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Abstract
Large-area, continuous monolayer  WS2 exhibits great potential for future micro-nanodevice applications due to its special 
electrical properties and mechanical flexibility. In this work, the front opening quartz boat is used to increase the amount 
of sulfur (S) vapor under the sapphire substrate, which is critical for achieving large-area films during the chemical vapor 
deposition processes. COMSOL simulations reveal that the front opening quartz boat will significantly introduce gas 
distribute under the sapphire substrate. Moreover, the gas velocity and height of substrate away from the tube bottom 
will also affect the substrate temperature. By carefully optimizing the gas velocity, temperature, and height of substrate 
away from the tube bottom, a large-scale continues monolayered  WS2 film was achieved. Field-effect transistor based 
on the as-grown monolayer  WS2 showed a mobility of 3.76  cm2V−1  s−1 and ON/OFF ratio of  106. In addition, a flexible 
 WS2/PEN strain sensor with a gauge factor of 306 was fabricated, showing great potential for applications in wearable 
biosensors, health monitoring, and human–computer interaction.
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Introduction

In recent years, two-dimensional (2D) materials with atomic thickness have attracted great interest due to their 
excellent electrical and mechanical properties and have been successfully applied in electronics, sensing, energy, 
and other fields [1–3]. Graphene, as a 2D material, is prevented from being used in logic electronics and FETs due to 
its inherent zero band gap and chemical inertness. In contrast, transition metal dichalcogenides (TMDs) [4, 5], such 
as  WS2 and  MoS2, compensate for the shortcomings of graphene in these applications due to the special sandwich 
atomic structure arrangement (X–W–X) and physical properties and show emerging properties when reduced to mon-
olayer [6].  WS2 and  MoS2 have many similar excellent properties, such as the adjustable band gap, coupled spin and 
valley physics [7–10], and band structure tunability with strain [11]. These properties make monolayer  WS2 and  MoS2 
promising candidates for electronics, photonics, and valley electronics [12]. Furthermore,  WS2 and  MoS2 have been 
used to form flexible/wearable electronic sensors for monitoring physiological health signals due to their excellent 
mechanical flexibility and perfect conformability to non-flat surfaces of the human body [13, 14]. Therefore, how to 
grow large-area continuous TMDs films has attracted significant interest, which is a prerequisite for their widespread 
use. Many attempts have been made to prepare TMDs such as ionized jet deposition [15], mechanical exfoliation 
[16, 17], CVD using  WO3 and  MoO3 with sulfur powder, etc. [18–20]. Compared to the lateral dimensions of flakes 
synthesized by exfoliation methods, which limit their application in large-scale electronics [21], CVD is considered 
as a promising method to fabricate large-scale and continuous TMDs films [22]. For a facile one-step metal–organic 
CVD (MOCVD) of TMDs, although it is desirable to use a single-source precursor containing the corresponding metal 
and required sulfur in the ligand sphere, the thermal properties of most of the proposed precursors are insufficient 
for MOCVD [23]. There are also some reports on the synthesis of  WS2 nanosheets on  SiO2 by atomic layer deposition 
(ALD) [24]. However, not only does this approach require additional annealing steps with  H2 and  H2S to further convert 
the oxide precursors to  WS2 [25, 26], but the high toxicity of  H2S is also an issue. Recently, it has been reported that 
modifying the miscut orientation toward the A axis (C/A) of sapphire can finally achieve large-area continuous films 
with more than 99% unidirectional alignment [27]. However, when growing  WS2 or  MoS2 crystals on sapphire in this 
miscut orientation, the substrate needs to be annealed in  O2 for 2 h first, which may increase the preparation time.

Herein, we present a simple method to grow large-area and continuous monolayer  WS2 films on the sapphire 
substrate by CVD reaction between  WO3 and sulfur using the front opening quartz boat. In previous reports, little 
attention has been paid to the gas flow distribution under the sapphire substrate and the height of the sapphire 
substrate during the preparation process. To obtain large-area continuous  WS2 films, computational fluid dynamics 
and thermodynamics simulations were first carried out using finite element analysis software to investigate the gas 
and temperature distribution around the substrates. The results of the simulations provided us with a direction to 
optimize the growth conditions. Then, we changed the quartz boat, which means cutting the front end of the quartz 
boat, to make the gas flow uniformly and steadily throughout the growth chamber, and controlled the height of the 
sapphire substrate into the furnace by making quartz bases with different widths. The nucleation and coverage of 
 WS2 crystal were also controlled by adjusting the growth temperature and the gas velocity. Raman spectroscopy, 
photoluminescence (PL), and optical micrograph were performed to characterize the surface morphology, domain 
size, and crystal quality of the  WS2 samples. Meanwhile, the electrical properties of the as-grown monolayer  WS2 films 
were also studied by fabricating and characterizing a top-gate FET. Higher field-effect electron mobility and switch 
ratio were observed than those previously reported [19, 28]. In addition, a transparent  WS2 strain sensor with a GF 
of approximately 306 was fabricated on PEN flexible substrate, which also demonstrated the excellent electronic 
properties and mechanical flexibility of the as-grown  WS2 films.

Experiments

Synthesis of monolayer  WS2 film

Large-scale continuous monolayer  WS2 films were prepared at atmospheric pressure in a CVD system with two sepa-
rately controlled heating zones (AnHui BEQ Equipment Technology Co., Ltd.). Before the experiment, 20 mg of high-
purity NaCl crystals (Macklin, 99.99%) was dissolved in 100 ml of deionized (DI) water to obtain a NaCl solution (as the 
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growth promoter [29]). Sapphire (0001) substrates were cut to 0.5 × 1.8 cm in size and soaked in the prepared NaCl 
solution for 10 min. The reason for choosing a sapphire substrate here is that sapphire is hexagonal and compatible 
with the symmetry of the  WS2 lattice, making it easier to grow monolayer  WS2 films [30, 31]. Then, the front opening 
quartz boat carrying 200 mg sulfur powder (Aladdin, > 99.99%) as precursor was placed in a low-temperature furnace 
for sublimation at 150 °C, while 75 mg  WO3 powder (Sigma-Aldrich, > 99.99%) as W source was loaded into another 
front opening quartz boat that carried by a 3.5-cm flat quartz in a high-temperature furnace heated at 975 °C. Next, 
the sapphire substrates were placed on the top of the  WO3 powder (face down) with an interval of 1 mm apart. When 
the tubular furnace was evacuated to  10–1 Pa, high-purity Ar (99.999%) was introduced into the tube furnace to return 
to the atmospheric pressure, and it is important to note that Ar is kept in the tube furnace during the growth period 
to maintain an oxygen-free growth environment. After that, the high-temperature furnace began to heat up at a rate 
of 30–40 °C/min. Ten minutes before the high-temperature furnace reached the predetermined growth temperature, 
the preheating furnace began to heat up at a rate of 20 °C/min. The whole growth cycle lasted about 6 h, and then, 
the grown  WS2 films were obtained on the sapphire substrates.

Transfer of monolayer  WS2 film and device fabrication

The as-grown  WS2 films were transferred from the sapphire substrate to a new  SiO2/Si (p-doped Si substrate with 300 nm 
 SiO2) substrate or PEN substrate by a wet transfer method using DI water. The samples were first spin-coated with a 
layer of PMMA using a homogenizer (step 1: 500 rpm for 10 s; step 2: 2000 rpm for 60 s) and then baked on a hot plate 
at 175 °C for 2–3 min. The edges of the sapphire substrate were ground with a knife to expose the sapphire edges to DI 
water. Due to the hydrophobicity of  WS2 material and hydrophilicity of the sapphire, the water surface tension can make 
the PMMA/WS2 float on the DI water. Next, the PMMA/WS2 films were picked up with a new  SiO2/Si or PEN substrate and 
baked on a hot plate at 80 °C for 30 min to promote the boding between them. The as-transferred  WS2/SiO2/Si samples 
were eventually obtained by removing PMMA in acetone solution at room temperature for 2 h. Then, the samples were 
further spin-coated with the LOR/S1818 photoresist and exposed using designed source and drain electrode pattern 
by laser direct writing lithography (Durham Microwriter ML3), followed by thermal evaporation deposition of Cr/Au 
(5/70 nm) and removal of the photoresist with acetone. The defined width and length of the channel are both 5 μm. 
For the  WS2/PEN strain sensor, the surface of the PEN substrate requires a hydrophilic treatment first with a UV-ozone 
cleaner (CC1250GF-TC, Shanghai CHI Instrument CO., LTD, China) for 40 min. Then, the strain sensor can be completed 
by printing interdigital electrodes on the PEN substrate using a microelectronic flexible printer (Scientific 3A, Portronics, 
China) and transferring the  WS2 films to the PEN substrate as described above.

Optical and electrical characteristics measurements

The Raman and PL measurements were carried out by a confocal microscope alpha300 R (WITec GmbH, Germany) under 
excitation of 532 nm laser through a grating spectrometer with a thermoelectrically cooled detector. The I–V character-
istic of the FET transmission and output was performed at room temperature by using a semiconductor analysis system 
(Agilent B1500) in combination with an on-board probe station. Besides, the strain sensor responses at different strains 
were measured directly in air by digital source-meter (Keithley 2450) combined with a modified Vernier caliper.

Results and discussion

Figure 1a depicts the chemical reaction associated with the growth of  WS2 during CVD growth. The volatile suboxide 
species  WO3−x is first formed through partial reduction of  WO3 by sulfur vapor. Subsequently,  WS2 is formed on sapphire 
by further sulfurization, as shown in the chemical reaction expression (1).

A schematic of the CVD system is shown in Fig. 1b. The inset of Fig. 1b exhibits the scenery of the sapphire substrates 
and  WO3 placed on the quartz boat. It is well known that  WS2 growth is very sensitive to gas velocity and temperature. 
Therefore, both the speed of gas velocity and the temperature determine whether or not large-scale  WS2 films can be 

(1)7S + 2WO3 → 2WS2 + 3SO2
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obtained. An effective way to solve these problems is to optimize the appropriate gas velocity in the range of 100–200 
sccm and the furnace growth temperature ranging from 850 to 950 °C. As shown in Fig. 1c, by using the conventional 
quartz boat without front opening, only a few small  WS2 triangle domains with a size of about 32 μm appear in the central 
region of the sapphire substrates. In contrast, under the same conditions, more and larger  WS2 triangles that merge into 
large scale can be achieved when using a quartz boat with front opening, as illustrated in Fig. 1d. To find out the reason 
for this result, the growth environment of  WS2 films, especially the gas velocity and temperature distribution in the tube 
furnace, was simulated using COMSOL software. The structural model constructed is shown in Fig. S1, and more details 
about the simulations can be found in the supplementary material. Figure 1e depicts the distribution of gas velocity in 
the tube furnace when growing  WS2 thin films with conventional quartz boat. It can be clearly found that the argon car-
rier gas is less distributed under the sapphire substrates due to the obstruction of the front of the conventional quartz 
boat. Hence, a small amount of sulfur vapor carried by the argon carrier gas is delivered to the bottom of the sapphire 
substrates and reacts with the vapor of  WO3. Besides, the front end of the traditional quartz boat can obstruct and cause 
gas in the chamber to form turbulence, which makes the formation of random nucleation sites more likely and leads to 
unstable growth conditions [32]. In order to increase the sulfur vapor under the sapphire substrates, its front was cut off 
to form an opening, which was expected to facilitate the transport of sulfur vapor. As shown in Fig. 1f, because of the 

Fig. 1  Schematics of a the related chemical reaction and b CVD system (the inset is the scenery of the sapphire and  WO3 placed on the 
quartz boat). c–d The optical images of as-grown  WS2 on sapphire substrates with traditional conventional quartz boat and front opening 
quartz boat, respectively. e–f COMSOL simulation of gas distribution of traditional quartz boat and front opening quartz under the same 
conditions, respectively
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absence of obstruction, the front opening quartz boat does not block the flow of argon carrier gas, which indeed boosts 
the gas to flow through the bottom of the sapphire substrates (namely the smooth surface), and huge amount of sulfur 
vapor is transported to the smooth surface of the sapphire substrates and react with the vapor of  WO3 to form more 
stable  WS2 crystal nuclei. All the following experiments about the optimization of parameters such as temperature, air 
velocity and sapphire substrate height are based on the front opening quartz boat.

In order to optimize the most suitable gas velocity for  WS2 growth with the front opening quartz boat, the influence 
of different gas velocities on the growth rate and coverage of  WS2 film was investigated. The gas velocities were set to 
100, 150 and 200 sccm, respectively, with a fixed temperature of 950 °C and a height of 1.7 cm of the sapphire substrate 

Fig. 2  a–c The optical images of  WS2 samples grown on sapphire substrates at gas velocity of 100, 150, 200 sccm, respectively. COMSOL sim-
ulation of d–f gas and g–i temperature distribution around the three sapphire substrates in the front opening quartz at gas velocity of 100, 
150, 200 sccm under fixed 950 °C, respectively. j The extracted temperature curves along the middle line of the three sapphire substrates
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away from the tube bottom. The corresponding morphologies of the as-grown  WS2 samples are shown in Fig. 2a–c, 
respectively. Obviously, the  WS2 crystals evolve with the gas velocity. It is well known that a key to  WS2 nucleation and 
growth lies in the concentration ratio of S atom to W atom [33]. If the carrier gas velocity is too low, the S atoms carried 
by the gas may condense on the quartz tube before reaching around the substrates and combining with  WO3 molecules. 
While the concentration ratio of W to S does not reach a critical value,  WS2 will not form and nucleate on the substrate. 
When the Ar velocity is set to 100 sccm (Fig. 2a), there are a large number of  WS2 triangles, but the size is small (~ 35 μm), 
and some  WS2 crystals are not regularly triangular. As the gas velocity is increased to 150 sccm, the  WS2 crystals become 
larger with about 114 μm and partially merge into large scales (Fig. 2b). The increase in carrier gas velocity will provide 
sufficient kinetic energy for the W and S atoms, so as to further enlarge the termination edges of the W and S atoms, 
which explains why the size of  WS2 crystal increases with the increase in gas velocity [34]. However, when the carrier 
gas velocity reaches as high as 200 sccm (Fig. 2c), the size of the  WS2 crystals decreases rather than continue to increase. 
The reason is that when the velocity of the carrier gas is too fast, many S atoms flow out of the tube with the carrier gas 
before they can effectively react with the  WO3 molecules around the substrates. Besides, too fast gas velocity will take 
away the heat on the substrate surface, resulting in a heat loss in the growth temperature.

Furthermore, the COMSOL simulations of gas velocity distribution for the front opening quartz at 100, 150, 200 sccm, 
respectively, were performed to study the mechanism of the influence of different gas velocities on the growth of  WS2. 
As shown in Fig. 2d–f, the distribution of gas below the substrates increases significantly with the increase in gas velocity. 
Meanwhile, the temperature field at a fixed 950 °C was also considered and its distribution was obtained, as depicted in 
Fig. 2g–i. It is found that the temperature of the substrate is varied at different gas velocities. The higher the gas veloc-
ity, the lower the temperature of the substrate. Apparently, it is due to the heat conduction effect. When the gas flows 
through the substrates, it takes away part of the heat from the substrates. Figure 2j clearly depicts the temperature 
values along the middle line of the three sapphire substrates at gas velocities of 100, 150, 200 sccm. It is found that the 
gas velocity has a significant influence on the surface temperature of sapphire substrates. For a fixed gas velocity, the 
temperature of the sapphire substrate upstream is always lower than that downstream. Since the higher the gas velocity 
is, the more heat is taken away from the substrates, the larger temperature difference between the sapphire substrates 
upstream and downstream is. And the average temperature differences are 935, 901, 861 °C for gas velocity of 100, 150, 
200 sccm, respectively. By taking a comprehensive consideration, 150 sccm is chosen as the optimized gas velocity.

Except that the gas velocity can affect the gas distribution around substrates, the height of the substrates located in the 
tube also influences the gas distribution. To control the height of the substrates located inside the tube, the front opening 
quartz boats are placed on a flat quartz with different widths of 3, 3.5 and 4 cm (Fig. S2), which corresponds to sapphire 
substrate heights of 1.5, 1.7 and 2 cm, respectively, away from the bottom of tube. From the simulation results about the 
effect of the sapphire substrate’s height on the gas velocity distribution inside the tube (Fig. 3a–c), the higher the posi-
tion of the substrate is inside the tube, the more the gas distributes below the substrates. As Ar enters the furnace from 
the center of front end of the tube, the gas flows fastest around the central axis of the tube. As a result, when the front 
opening quartz boat gets closer to the center axis of the tube, the gas distribution below the sapphire substrate becomes 
larger. Hence, the influence of the height of the substrate inside the tube can’t simply be ignored. In addition, the tem-
perature distributions for the three heights are depicted in Fig. 3d–f. A similar trend emerges, i.e., more heat is taken away 
from the substrate when the gas is higher below the substrate near the center axis of the tube. The temperature curves 
along the middle line of the three sapphire substrates are plotted in Fig. 3g. It further demonstrated that the height of 
sapphire substrates away from the tube bottom affects not only the gas distribution below the sapphire substrates, but 
also the temperature on the surface of the sapphire substrates. And the average temperature differences between the 
sapphire substrates upstream and downstream are 910, 901, 892 °C for heights of 1.5, 1.7, 2.0 cm, respectively. Figure 3h–j 
illustrates the morphologies of as-grown  WS2 on the sapphire substrates with height of 1.5, 1.7 and 2.0 cm away from the 
bottom of the tube, respectively, when the temperature is fixed at 950 °C and the gas velocity is set to 150 sccm. There 
is also a significant change in the number and size of as-grown  WS2 on the substrates. The  WS2 flakes that grown on the 
sapphire with height of 1.7 cm exhibit larger size and more partially coalescent regions compared to the samples with 
heights of 1.5 and 2.0 cm. Hence, 1.7 cm is chosen as the optimized height by comprehensive consideration.

As known, the growth temperature can directly affect the reaction kinetic energy of W and S atoms, which in turn 
influences the domain size and growth rate of  WS2 [35]. The temperature field simulations were performed with a 
gas velocity of 150 sccm and a height of 1.7 cm of the sapphire substrate from the tube bottom. As illustrated in 
Fig. 4a–d, with the increase in set temperature, the temperature of sapphire substrate also increases and presents 
inhomogeneous distribution. Combined with the curve plotted in Fig. 4e, the temperature of the sapphire substrate 
upstream is approximately 10 °C lower than that downstream due to the effect of gas flow. Besides, it can be found 
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that the actual average temperature of sapphire substrate is much lower than the set value, with a difference between 
them of 43, 46, 49, and 51 °C at 850, 900, 950, and 975 °C, respectively. It has been reported that the higher the tem-
perature is, the higher the sublimation rate of  WO3 powder is, and the faster the growth rate on the substrates is [36]. 
At the growth temperature of 850 °C, the sapphire substrate has almost no triangular  WS2 flakes, only with small and 
irregular nuclei (Fig. 4f ), because the practical temperature of the substrate is 807 °C, which is lower than 850 °C. In 
this case, the temperature is too low to make  WO3 vapor sublimate adequately, resulting in an insufficiency of the W 
source below the substrate. When the growth temperature is 900 °C, a few triangular  WS2 flakes with size of about 
24 μm appear alone (Fig. 4g). As the temperature increases to 950 °C, the domains become larger greatly and merge 
into large scale one (Fig. 4h). Considering the use of the front opening quartz boat, more gas is distributed around 
the substrate and it takes away part of the heat from the substrates. To compensate for the temperature taken away 
by the gas, the growth temperature is further increased to 975 °C. As a result, large-area and continuous monolayer 
 WS2 film with a uniform surface topography and high coverage ratio was finally achieved on the substrates of sapphire 
(Fig. 4i). More OM images of continuous monolayer  WS2 films are shown in Fig. S3. In a word, by carefully controlling 
the above growth parameters, large-area continuous  WS2 films can be prepared and served as a potential candidate 
material for the electronic devices, especially for flexible and wearable sensors.

To verify the quality and homogeneity of the as-grown  WS2 films, large-scale and continuous films were selected 
for characterization. Raman and PL spectra measurements excited by 532 nm laser were performed on the samples 
to determine the properties of the monolayers. Figure 5a shows the in-plane (E1

2g
) and out-of-plane (A1g) phonon 

modes of the as-grown  WS2 films, which are located at 354.4 and 416.4  cm−1, respectively. The difference between 
them is 62  cm−1 that agrees with others’ reports for chemically synthesized monolayers  WS2 [37, 38]. Figure 5b displays 
the PL spectrum of the as-grown  WS2 films, which shows a strong PL peak at 618 nm (2.006 eV) assigned to the neutral 
exciton. PL intensity mapping around the peak and Raman intensity mapping at (E1

2g
) over a large area of 200 × 200 μm2 

of the continuous  WS2 film are exhibited in Fig. S4. The atomic force microscope (AFM) image of as-transferred 

Fig. 3  The COMSOL simulation of a–c gas and d–f temperature distribution for substrate with height of 1.5, 1.7 and 2.0 cm, respectively, 
away from the bottom of tube, with fixed gas velocity of 150 sccm and temperature of 950 °C. g The extracted temperature curves along the 
middle line of the three sapphire substrates. h–j The corresponding optical images of  WS2 grown on sapphire substrates
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continuous  WS2 film on  SiO2/Si with a scratch is presented in Fig. S5, indicating a height of 0.8 nm thickness of  WS2 
monolayer. These observations confirm the monolayer and continuous nature of our CVD  WS2 films [39].

Furthermore, to investigate the electrical property of as-grown  WS2, the films were transferred from sapphire to  SiO2/
Si by wet transfer procedure similar to that reported by Bao et al. [40], as illustrated in Fig. S6. Then, transistors with Cr/
Au electrode contacts were further fabricated on the transferred samples by laser direct writing lithography, followed by 
thermal evaporation deposition and removal of LOR/S1818 photoresist with acetone. The transfer characteristic curve of 
the as-fabricated transistors was measured and is plotted in Fig. 5c. It can be seen that the neutral point of the transfer 
curve locates closely to zero gate voltage, demonstrating the low intrinsic doping level in the transferred monolayer  WS2 
[41]. Additionally, the fabricated  WS2 transistor devices are typically turned on at positive gate voltage, revealing that 
the grown monolayer  WS2 is an n-type semiconducting material. Furthermore, the field-effect mobility of the device is 
extracted by

where Id, Vg, dId/dVg, L and W are the drain current, gate voltage, slope, channel length, and width, respectively. Ci is 
the capacitance between the channel and back gate, estimated as ∼1.2 F/cm2 per unit area (Ci = ε0εr/d, where ε0 is the 
permittivity of free space, εr = 3.9 and d = 300 nm) [42]. As a result, the electron mobility of the as-grown monolayer  WS2 
is calculated to be 3.76  cm2V−1  s−1 with a current modulation Ion/Ioff of ∼106. It has been reported that electrons can be 

(2)� =
dId

dVg

L

W

1

Ci

1

Vd

Fig. 4  a–d COMSOL simulation of temperature distribution around the three sapphire substrates in the front opening quartz at 850, 900, 
950, and 975 °C, respectively. e The extracted temperature curves along the middle line of the three sapphire substrates. f–i The correspond-
ing optical images of  WS2 grown on sapphire substrates
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trapped by sulfur vacancies that act as charge scattering centers and reduce the electron mobility [43], and in addition, 
grain boundaries in polycrystalline material can lead to electron scattering, and higher growth temperatures (> 900 °C) 
can introduce high density of sulfur vacancies, which may be the reasons why the electron mobility is not very high for 
our samples. Figure 5d illustrates the output characteristic curve of the as-fabricated transistor at gate voltage Vbg rang-
ing from − 60 to + 60 V in steps of 20 V. The nonlinear output characteristic indicates the existence of Schottky barrier 
between the Cr/Au metal contact and  WS2 flake at the source and drain parts [19]. The expected higher mobility can be 
achieved in future work by introducing a high-k dielectric gate and optimizing the contact electrodes [44, 45].

To verify the flexibility and sensitivity to strain of the as-grown monolayer  WS2, [46–48], a transparent strain sensor 
based on  WS2 film was fabricated on polyethylene naphthalate (PEN) substrate. Considering that the surface of the PEN 
substrate is hydrophobic, its surface first needed to be modified to be hydrophilic using a UV ozone cleaner for 40 min. 
Microelectronic flexible printer with silver ink material was used to print the interdigital electrodes on the pretreated PEN 
substrate. Also similar to the transfer method of Bao et al. [40] (as illustrated in Fig. S7), the  WS2 films were transferred to 
the PEN substrate with pre-printed interdigital electrodes, and the final as-fabricated  WS2/PEN strain sensor obtained is 
shown in Fig. 6a. The high-magnification OM images of the transferred  WS2 films on PEN with electrodes are illustrated 
in Fig. S8, demonstrating that the  WS2 films are successfully transferred onto the electrodes. In order to apply different 
strain conditions on the flexible  WS2/PEN sensor, an instrument based on the modified Vernier caliper was prepared, as 
shown in Fig. 6b. Similarly, the applied strain can be calculated by the following equation [49, 50]

where a is the thickness of PEN substrate, l is the length of the strain sensor, Dmax is the lateral shift of the free end of 
substrate, and Z0 is the distance between the fixed edge and the  WS2 flake. Figure 6c plots the I–V characteristic curves 
of the flexible  WS2/PEN sensor at different applied strain (ε = 0%, 0.1%, 0.14%, 0.17%, and 0.19%). Apparently, the I–V 
characteristics of the flexible  WS2/PEN sensor change regularly as the applied strain increases, indicating that it is very 
sensitive to the strain. When the PEN substrate is bent, the monolayer  WS2 films are elongated simultaneously leading 

(3)� = �zz = ∓3
a

2l

Dmax

l

(

1 −
Z0

l

)

Fig. 5  a–b Raman and PL spectra of as-grown  WS2 film. c–d Transfer and output characteristics of the monolayer  WS2 FET
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to an increase in resistance due to the increased distance and weakened covalent bonds between the two neighboring 
 WS2 molecules [51]. The relative change of resistance ∆R/R0 for each applied strain under voltage of 1 V is extracted, as 
illustrated in Fig. 6d. Obviously, the relative change of resistance increased linearly with increasing applied strain. The 
calculated GF = (∆R/R0)/ε is about 306, which exhibits better sensitivity than that of the strain sensors based on 2D  In2Se3 
nanosheets (~ 237) [52], bilayer (~ 230) and bulk  MoS2 (~ 200) [50], and is comparable to that of a nanographene strain 
sensor (~ 300) [53, 54]. Besides, Fig. 6e shows the stable cycle of the resistance change response to repeating prosthetic 
finger bending. When the prosthetic finger bends, the resistance increases, and when it is straightened, the resistance 
nearly decreases to the initial value. It demonstrates a stable capability of detecting the finger bending movement for 
people and human–computer interaction.

Fig. 6  a–b Pictures of as-fabricated and bending  WS2/PEN strain sensor, respectively. c I–V characteristic curves for the flexible  WS2/PEN 
strain sensor under different applied strain. d Change rate of resistance of  WS2/PEN strain sensor with increased applied strain from 0 to 
0.19%. The GF can be calculated as ~ 306. e The resistance change response to repeating prosthetic finger bending. Insets are the flexible 
 WS2/PEN sensor attached on the prosthetic finger to detect its bending condition
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Conclusion

In summary, the CVD method using the front opening quartz boat is demonstrated, by which large-area and con-
tinuous  WS2 films on sapphire substrates can be achieved successfully. The COMSOL simulations reveal that the 
front opening quartz boat can greatly enhance sulfur vapor distribution below the face-down sapphire substrate. 
Moreover, the height of the substrate located inside the tube also affects sulfur vapor and temperature distribution 
around the substrate. Size and continuity of  WS2 can be well controlled by changing the temperature, gas velocity 
and the height of the substrates located inside the tube. Finally, large-scale and continuous monolayer  WS2 films 
was achieved when the temperature was set at 975 °C, gas velocity was 150 sccm, and the sapphire substrate height 
was 1.7 cm away from the bottom of the tube. The FET based on the as-grown monolayer  WS2 shows a field-effect 
mobility of 3.76  cm2V−1  s−1 and current modulation Ion/Ioff of ∼106. Besides, a flexible and stretchable  WS2/PEN strain 
sensor was fabricated with a GF as high as 306 and well stability under multi-cycle operation. These findings provide 
a promising way to transform the basic properties of 2D materials into various wearable devices and show great 
potential applications in healthcare monitoring, e-skins, and human–computer interaction.
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