specific oxidative 
capacity for direct bilirubin in an acidic environment and total bilirubin in an alkaline environment. The appropriate pH 
conditions for CotA to detect direct bilirubin and total bilirubin are 5.5 and 7.5, respectively [25]. Batra et al. proposed to 
covalently immobilize BOx on zirconia-coated silica nanoparticles (SiO¬2@ZrONPs)/chitosan (CHIT) composites. In the 
concentration range of 0.02 to 250 μM, the method had a detection limit of 0.1 nM and bilirubin recoveries of 95.56–97.0% 
[26]. The method of using oxidase to detect bilirubin is widely used in testing reagents. However, two disadvantages of 
this strategy are that oxidases are easily interfered with by other substances, and the enzyme must be separated in an 
aqueous solvent [27–29]. Thus, oxidase can only be detected qualitatively at present, and there is still a need to develop 
an accurate method for quantitative detection and analysis.
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Blood testing is currently the most accurate method for detecting human bilirubin, but this method is invasive, 
increases the risk of infection for certain patients, and involves a higher cost of labor. In addition, the bilirubin value 
can only be correctly interpreted through a specific detection instrument making it relatively difficult for the patient to 
perform the test [30]. However, the cost of testing equipment is costly. Parnianchi et al. proposed a noninvasive elec-
trochemical sensor to detect bilirubin in the saliva [31]. The detection of bilirubin in urine using test papers is another 
noninvasive testing method [32]. However, most test papers require visually detecting a color change as the basis for 
bilirubin detection. If the bilirubin concentration is low or the quality of the test paper is poor, the color change will not 
be obvious, and the detection by the user may be inaccurate.

In optical biomedical testing, a halogen (H2) lamp is often used as the light source of visible light to near-infrared 
wavelengths [33–36]. Mini-LEDs and Micro-LEDs have the advantages of high brightness, long life, high color purity, 
and high efficiency [37, 38].

Blue Mini-LEDs is used as a light source to designed a miniaturized optomechanical device for the detection of direct 
bilirubin [39]. Ye et al. proposed using blue Mini-LEDs as a light source to detect direct bilirubin, in the concentration 
range from 0.855 to 17.1 μmol/L the R2 was 0.9999 [39]. In addition, smartphone cameras have proven to be excellent 
analytical devices for digitizing images to visualize data in recent years, since they are the most popular and easy-to-use 
scanners with high sensitivity to light and color variations through RGB analysis apps or software [40, 41]. Smartphones 
offer the advantages of cost-effectiveness, portability, and ease of operation for analyte detection through RGB analysis 
apps or software [42, 43]. Xu et al. proposed using spotlight LEDs as a light source and capturing the picture by smart-
phone to detect bilirubin in whole blood it has the advantages of significant portability, low cost, instrument-free, and 
high sensitivity [44]. Tabatabaee et al. proposed using blue light LEDs as a light source and capturing the picture by 
smartphone to detect bilirubin in whole blood. The recovered PL intensity has linearly proportional to the concentra-
tion of bilirubin in the range of 2–20 mg/dL [45]. Previous studies have yet to develop noninvasive bilirubin detection 
by color image analysis. This study proposes noninvasive direct bilirubin detection by spectral analysis of color images 
using Mini-LEDs as a light source. Images were captured by a smartphone and then analyzed using the relationship of 
the direct bilirubin test paper with different concentrations corresponding to the average RGB grayscale to achieve the 
goal of noninvasive bilirubin test papers. This method has the advantages of being noninvasive, rapid, and portable.

Materials and methods

Linear regression analysis

The coefficient of determination (R2) is defined as the regression equation variation value and all variations in the pro-
portion of the quantity. The value of R2 is represented by 0–1, and the larger the value of R2, the better the regression 
equation can explain the overall variation. The coefficient of determination R2 is shown in Eq. 1:

where Ŷ
i
 is the predicted value of the regression model at point Y

i
 , Y  is the average value of all Y

i
 values, and R2 represents 

the ratio of the variance value of the regression model to all the Y variances.

Experimental materials

Direct bilirubin powder (Bilirubin Conjugate, Ditaurate, Disodium Salt—Calbio-chem, Merck Millipore 201102, Inc, USA) 
is the standard material currently used by medical institutions to simulate direct bilirubin for detection. The certificate 
of analysis (CoA) according to Regulation (EC) No.1907/2006 of direct bilirubin powder, and the safety data sheet (SDS) 
of direct bilirubin powder is shown in Table 1.

The preparation procedure was to add 25 mL of deionized water to 0.5 mg of direct bilirubin powder to form a solu-
tion of 2 mg/dL. Next, deionized water was added to dilute to 12 standard solutions of different concentrations. The 
concentration range was 0.1–2 mg/dL, as shown in Fig. 1.

The weight of direct bilirubin and deionized water was measured using a precision scale (IAXL-GR-120, A&D, Japan), 
and stirred for 5 min at 500 rpm by a magnetic stirrer to mix uniformly.
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(Ŷ
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∑
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Fouchet’s Reagent (S-Y Fouchet Reagent-SY8076-1-11011019-Shih-Yung Instruments Co., Ltd) was used as an oxidase. 
Fouchet’s Reagent oxidizes direct bilirubin to biliverdin, which is blue-green, and the direct-type bilirubin is labeled with 
this reaction, as shown in Eq. 2:

Direct bilirubin test paper (S-Y U-B Test Kit Lot No 1110412-SY8076-11011019-Shih-Yung Instruments Co., Taiwan Ltd) 
was used as the analytical direct bilirubin carrier, with a diameter of 30 mm.

Color image spectral analysis

The color image analysis proposed in this study is divided into two parts. The first part is the image acquisition of the test 
paper image. P(λ) and R(λ) are the light source spectrum distribution and reflection spectrum, respectively. By multiply-
ing P(λ) and R(λ), the spectrum of direct bilirubin after the reaction on the test paper can be obtained. The second part 
is image analysis. MATLAB software was used to divide the RGB value of the image into three channels for numerical 
analysis: R, G, and B. The RGB grayscale value was divided by the same sampling pixel number, and the average grayscale 
value for each color group was used for the direct detection of bilirubin by color image spectral analysis, as shown in Fig. 2.

Schematic diagram of experimental setup

The experimental setup is shown in Fig. 3. The test paper was fixed at 90 degrees to the lens for image acquisition. L1 is 
the distance between the camera lens and the test paper sample, and L2 is the distance between the light source and 
the test paper. L1 and L2 were 10 cm and 15 cm, respectively. The light source D2 lamp and H2 lamp were transmitted 
through a 1-m optical fiber, and Mini-LEDs were fixed directly above. Using an iPhone 10 camera to capture images with 

(2)Biliverdin + FeCl3
����������������������������������⃗(Fouche’s solution) Biliverdin + Fe

3+

Table 1  The safety data sheet 
(SDS) for direct bilirubin

Matter Information

1 Description Suitable as a direct bilirubin standard
2 Inert gas (yes/no) Packaged under inert gas
3 Registry of Toxic Effects of Chemical Sub-

stances (RTECS)
DU3038000

4 Solubility H2O (10 mg/mL)
5 Storage Protect from light − 20 °C Hygroscopic

Fig. 1  The direct bilirubin samples with concentrations of 0.1–2.0 mg/dL
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a resolution of 24 megapixels, 13,528 pixels were captured in the area of the test paper, with a diameter of 30 mm as 
the analysis range.

Experimental process

In this study, a D2 lamp, H2 lamp, and Mini-LEDs were used as the light source to capture images with a smartphone in the 
darkroom, and the captured images were analyzed using MATLAB. The experimental process of detecting direct bilirubin 
using a test paper is shown in Fig. 4. Following pretreatment and zero calibration, 12 different concentrations of direct 
bilirubin standard solutions (0.1–2.0 mg/dL) were prepared, and 0.1 mL of Fouchet’s Reagent was added to the solution 
as oxidase. The parameters such as the distance between the light source and the optical fiber and the focal length and 
sensitivity of the smartphone were adjusted. After the calibration of the measurement parameters was completed, the 
images of 12 direct bilirubin test papers with different concentrations were acquired. The test paper image RGBs were 
analyzed for the different concentrations based on its average grayscale value, and the linear relationship between the 
direct bilirubin concentration and the RGB average was determined using a binary linear equation and R2. Finally, the 

Fig. 2  Schematic diagram of 
the direct detection of biliru-
bin by color image spectral 
analysis

Fig. 3  The experimental setup 
for direct bilirubin detection 
by spectral analysis of color 
images

Fig. 4  Experimental process 
of direct bilirubin test papers 
using image recognition and 
different light sources
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measured results of the deuterium lamp (D2 lamp), halogen lamp (H2 lamp), and Mini-LEDs were compared based on 
the linearity of the corresponding direct bilirubin.

Results and discussion

In this study, three light sources were used for detection. Figure 5 shows the emission spectra of the deuterium lamp 
(D2 lamp), halogen lamp (H2 lamp), and Mini-LEDs light source, respectively. When the spectrum of the light source is 
concentrated and close to the absorbance wavelength of the analyte, the noise signal can be reduced.

Image detection of bilirubin test paper using D2 lamp as the light source

First, a D2 lamp was used as the light source to detect direct bilirubin with a concentration range of 0.1–2.0 mg/dL. The 
direct bilirubin test paper sample captured by an iPhone 10 is shown in Fig. 6. It is evident from the sample photographs 
that when the concentration of direct bilirubin is higher, the color on the test paper is darker. This is because when the 
bilirubin concentration is high, the relative proportion of biliverdin increases, and the color on the test paper changes 
as the biliverdin deposited on the test paper increases.

The image processing was conducted with MATLAB by dividing the captured image into three channels (R, G, and B) 
for spectral analysis of the images. In the extracted 13,528 pixels, the average grayscale value and the direct bilirubin 
concentration were used for linearity analysis. The R2 of bilirubin test papers in the G, R, and B channels were 0.7809, 
0.2555, and 0.0738, respectively.

Fig. 5  Emission spectra of D2 
lamp, H2 lamp, and Mini-LEDs

Fig. 6  Color images of test papers with different concentrations of bilirubin while using a D2 lamp as the light source
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The experimental results show that when a D2 lamp is used as the light source, the linear relationship for the green 
channel is the best. The linear equation of the G channel was y = − 1.8078x + 231.56, and R2 was 0.7809, as shown in Fig. 7.

Image detection of bilirubin test paper using an H2 lamp as the light source

Next, an H2 lamp was used as the light source, and the pictures for twelve different concentrations are shown in Fig. 8.
The R2 for bilirubin test papers in the G, R, and B channels were 0.8984, 0.8155, and 0.3064, respectively.
The results show that when an H2 lamp is used, the linear relationship for the green channel is the best. The linear 

equation for the G channel was y = − 6.2029x + 221.72, R2 was 0.8984, and the LOD was 0.69 mg/dL, as shown in Fig. 9.

Image detection of bilirubin test papers using Mini‑LEDs as the light source

Finally, Mini-LEDs were used as the light source to detect direct bilirubin via spectral analysis. The pictures of twelve dif-
ferent bilirubin concentrations are shown in Fig. 10.

The R2 of bilirubin test papers for the G, R, and B channels were 0.9313, 0.8522, and 0.2877, respectively.
The results show that when Mini-LEDs were used, the linear relationship for the green channel was the best. The linear 

equation of the G channel was y = − 6.2971x + 221.81, R2 was 0.9313, and the LOD was 0.56 mg/dL, as shown in Fig. 11.

Analysis and comparison of different light sources

This study proposes to measure direct bilirubin using test papers and D2, H2, and Mini-LEDs as the light source. The linear 
relationship between direct bilirubin and the average RGB grayscale values was analyzed for the concentration range of 

Fig. 7  Linear relationship 
between different concentra-
tion of direct bilirubin test 
paper and average grayscale 
of G channel using a D2 lamp

Fig. 8  Color images of test papers with different concentrations of bilirubin while using an H2 lamp as the light source
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0.1–2.0 mg/dL. As shown in Table 2, when a D2 lamp, H2 lamp, and Mini-LEDs were used as the light source, the linear 
relationship for the green channel was the best, and R2 values were 0.7809, 0.8984, and 0.9313, respectively. Since the 
spectrum of the Mini-LED is concentrated and close to the absorbance wavelength of the analyte, the noise signal can 
be reduced and has higher linearity compared with D2 and H2 lamp.

Overall, noninvasive direct bilirubin detection by spectral analysis of color images using Mini-LEDs as the light source 
had the best linear relationship.

Fig. 9  Linear relationship 
between different concentra-
tions of direct bilirubin and 
average grayscale of the G 
channel while using an H2 
lamp as the light source

Fig. 10  Color images of test papers with different bilirubin concentrations while using Mini-LEDs as the light source

Fig. 11  Linear relationship 
between different concentra-
tions of direct bilirubin and 
average grayscale of the G 
channel while using Mini-
LEDs as the light source
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Conclusions

This study proposes labeling bilirubin by redox, capturing images of test papers with a smartphone, and then performing 
RGB analysis using MATLAB image processing to quantify the color to achieve noninvasive detection of direct bilirubin 
using test papers. In this process, bilirubin is reduced to biliverdin by  FeCl3 causing green color to appear on the test 
papers. When a D2 lamp, H2 lamp, and mini-LEDs were used as the light source, the color composition of the analyzed 
image was represented by its average grayscale value for three different channels (R, G, and B). The experimental results 
showed that for the direct bilirubin concentration range of 0.1–2 mg/dL, the green channel had the highest R2 values of 
0.7809, 0.8984, and 0.9313, for the D2 lamp, H2 lamp, and mini-LEDs, respectively. Direct bilirubin concentrations higher 
than 0.56 mg/dL were detected, and a direct bilirubin concentration higher than 1.86 mg/dL could be quantitatively 
analyzed. The measured data showed that this method can more accurately analyze changes in a patient’s direct bilirubin 
index and provide a reference for hospitals to successfully conduct telemedicine.
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Table 2  Color images analysis 
for test paper using different 
light sources

D2 lamp: A deuterium arc lamp;  H2 lamp: A halogen lamp; Mini- LEDs: Mini-light-emitting diodes; R2: deter-
mination coefficient; G: G grayscale values

Light source D2 lamp H2 lamp Mini-LEDs

Peak wavelength 238.8 nm 583.8 nm 580.4 nm
Wavelength range 190–780 nm 380–930 nm 380–780 nm
Color coordinate (x, y) (0.3250, 0.2694) (0.4042, 0.4137) (0.3867, 0.3862)
Concentration 0.1–2 mg/dL
Total points 16,900
Analysis points 13,528
R(R2) 0.2555 0.8155 0.8522
G(R2) 0.7809 0.8984 0.9313
B(R2) 0.0738 0.3064 0.2877
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