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Abstract 

In this study, for the first time, the effects of temperature and nanopowder volume fraction (NPSVF) on the viscosity 
and the rheological behavior of SAE50–SnO2–CeO2 hybrid nanofluid have been studied experimentally. Nanofluids 
in NPSVFs of 0.25% to 1.5% have been made by a two-step method. Experiments have been performed at tempera-
tures of 25 to 67 °C and shear rates (SRs) of 1333 to 2932.6  s−1. The results revealed that for base fluid and nanofluid, 
shear stress increases with increasing SR and decreasing temperature. By increasing the temperature to about 42 °C 
at a NPSVF of 1.5%, about 89.36% reduction in viscosity is observed. The viscosity increases with increasing NPSVF 
about 37.18% at 25 °C. In all states, a non-Newtonian pseudo-plastic behavior has been observed for the base fluid 
and nanofluid. The highest relative viscosity occurs for NPSVF = 1.5%, temperature = 25 °C and SR = 2932.6  s−1, 
which increases the viscosity by 37.18% compared to the base fluid. The sensitivity analysis indicated that the highest 
sensitivity is related to temperature and the lowest sensitivity is related to SR. Response surface method, curve fitting 
method, adaptive neuro-fuzzy inference system and Gaussian process regression (GPR) have been used to predict the 
dynamic viscosity. Based on the results, all four models can predict the dynamic viscosity. However, the GPR model 
has better performance than the other models.
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Introduction
Nanofluids are create of nanopowders (NPS) suspended 
in a base fluid (BF). During the last decade, much 
research has focused on rheological behavior and its 

applications. In the creation of nanofluid, one or more 
solid phases are added to the BF and augment the BF 
heat transfer rate. Some NPS, such as aluminum oxide, 
magnesium oxide and cerium oxide, are in the form of 
metal oxide and can be easily dispersed and suspended in 
liquids. Hybrid nanofluid (HNF) is a nanofluid that uses 
more than one type of NPS in its construction. Using two 
types of NPS simultaneously can create a stable combina-
tion with unique thermal properties. By the addition of 
NPS to the BF, its thermophysical specifications, includ-
ing dynamic viscosity, are affected [1–6]. Dynamic vis-
cosity is one of the influencing factors on pumping power 

*Correspondence:  m.sepehrnia@shdu.ac.ir; msepehr_91@yahoo.com; 
sdfarahani@arakut.ac.ir

1 Department of Mechanical Engineering, Shahabdanesh University, Qom, 
Iran
4 School of Mechanical Engineering, Arak University of Technology, Arak, 
Iran
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-022-03756-7&domain=pdf


Page 2 of 22Sepehrnia et al. Nanoscale Research Letters          (2022) 17:117 

and heat transfer coefficient. It affects the flow govern-
ing equations. Determining the rheological behavior as 
well as dynamic viscosity of hybrid nanofluids is a cru-
cial issue in the field, and many researchers studied the 
viscosity variations of hybrid nanofluids under different 
shear rates (SRs), nanofluid volume fraction (VF) and 
temperature [7].

Among the studies on the Newtonian behavior of 
nanofluids, Soltani et al. [8] surveyed the viscosity of the 
MgO–MWCNT/ethylene glycol HNF in 0 < NPSVF < 1% 
and 30 < temperature < 60  °C. They also stated a 168% 
rise in the viscosity of the Newtonian HNF compared 
to the BF at NPSVF = 1%. They obtainable an exponen-
tial correlation to depict viscosity variations in terms 
of temperature (T) and NPSVF of HNF. Also, Asadi 
et  al. [9] considered the rheological behavior of oil–
Mg (OH)2/MWCNT HNF in 25 < temperature < 60  °C 
and 0.25 < NPSVF < 2% experimentally. Their findings 
showed that the HNF in all temperatures and NPS-
VFs have the NB. Saeedi et al. [10] explored the perfor-
mance of cerium oxide–ethylene glycol (EG) nanofluid in 
0.05 < NPSVF < 1.2% and a 25 < temperature < 50 °C. Their 
results show the Newtonian performance of the consid-
ered nanofluid. Sepyani et  al. [11] testified the perfor-
mance of ZnO–engine oil nanofluid in 0 < NPSVF < 1.5% 
and 25 < temperature < 50  °C. Aladag et  al. [12] sur-
veyed the efficacy of T and SR on the viscosity of carbon 
nanotube–H2O and aluminum oxide–H2O nanofluids. 
According to their results, in 2 < temperature < 10 °C, the 
nanofluid containing carbon nanotubes has a Newtonian 
behavior at high SRs. In contrast, the nanofluid includ-
ing aluminum oxide has a non-Newtonian behavior. 
Esfe and Saedodin [13] observed a Newtonian behav-
ior ZnO–EG nanofluid in the 0.25 < NPSVF < 5% and 
25 < temperature < 50 °C.

Among the studies conducted on nanofluids with non-
Newtonian behavior (NNB), Esfe et al. [14] found that the 
oil–copper oxide–MWCNT HNF has a non-Newtonian 
manner in 5 < temperature < 55 °C and 0.05 < NPSVF < 1%. 
Moldoveanu et al. [15] considered the rheological perfor-
mance of water–aluminum oxide–titanium oxide HNF at 
T = 25 °C and 1 < NPSVF < 2%. They stated that the HNF 
shows NNB in the designed experiment. Liu et  al. [16] 
calculated oil–titanium oxide–silver and oil–aluminum 
oxide–silver HNFs at T = 25 °C and 1 < NPSVF < 4%. Their 
findings showed that both HNFs have the NNB. Nam-
buru et al. [17] inspected the flow features of water–EG/ 
copper oxide nanofluid in a laboratory study. They pre-
sented a correlation for viscosity in 0 < NPSVF < 6.12%, 
35 < T < 50  °C. In their study, the diameter of NPS is 
29  nm. Their findings described that the viscosity less-
ens exponentially with enhancing temperature, and 
viscosity rises with growing NPSVF. Kumar et  al. [18] 

inspected the viscosity of oil–zinc–Cu hybrid nanofluid 
with NPSVFs of 0 to 0.5%. According to their results, the 
HNF viscosity rises with the enhancement in NPSVF. 
In a laboratory study, Eshgarf et  al. [19] inspected the 
efficacy of T and NPSVF on the viscosity of water–EG–
MWCNT–silicon oxide HNF. Their results displayed that 
the HNF has the NNB. The HNF viscosity augments by 
lessening temperature and rising NPSVF. Bahrami et  al. 
[20] examined the viscosity of  H2Or–EG–Fe–CuO HNF 
in 0.05 < NPSVF < 1.5% and 299  K < temperature < 323  K. 
According to their outcomes, this nanofluid has an 
NNB and the viscosity of this nanofluid lessens by grow-
ing temperature and reducing NPSVF. Afrand et al. [21] 
experimented the viscosity of silver–iron oxide–EG HNF 
in 0.037 < NPSVF < 1.2% and 25  °C < temperature < 50  °C. 
Their outcomes illustrated that the HNF has an NNB for 
NPSVF > 0.6.

Yiamsawas et  al. [22] inspected the viscosity of  TiO2 
NPS/EG–H2O in different NPSVF and 15 < tempera-
ture < 60  °C. By extracting the correlation from the test 
results and comparing it with other correlations, they 
found that the academic correlations are not appropriate 
for calculating the nanofluids viscosity. Their proposed 
correlation was a function of BF’s viscosity, T and NPSVF. 
Cabaleiro et al. [23] experimented the viscosity of  TiO2–
EG nanofluid in 0 < NPSVF < 2.5% and 25  °C < tem-
perature < 50  °C. By determining the viscosity at several 
SRs, they found that this hybrid nanofluid has an NNB. 
Moghadam et  al. [24] surveyed the properties of gra-
phene–glycerol nanofluids in 0.0025 < NPSVF < 0.02 and 
20 < temperature < 60  °C. Based on their consequences, 
the viscosity of nanofluids rises by growing NPSVF and 
reducing temperature. They described that nanofluids are 
a non-Newtonian fluid. A summary of the investigations 
of nanofluids based on SAE50 and metal oxides is given 
in Tables  1 and 2. Various other researches have been 
done on modeling the properties of nanofluids [25–28] 
and investigating parameters affecting it [29–32] in order 
to be used in refrigeration and thermal equipment and 
lubrication of mechanical systems.

According to the studies presented in the literature, 
hybrid nanofluids containing nanomaterials such as 
MWCNT,  TiO2,  Al2O3, ZnO, MgO, CuO and  SiO2 have 
been widely discussed in terms of rheological behav-
ior and dynamic viscosity. However, the investigation of 
rheological and dynamic characteristics of hybrid nano-
fluids in the presence of tin oxide and cerium oxide has 
received less attention. Few researchers investigated the 
thermophysical properties of nanofluids containing tin 
oxide [46, 47] and cerium oxide nanopowders [10, 44, 48, 
49]. Considering that the Newtonian or non-Newtonian 
performance of nanofluid performs a significant char-
acter in thermal and flow field, it is necessary to study 
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its rheological behavior. According to this mater and 
the review done by the authors, the rheological behav-
ior of SAE50–cerium oxide–tin oxide hybrid nano-
fluid is investigated, which has not been studied so far. 
Therefore, in the current study, the dynamic viscosity of 
SAE50–cerium oxide–tin oxide–oil HNF is measured 

in 25 < temperature < 67  °C, 0.25 < NPSVF < 1.5% and 
1333 < SR < 2932.6   s−1. Then the efficacy of temperature, 
NPSVF and SR on the dynamic viscosity is investigated. 
CFM, RSM, ANFIS and ML are used to estimate the HNF 
viscosity based on the effective variables.

Table 1 Some studies based on SAE 50

Author Year NPS NPSVF (%) Temperature (°C) Behavior

Esfe and Rostamian [33] 2017 TiO2 0.5–1 25–50 NNB

Esfe et al. [34] 2019 MWCNT–CuO 0–1 25–50 NNB

Esfe et al. [35] 2019 MWCNT–TiO2 0–1 25–50 NNB

Esfe et al. [7] 2022 MWCNT–Al2O3 0–1 25–55 NNB

Table 2 Some studies of nanofluids with metal NPS

Ref. number Year NPS Base fluid NPSVF (%) Temperature (°C) behavior

Abareshi [36] 2011 Fe2O3 Glycerol 0.075–1.25 30–70 NNB

Sundar et al. [37] 2012 Fe3O4 Water/EG mixture 0–1 0–50 –

Hamid et al. [38] 2015 Al2O3 Water/EG mixture 0–2 30–70 –

Esfe and Abbasian [39] 2017 MgO–MWCNT 5w50 0–1 5–55 NNB

Esfe et al. [40] 2017 MWCNT–TiO2 10w40 0–1 5–55 NNB

Esfe et al. [41] 2017 MWCNT–Al2O3 5w50 0–1 5–55 NNB

Esfe et al. [42] 2018 ZnO–MWCNT 10w40 0–1 5–55 NNB

Esfe et al. [43] 2018 ZrO2–MWCNT 10w40 0–1 5–55 NNB

Sajeeb and kumar [44] 2019 CeO2–CuO Coconut oil 0–1 30–90 NNB

Esfe et al. [45] 2021 MWCNT–Al2O3 5w50 0.05–1 5–55 NNB

Table 3 Characteristics of nanopowders

Properties Nanopowder

Cerium oxide  (CeO2) Tin oxide  (SnO2)

Nanopowder purity 99.97% > 99.7%

Color Light yellow White

Size 10–30 nm 35–55 nm

Density (ρ) 7.132 g/cm3 6.95 g/cm3

Specific surface area 30–50  m2/g 18.55  m2/g

Image



Page 4 of 22Sepehrnia et al. Nanoscale Research Letters          (2022) 17:117 

Experiment
In the existing survey, a two-stage technique was used 
to make nanofluids. In this method, the NPS formed 
separately is dispersed in the BF with suitable methods. 
This technique is simpler and low-priced than the one-
step method. Also, this technique is proper for making 
nanofluids with oxide NPS. To prevent clumping and 
adhesion of NPS, the nanofluid was first rotated using 
a magnetic stirrer (1200 rpm speed) for 30 min. Then, 
the nanofluid was subjected to the ultrasonic waves 
tool for 2 h. The amount of time to use the magnetic 
stirrer and the ultrasonic device is determined accord-
ing to the number and type of nanoparticles and the 
user’s experience. To assess the nanofluid viscosity, the 
viscometer CAP2000 + manufactured by the American 
Brookfield Company was used [50]. SAE50 engine oil 
generated by Behran company is employed as the BF 
in this research. Cerium and tin oxide nanopowders 

were obtained from the American Nanomaterials 
Research Company. Experiments have been performed 
for the prepared samples in 1333 < SR < 2932.6  s−1 and 
25 < T < 67  °C. Table  3 shows the features of cerium 
oxide and tin oxide NPS. Table 4 shows the character-
istics of SAE50 engine oil.

The X-ray technique was employed to assess the 
NPS construction and size. Figures 1 and 2 show XRD 
images of  CeO2 NPS and  SnO2 NPS, respectivel. The 
pointed and thin peak in the XRD diagram indicates 
that both nanopowders of cerium oxide and tin oxide 
have very good crystal phase structure.

NPSVF ( ϕ ) is defined based on the mass (w) and 
density ( ρ ) of nanopowders and oil as follows:

Table 4 Specifications of the base fluid

Kinematic viscosity @ 100 °C 1.8 ×  10−5  (m2/s)

Viscosity Index (VI) 90

FLASH point 246 (°C)

Pour point  − 9 (°C)

Total base number (TBN) 4.1 (mgKOH/g)

Density @ 15 °C 0.906 (g/cm−3)

Specific heat 1900 (J/Kg K)

Fig. 1 XRD of cerium oxide nanopowders

Fig. 2 XRD of tin oxide nanopowders

Fig. 3 Hybrid nanofluid samples prepared respectively in various 
NPSVF
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Fig. 4 Shear stress changes according to SR for several NPSVFs and temperatures
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Hybrid nanofluid samples are shown in Fig.  3. The 
stability of nanofluids was checked in four weeks, and 
no lumpiness was observed.

(1)

ϕ =

w
ρ Cerium oxide

+
w
ρ Tin oxide

w
ρ Cerium oxide

+
w
ρ Tin oxide

+
w
ρ SAE50

× 100

Results and Discussion
The rheological performance of SAE50 oil–tin oxide–
cerium oxide hybrid nanofluid is studied in the labora-
tory. Nanofluids in NPSVFs (0.25 to 1.5%) were made by 
a two-step method. Experiments have been executed at 
25 < T < 67 °C and 1333 < SR < 2932.6  s−1.
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Fig. 7 Changes in dynamic viscosity with SR at different temperatures
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Nanofluid Behavior
Variations of shear tension with SR for different NPS-
VFs and temperatures are shown in Fig. 4. As expected, 
and regardless of the nanofluid’s rheological behavior, 
shear stress increases in all NPSVFs with increasing SR 
because SR and shear stress are directly related in New-
tonian and non-Newtonian fluids. The results show 
that in all NPSVFs for a constant SR, the shear stress 
and viscosity reduce with the increment in tempera-
ture. The decrement in µ causes a decrease in the shear 
stress. Also, in all the NPSVFs, the shear stress graph 
slope with the SR increases with decreasing tempera-
ture, which indicates the NNB of the SAE50 engine oil 
and the cerium oxide–tin oxide/oil hybrid nanofluid in 
the investigated NPSVFs.

The shear tension for power-law fluid is given as fol-
low as:

where τ , m, n and γ̇ are the shear stress, strength index, 
index of flow power and SR. Figure 5 shows the changes 
of the power index ( n) in terms of T in different NPSVFs. 
n < 1 for all temperatures and NPSVFs, which specifies 
the quasi-plastic behavior of the prepared nanofluid. Fig-
ure 6 shows the changes in strength index ( m ) according 
to temperature for different NPSVFs. According to Fig. 6, 
the strength index lessens with enhancing temperature in 
all NPSVFs. The viscosity is a result of the intermolecu-
lar force. With the increment in temperature, the energy 
level of the molecules increases and can overcome the 
intermolecular adhesion force.

Figure 7 demonstrates the dynamic viscosity changes 
with SR at different temperatures. The consequences 

(2)τ = mγ̇ n

indicate that dynamic viscosity lessens with boosting 
SR, which confirms the NNB of base fluid and HNF. 
The lowest reduction in viscosity with an increase 
in SR is 1.82%, which happens at T = 39  °C and 
NPSVF = 1.5%. The most significant decrease in viscos-
ity with an increase in the SR is 13.82%, which happens 
at T = 60 °C and NPSVF = 1.25%.

Figure 8 displays the dynamic viscosity variations with 
SR in different NPSVFs. The outcomes specify that µ 
reduces in all cases with rising SR, which confirms the 
NNB of base fluid and HNF.

Figure 9 shows the viscosity changes with temperature 
at different SRs. Temperature is an influencing factor 
on viscosity, and an increment in temperature causes a 
decrement in the van der Waals force, which decreases 
the fluid’s resistance to movement, so the relationship 
between temperature and viscosity is inverse, and in all 
NPSVFs, because of the augment in temperature, the vis-
cosity decreases. As the T augments from 25 to 67 °C, the 
viscosity lessens between 87.57 and 89.36%.

Figure 10 reveals the change of viscosity with NPSVF at 
different SRs. The NPSVF has a direct relationship with 
the viscosity because the addition of NPS increases the 
van der Waals force, which increases the fluid’s resist-
ance to movement, so at all temperatures, the viscosity 
reduces with the reduction in the NPSVF. The greatest 
increase in viscosity occurs with the rise in NPSVF at the 
minimum temperature (25 °C) so that at SRs of 1333 and 
2932.6  s−1, the dynamic viscosity increases by 32.13% and 
37.18%, respectively.

Figure  11 displays the relative viscosity changes with 
T for SR = 1333 and 2932.6   s−1. As can be seen, in the 
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NPSVFs of 1.25% and 1.5%, the relative viscosity is more 
than one at all temperatures. Still, in other NPSVFs, the 
relative viscosity is more than one only at T = 25 °C, and 
in other temperatures are NPSVFs smaller than unity. 
Figure 12 demonstrates the relative viscosity changes with 
NPSVF at constant SR. It is understood, at T = 25 °C, the 

relative viscosity is greater than one in all NPSVF values, 
but at other temperatures, the relative viscosity is greater 
than one only for NPSVFs greater than 1%. According to 
the results of Figs. 11 and 12, the highest relative viscos-
ity arises at T = 25 °C and NPSVF = 1.5%, which increases 
the viscosity by 37.18% compared to the base fluid.
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Fig. 10 Changes in viscosity with NPSVF at different SRs
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Fig. 11 Relative viscosity changes with temperature at constant SR
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Fig. 12 Relative viscosity change in terms of NPSVF at constant SR

Figure  13 displays the comparison of the relative vis-
cosity at T = 25  °C and SR = 2932.6   s−1 with the models 
of Einstein [51], Brinkman [52], Bachelor [53], Lund-
gren [54] and Saeedi et al. [10]. According to Fig. 13, in 
NPSVF < 1%, the experimental values obtained in the 
present study have a slight difference from the models of 
Einstein [51], Brinkmann [52], Bachelor [53] and Lund-
gren [54], but with an increase in the NPSVF for values 
more than 1% of the mentioned models does not have the 
capability to forecast the HNF performance, and there-
fore, a novel model for the viscosity of this HNF should 
be present. Table 5 shows the proposed relationships of 
relative viscosity.

Developing Model to Estimate µ
In this section, using four different methods, the dynamic 
viscosity of the SAE50 oil–SnO2–CeO2 hybrid nanofluid 
is predicted. These four methods are CFM, RSM, ANFIS 
and GPR.
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Curve Fitting Method (CFM)
To compute the µ of  SnO2–CeO2–SAE50–oil HNF using 
the CFM, the following equation is presented:

In the above equation, R2 = 0.9933 and the proposed 
model has 11 constants which are tabulated in Table 6. R2 
is the parameter to evaluate the model’s accuracy.

RSM Method
Statistical analysis (SA) was employed to estimate the 
µ of cerium oxide–tin oxide SAE50 engine oil HNF by 
RSM. Laboratory data have been used as historical data 
for modeling. The input data to this model are NPSVF, 
T and SR. The output variable is µ . Tables 7 and 8 show 
the input variables and feature response of this model, 
respectively.

Table  9 provides the SA of various models. The com-
plexity indicates the model’s number of terms. As can be 
seen, the quadratic function has the very good accuracy 
and moderate complexity and accordingly was used as 
the optimal model. If the cubic model is used, the com-
plexity is doubled compared to the quadratic model, but 
the accuracy increases by 0.0003, so the quadratic model 
is selected as the optimal model.

The variance analysis (VAAN) for the proposed model 
(based on the quadratic model) is shown in Table  10. 
The results indicate the validity of this model. The fit sta-
tistics are tabulated in Table  11. In this analysis, the  R2 
coefficient is the degree of agreement between the data 
predicted by the model and the laboratory data and is 
equal to 0.9990. This coefficient highlights the degree of 
fit of model data in the range of experimental data and 
shows the value of estimated model data for data outside 
the variety of experimental data. If Adeq. Precision < 4, it 
means that the signal-to-noise ratio is desirable [55]. In 
this model, Adeq. Precision is 496.4019.

The Box–Cox chart based on the software is illus-
trated in Fig.  14. The transform function to normalize 
data is expressed as y′ = (y)−0.26 . The dynamic viscosity 

(8)
µnf =a+ bφ + cT + dγ + eφ2

+ fT 2
+ gφ3

+ hT 3
+ iTφ + jγφ + kTγ
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Fig. 13 Comparison of relative viscosity with different models

Table 5 Proposed relations of relative viscosity

Author Correlation

Einstein [51] µ
nf

µ
f
= (1+ 2.5ϕ) (3)

Brinkman [52] µ
nf

µ
f
=

1

(1−ϕ)2.5
(4)

Bachelor [53] µ
nf

µ
f
= (1+ 2.5ϕ + 6.2ϕ2) (5)

Lundgren [54] µ
nf

µ
f
= (1+ 2.5ϕ +

25

4
ϕ2) (6)

Saeedi et al. [10] µ
nf

µ
f
= 781.4 ∗ (T−2.117) ∗ (ϕ0.2722))+ 0.05776

(T−0.7819)∗(ϕ−0.04009)

+(0.511 ∗ (ϕ2))− (0.1779 ∗ (ϕ3)) (7)

Table 6 Constants in Eq. (8)

Constants Value Constants Value

a 1970 g 68.9

b 165 h − 0.00882

c − 92.6 i − 2.09

d − 0.0212 j − 0.00055

e − 119 k 0.000316

f 1.55

Table 7 Input variables of RSM model

Factor Name Units Type Sub type Minimum Maximum Coded Low Coded High Mean Std. Dev

A Volume fraction % Numeric Continuous 0.2500 1.50 − 1 ↔ 0.25  + 1 ↔ 1.50 0.8750 0.4280

B Temperature °C Numeric Continuous 25.00 67.00 − 1 ↔ 25.00  + 1 ↔ 67.00 46.00 14.03

C Shear rate 1/s Numeric Continuous 1333.00 2932.60 − 1 ↔ 1333.00  + 1 ↔ 2932.60 2132.80 566.90
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equation extracted from RSM is exhibited in Eq. (9). The 
constant coefficients of Eq. (9) are presented in Table 12. 
Considering the simplicity and accuracy of the pro-
posed model from the RSM, it can be said that Eq. (9) is 
more appropriate for calculating the viscosity of cerium 
oxide–tin oxide–oil hybrid nanofluid than Eq.  (8). The 
proposed correlations in the present work can be applied 

for various applications, including numerical studies [56–
64], nanolubricants [65–68], enclosures [69, 70], perme-
able surfaces [71, 72], microchannels [73–76], heat pipes 
[77], heat exchangers [78–80], heat sinks [81–83], cooling 
[84] and the automotive industry [85–88].

Figure 15 reveals the regression graph. There is a good 
agreement between the estimated and the actual data. 
The 3D surface charts of the demonstration accom-
plished from the statistical examination are plotted in 
Fig. 16. As well, the efficacy of the T, NPSVF and SR on 
the model is plotted.

Machine Learning (ML): Adaptive Neuro‑Fuzzy Inference 
System (ANFIS)
Machine learning, as one of the new fields of computer 
science, has attracted the attention of researchers in vari-
ous fields of engineering in the last few decades. One of 
the goals of this science is to investigate and invent algo-
rithms based on which the computer can perform learn-
ing and prediction based on a limited set of data [89]. 
In supervised learning, ML is based on sets of labeled 
observations, output for inputs. Modeling systems with 

(9)

µ−0.26

nf
=α0 + α1φ + α2T + α3γ̇ + α4φT + α5φγ̇

+ α6T γ̇ + α7φ
2
+ α8T

2
+ α9γ̇

2

Table 8 Response feature of the RSM model

Response Name Units Observations Minimum Maximum Mean Std. Dev Ratio Transform Model

R1 Dynamic viscosity mPa s 210.00 53.7 662 209.88 157.67 12.33 Power Quadratic

Table 9 SA of different model

Source Sequential 
p-value

Adjusted R2 Predicted R2 Complexity

2FI <  10–4 0.9964 0. 9963 7

Quadratic <  10–4 0.9990 0. 9990 10

Cubic <  10–4 0.9993 0.9992 20

Quartic <  10–4 0.9996 0.9995 35

Fifth <  10–4 0.9998 0.9997 56

Table 10 VAAN for the quadratic model

Source Sum of squares df Mean square F-value p-value

Model 0.5214 9 0.0579 24,005.19  < 0.0001

A—volume fraction 0.0059 1 0.0059 2458.37  < 0.0001 Significant

B—T 0.5134 1 0.5134 2.128E + 05  < 0.0001

C—SR 0.0005 1 0.0005 197.44  < 0.0001

AB 0.0001 1 0.0001 57.97  < 0.0001

AC 1.687E−06 1 1.687E−06 0.6989 0.4042

BC 0.0001 1 0.0001 28.04  < 0.0001

A2 0.0012 1 0.0012 507.27  < 0.0001

B2 0.0001 1 0.0001 36.43  < 0.0001

C2 8.324E−06 1 8.324E−06 3.45 0.0647

Residual 0.0005 200 2.413E−06

Cor total 0.5219 209

Table 11 Fit statistics

Std. Dev 0.0016 R2 0.9991

Mean 0.2715 Adjusted R2 0.9990

C.V. % 0.5722 Predicted R2 0.9990

Adeq Precision 496.4019
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common mathematical tools such as differential equa-
tions are not suitable and efficient for complex systems 
with uncertainty. On the other hand, fuzzy systems 
by using a set of fuzzy rules can model the qualitative 
aspects of human knowledge and reasoning processes 
without the use of detailed quantitative analysis [90]. 
Fuzzy neural networks are obtained by combining fuzzy 
structures with artificial neural networks, which are used 
to identify systems and predict time series and various 

other cases. The structure of ANFIS is the result of the 
integration of adaptive neural networks and fuzzy logic; 
by applying the hybrid learning process, its parameters 
can be adjusted to model systems based on the existing 
input–output data [90]. It combines the advantage of 
using adaptive neural network and fuzzy logic.

The structure of the ANFIS model consists of five layers 
as follows: The first layer is the input nodes; in this layer, 
the degree of membership of the input nodes (the degree 
of belonging of each input) to different fuzzy intervals 
is determined by the user using the membership func-
tion. Modeling operations are performed in the second to 
fourth layers. By multiplying the input values to each node, 
the weight of each rule in the second layer is obtained. In 
the third layer, the relative weights of the rules are calcu-
lated. In the fourth layer, each node has a node function 
and is connected to all inputs and a node in the third layer. 
The last layer is the output of the network, whose purpose 
is to summarize all the output of the rules [91, 92].

Fig. 14 Box–Cox plot to specify the revised transform function

Table 12 Constants in the suggested Eq. (9)

Constants Value Constants Value

α0  + 0.096955 α5  + 3.71149E−07

α1  + 0.020142 α6  + 7.16927E−08

α2  + 0.003849 α7  − 0.015487

α3  + 2.21442E−06 α8  − 3.81169E−06

α4  − 0.000137 α9  − 7.44006E−10
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In the training phase, by modifying the parameters of 
the degree of membership based on the acceptable error, 
the output values become closer to the real values. Com-
mon training methods are error back propagation and 
hybrid methods. In the error backpropagation method, 
using the gradient descent algorithm, the error value 
is propagated to the inputs and the parameters are cor-
rected. In the hybrid method, the combination of gradi-
ent descent and least squares error is used. The random 
selection of data is one of the points that should be con-
sidered in training and testing the ANFIS network [91]. 
In the present study, MATLAB software was used for 
modeling. In this modeling, 75% of laboratory data have 
been used for training and 25% for testing. In total, 265 
experimental data are used for modeling.

The outcome of the viscosity prediction using the 
ANFIS is shown in Fig. 17a. The prediction of the ANFIS 
model offers a strong correlation (R2 = 0.9945) with the 
viscosity investigation of the current study. The errors 
(mPa  s) were found to be 16.76 (RMSE), 28.81 (MSE). 
For example, the ratio of the predicted viscosity to the 
actual state in T = 46 ◦C and SR = 1739.2 s−1 in terms 
of NPSVF is shown in Fig.  17b. Figure  18 compares 
the predicted and actual data in ϕ = 0 and 0.75%. The 
results indicate the ability of the ANFIS model to predict 
viscosity.

Machine Learning: Gaussian Process Regression (GPR)
One of the important issues in supervised learning is 
regression [93], in which despite the limited number of 

Fig. 15 Comparison between estimated and experimental data



Page 16 of 22Sepehrnia et al. Nanoscale Research Letters          (2022) 17:117 

Fig. 16 Interaction within a SR and NPSVF, b) T and NPSVF, and c T and SR on viscosity by RSM
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Fig. 17 a Comparison of ANFIS model with experimental data and 
b ratio of the predicted viscosity to the actual state in T = 46 °C and 
SR = 1739.2  s−1in terms of NPSVF

Fig. 18 Comparison of estimated data by ANFIS model with experimental data

Fig. 19 a Comparison of GPR model results with experimental data, 
and b ratio of the predicted viscosity to the actual state in T = 46 °C 
and SR = 1739.2  s−1in terms of NPSVF
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observations for a function, we want to obtain a model 
for it in order to estimate its value in points that have 
not been observed. GPR is a nonparametric Bayesian 
approach to regression that makes waves in the field of 
machine learning. GPR has several advantages, works 
well on small data sets and has the ability to provide 
a measure of uncertainty in predictions. Unlike many 
supervised ML algorithms that learn exact values for 
each parameter in a function, the Bayesian method infers 
a probability distribution over all possible values.

Gaussian process (GP) is a set of random variables, a lim-
ited number of which are integrated with Gaussian distri-
butions. Each process has a common Gaussian distribution. 
Gaussian distribution is actually a distribution between 
random variables, while the Gaussian process represents 
a distribution between functions. GPR analysis provides a 
way to classify data based on the structures embedded in 
them. In the GP, a function called distribution function f is 
defined. In this process, f is a mapping from the input space 
X to the space R. GPR algorithm models are based on the 
assumption that the set observations should carry informa-
tion about each other. Gaussian processes are a way to view 
a priori directly on the function space. Gaussian distribu-
tion is on vectors, while GP is on functions. As a result, GP 
models do not require any validation process due to prior 
knowledge of functional dependencies and data for gener-
alization, and GPR models are able to understand the pre-
dictive distribution corresponding to the test input [93].

The outcome of the viscosity prediction using GPR 
based on the supervised ML is shown in Fig.  19a. The 
prediction of the GPR model offers a strong correla-
tion (R2 = 1) with the viscosity investigation of the cur-
rent study. Also, the kernel function is Nonisotropic 
Matern 3/2 and the Basis function is linear. The model 
is optimized based on the minimum MSE by Bayes-
ian optimization. The training time for this analysis was 
4.52  s, and the errors (mPa  s) were found to be 2.147 
(RMSE), 4.61 (MSE), and 1.56 (MAE). For example, 
the ratio of the predicted viscosity to the actual state in 
T = 46 ◦C and SR = 1739.2 s−1 in terms of NPSVF is 
shown in Fig. 19b. The evaluation between actual and pre-
dicted data is done and illustrated in Fig. 20. The results 
specify the capability and accuracy of the GPR model 
in predicting viscosity. Among the models used in this 
research, the GPR model has been able to estimate the 
data with good accuracy and has been successful in com-
parison with other models.

Sensitivity Analysis
Sensitivity analysis is used to determine the sensitivity of 
µnf to changes in SR, T and NPSVF. For this purpose, sen-
sitivity is defined as:

(10)

Sensitivity (%) =

(

µnf, After change − µnf, Base condition

µnf, Base condition

)

× 100

Fig. 20 Comparison of estimated data by GPR model with experimental data
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Sensitivity analysis is a criterion that displays the 
dependency of dependent variable ( µnf ) to a certain 
change in each of independent variables (T, NPSVF and 
SR). The sensitivity behavior to changes of + 10% by SR, 
T and NPSVF is plotted in Fig.  21. The results specify 
that at ϕ = 1.5% , with the increase in the SR (Fig.  21a), 
the changes in sensitivity do not have a significant and 
uniform trend, and the maximum value of sensitivity 
is about 1%. Also, the average sensitivity increases with 
increasing temperature (Fig.  21b), so that the sensitiv-
ity value at T = 25  °C and 60  °C is about 16% and 21%, 
respectively. At a constant SR, the sensitivity increases 
with the increase in the NPSVF (Fig.  21c), so that for 
the NPSVF of 0.25%, 0.5% and 0.75%, the maximum 

sensitivity is about 1%, but for NPSVF = 1% and 1.25%, it 
is 3% and 6%, respectively.

Conclusion
In this exploration, the viscosity of tin oxide–cerium 
oxide hybrid nanofluid was examined in the temperature 
(25–67  °C), NPSVF (0.1–5%) and SR (1333–2932.6   s−1). 
The results specified:

• At all considered states, the nanofluid has a non-
Newtonian pseudo-plastic performance.

• At a constant temperature for all NPSVFs, as the SR 
increases and the temperature decreases, the shear 
stress increases.

Fig. 21 Sensitivity analysis diagram for the cerium oxide–tin oxide/SAE50 hybrid nanofluid
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• The dynamic viscosity decreases with increasing SR 
and temperature and decreasing NPSVF. It can also 
be seen that viscosity is very sensitive to tempera-
ture changes compared to other parameters. The 
highest relative viscosity occurs at T = 25  °C and 
NPSVF = 1.5%, which shows that the nanofluid vis-
cosity has augmented by 37.18%.

• The coefficients of determination of the four mod-
els: CFM, RSM, ANFIS and ML are 0.9933, 0.9990, 
0.9945 and 1, respectively. Therefore, the GPR model 
extracted from the ML is more accurate than other 
models.

List of symbols
m: Strength index (Pa  sn); n: Index of flow power; T: Temperature (°C); w: Mass 
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viscosity (Pa s).
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