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Abstract 

Recently, various resistance-based memory devices are being studied to replace charge-based memory devices to 
satisfy high-performance memory requirements. Resistance random access memory (RRAM) shows superior per-
formances such as fast switching speed, structural scalability, and long retention. This work presented the different 
filament control by the DC voltages and verified its characteristics as a synaptic device by pulse measurement. Firstly, 
two current–voltage (I–V) curves are characterized by controlling a range of DC voltages. The retention and endur-
ance for each different I–V curve were measured to prove the reliability of the RRAM device. The detailed voltage 
manipulation confirmed the characteristics of multi-level cell (MLC) and conductance quantization. Lastly, synaptic 
functions such as potentiation and depression, paired-pulse depression, excitatory post-synaptic current, and spike-
timing-dependent plasticity were verified. Collectively, we concluded that Pt/Al2O3/TaN is appropriate for the neuro-
morphic device.
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Introduction
In an environment where data demand is rapidly increas-
ing, a breakthrough is needed in computing performance 
limitations due to serial processing of CPU and memory 
[1]. It is necessary to change the computing structure and 
improve the materials of the memory device to solve the 
memory wall. Neuromorphic computing architecture is 
emerging as a structural solution to the bottleneck. The 
neuromorphic computing system mimics the neuron and 
synapses of the human brain [2–4]. This system is suita-
ble for the process of complex and unstructured informa-
tion. First of all, to implement neuromorphic computing, 
it is necessary to understand how the human brain pro-
cesses information. The human brain includes numer-
ous synapses and neurons, and learning and memory of 

information proceed through parallel chemical interac-
tions. Information processing and memory capabilities 
vary depending on various factors such as the size, hold-
ing time, and a repetition time of external signals and 
stimuli [5–7].

Among various memories, the RRAM exhibits a fast 
switching speed and a low operating voltage [8–15]. In 
addition, RRAM could be implemented in a simple struc-
ture such as a metal-oxide-metal (MIM) with various 
structural expandability [16–21] such as the connection 
of transistor with each memory cell, an array structure, 
and a 3D vertical structure.

The switching of RRAM occurs by the formation and 
rupture of filament in an insulator between the met-
als [22–26]. The resistance of RRAM is varied through 
a conductive filament composed of oxygen vacancy in 
the insulator existing between the top electrode (TE) 
and bottom electrode (BE) and has two basic switching 
states (high and low) to process the data storage pro-
cess [20, 27–30]. In the case of the high-resistance state 
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(HRS), a low current flows in HRS, and in the case of the 
low-resistance state (LRS), it means a state has low resist-
ance and good conductivity. Accordingly, the on/off state 
could be monitored through the read voltage. The repeti-
tion of set and reset processes cause the device to move 
back and forth between the HRS and LRS, which can be 
described as a memory that stores 0 and 1 from a digital 
perspective.

In this paper, the gradual resistive switching is con-
ducted on Pt/Al2O3/TaN device, including Al2O3 high-k 
dielectric [31–35], which was deposited by atomic layer 
deposition (ALD) equipment. The characteristics using 
basic DC current sweep and on/off endurance character-
istics were measured, and the suitability of neuromorphic 
devices was also measured through synaptic measure-
ment, including potentiation, depression, PPD, EPSC, 
and STDP.

Experiments
Pt/Al2O3/TaN device was fabricated as follows. Firstly, 
TaN as BE was deposited by the sputtering system on 
SiO2/Si wafer. A 5-nm-thick Al2O3 film was deposited 
by the ALD process. In the ALD process, TMA precur-
sors and O3 were used at stage temperature 450 °C. Then 
a 100-nm-thick Pt as TE was deposited by evaporator in 
which the top pattern was formed in a circular pattern by 
using a shadow mask with a diameter of 100 µm. For the 
measurement environment, all measurements were per-
formed at room temperature and ambient atomic pres-
sure. Electrical data were measured using the Keithley 
4200-SCS semiconductor parameter ultrafast module 
and in pulse mode using a 4225-PMU ultrafast module.

Results and Discussion
Figure  1a shows the schematic illustration of the fabri-
cated Pt/Al2O3/TaN device. In Fig. 1b, the cross section 
of the Pt/Al2O3/TaN RRAM device is inspected by a 
transmission electron microscope (TEM). The thickness 
of the Al2O3 insulator layer deposited by the ALD system 
is about 5 nm. In Fig. 1c, energy dispersion X-ray spec-
troscopy (EDS) mapping of each element was performed 
to investigate possible chemical interactions. EDS map-
ping shows the spatial distribution of elements in Pt/
Al2O3/TaN. EDS maps of Pt, Al, O, Ta, and N elements 
were collected in the area shown in the electronic image. 
A region where O and Ta overlap is observed, indicat-
ing The TaON interface layer between the Al2O3 insula-
tor and TaN BE is formed by a chemical redox reaction 
between the TaN BE and the lower Al2O3 layer due to the 
strong oxygen binding of TaN [36–38]. Because of the 
formation of the TaON interface layer by extracting oxy-
gen from the Al2O3 layer by TaN, better switching char-
acteristics could be exhibited according to the formation 

of the oxygen vacancy near the TaON/Al2O3 interface 
[38].

In order to confirm the TaON layer, the X-ray photo-
electron spectroscopy (XPS) spectra fittings were con-
ducted. Figure 2a shows the Al 2p XPS spectra in which 
peak intensity is located at 75 eV for Al–O bonding [39]. 
Figure 2b and c shows Ta 4f and N 1s XPS peak for the 
TaON layer. In Fig. 2b, small peaks exist at higher binding 
energy than general Ta 4f XPS peaks. This indicates that 
the binding Ta–O or Ta–Al energy also affected the Ta 
4f XPS peaks with binding Ta–N energy [40, 41]. From 
Fig. 2c, through combination with oxygen, N 1s XPS peak 
shows more biased to higher binding energy than the 
normal N 1s peak [42]. As a result, a thin layer of TaON 
exists between the Al2O3 insulator and the TaN BE.

Next, we investigate two types of bipolar resistive 
switching by DC sweep. All of the above I–V charac-
teristics were measured at a step voltage of 0.01 V. Rep-
resentative feature of this device shows forming-free 
characteristics in Fig.  3a [43]. The set process has simi-
lar I–V curves as the forming process, and the set pro-
cess occurs at − 2  V or higher, and the reset process is 
induced by applying a 2.75 V. This is referred to as a deep 
reset curve. At this time, the on/off ratio is about 45,000 
based on the read voltage of 0.5 V, which is a character-
istic due to a large band gap of Al2O3. Set shows abrupt 
behavior, and in the reset process, it shows a curve that 
returns to the HRS state with a stepwise drop from 1 V 
or higher to 2.7 V. In the case of Fig. 3b, unlike Fig. 3a, it 
can be implemented by adjusting reset voltage less than 
2.75 V. This is referred to as a partial reset curve, and the 
on/off ratio at this time is about 13 at the read voltage of 
0.5  V. Compared to the I–V curves with fully reset, the 
I–V curves with partial reset process shows more gradual 
characteristics in the set and reset processes. Both I–V 
characteristics have self-compliance characteristics [44]. 
The method of connecting the two differences in Fig. 3a 
and b can be confirmed by a continuous DC sweep in 
Fig. 3c. The deep reset occurs when the larger voltage is 
applied, indicating that the strength of the reset can be 
controlled by the voltage adjustment. The current flows 
in the HRS induced by the partial reset and an additional 
reset occur, which lowers the current level due to addi-
tional filament decomposition. Figure 3d exhibits a pos-
sible switching mechanism of partial reset (left) and deep 
reset (right) curves. As confirmed in Fig. 2, Al–O bond-
ing has higher binding energy than that Ta–O bonding. 
This suggests that switching depends on the TaON layer 
when the small electric field is applied and on the Al2O3 
layer when it is a large electric field. Thus, oxygen ions 
formed between TaN and TaON affect the conduction 
mechanism of the device and are estimated to result in 
MLC characteristics [3, 45, 46]. Gradual partial reset with 
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Fig. 1  a Schematics image of Pt/Al2O3/TaN device, b cross-sectional TEM image, c EDS mapping images of Pt, Al, O, Ta and N elements collected 
from the area indicated in the TEM image of the Pt/Al2O3/TaN device
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Fig. 2  XPS spectra of a Al 2p, b Ta 4f and c N 1s of the device
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MLC occurs in the TaON layer within the − 2.2 V region. 
However, the more electric field induces the filament 
decomposition inside the Al2O3 and causes the abrupt 
current decrease during the reset process. In Fig. 3e, HRS 
and LRS were confirmed in the read operation of 0.5 V to 
demonstrate state uniformity. Since the filament decom-
position depends on the magnitude of reset voltage, HRS 
varies more severely than LRS. Also, more decomposi-
tion demands more set voltage to re-form the filaments. 
Variation of set voltage is shown in Fig. 3f and it varied 
from − 1.25 to − 0.75 V in accordance with the previous 
reset cycle process.

In Fig.  4a, the endurance characteristics were also 
measured for partial I–V conditions using pulse for 105 
cycles. It shows that HRS and LRS can be switched even 
at 105 or more times. In Fig.  4b, it is the result of per-
forming the retention test for each I–V characteristic 
including partial and deep resets. HRS and LRS were 
measured at the read voltage of 0.15  V, and both states 
were maintained for 104  s. These results show the Pt/
Al2O3/TaN device has good non-volatile memory prop-
erties. Multi-level cell characteristics are very beneficial 
for practical applications such as high-density memory 
and neuromorphic device [43, 47, 48]. Figure  4c shows 
a reset process by increasing the reset voltage by 0.2  V 
for each cycle. Through this process, as the reset volt-
age increases, multiple HRS is achieved. In Fig. 4d, based 

on the reset voltage at the boundary between the par-
tial reset and deep reset, the reset process was repeat-
edly measured while increasing 0.025  V from 1.8 to 
2.35 V. It could be verified that the current level gradually 
decreases, and this could prove the existence of various 
multi-level states.

The property of conductance quantization [49–52] 
was confirmed. This is thought to be due to the quanti-
zation effect of conductive filament during the reset pro-
cess. When the conductive filament is well controlled, it 
is possible to implement more state and higher density 
memory through this phenomenon. As shown in Fig. 5a, 
this phenomenon can be observed when the conductive 
filament is modified in atomic units. The step voltage 
of 0.002  V and delay time of 0.3  s every step is used to 
observe quantization in multiple cycles, and only elemen-
tal disruption of the filament was measured during the 
reset process. The conductance quantum, represented 
by the symbol G0, is the quantized unit of electrical con-
ductance. It is defined by the elementary charge e and 
Planck constant h as G0 = 2e2/h = 7.74809 × 10–5 S. The 
device takes an integer multiple of G0 or an intermedi-
ate value between integers. In the end, LRS is changed to 
HRS. The statistical analysis is essential through multi-
ple cycles [53–57]. Figure  5b shows the histogram plot-
ting, and it can be seen that even in various conductance 
steps, there is a high tendency near a multiple of G0 or 
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a half multiple [58–61]. It is noted the values between 
0.5G0 and 3G0 are distinctly distinguishable. It may be 
necessary to make the conducting filament smaller by 
means of a method such as making the device smaller in 
order to distinguish the quantized values. Pulse measure-
ments were performed in Fig.  5c and d to describe the 
quantized conductance [62–64]. Conductance calculated 
with the voltage of 0.5  V was induced by adding write 
pulses at 0.5 s intervals. In Fig. 5c, an incremental write 
pulse increased by − 25 mV from − 0.7 to − 1.775 V was 
used and the abrupt set operation occurred at a voltage 
of − 1  V or higher. The conductance in HRS increases 
more than 10G0 at a time due to the abrupt characteristic 
in the set region. This characteristic was also confirmed 
in the I–V curve in the inset image of Fig. 5c, which MLC 
implemented by limiting compliance current. In contrast, 
conductance quantization with the erase pulses com-
posed by 25 mV from 1.5 to 2.175 V were ranged of about 
G0. From those two different conductance ranges show 
that it is more ease to implement MLC during reset pro-
cess due to the clear state distinction.

A neuromorphic computing system can be imple-
mented using multi-level cells in Pt/Al2O3/TaN devices. 
As shown in Fig.  6a, the conductive filament connect-
ing the TE and BE of RRAM can be expressed very 
similarly to the human’s biological system [43, 65–67]. 
In order to confirm the suitability of neuromorphic 
computing, pulse measurements were conducted. In 
Fig. 6b, conductance control is continuously performed 
through 5 cycles of potentiation and depression by 
applying the pulses. Potentiation and depression were 
set to − 1.15 V and 1.3 V, respectively, and both pulse 
widths were set to 10  sµ. From the I–V characteristic 
of the set process, relatively abruptness in the poten-
tiation can be confirmed. It could be verified that the 
depression part has a more gradual characteristic. 
Moreover, we demonstrate more gradual and sym-
metric resistance-change characteristics by control-
ling the voltage amplitude of pulses in Fig. 6c [68, 69]. 
Each 6 potentiation and depression segments are used 
to increase and decrease the conductance. The voltage 
varied from − 0.9 to − 1.4 V for potentiation and from 
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1.35 to 2.85 V for depression. Figure 6d shows MNIST 
pattern recognition simulation results by using the con-
ductance results of Fig. 6b and c [70, 71]. The result of 
using Fig. 6c shows higher accuracy for each epoch. In 
other words, pulse improvement measurement pro-
vides a better learning process.

Synaptic functions, such as PPD, EPSC, and STDP 
measurements, were performed to determine suit-
ability for the neuromorphic application [72–74]. Fig-
ure  7a shows the device’s PPD measurement data, the 
ratio change between two pulses was confirmed when 
the seven different intervals were used. Synaptic weight 
changed with the time interval ranging from 20  μs to 
5  ms between two consecutive depression pulses. The 
amount of synaptic weight change was expressed as 
ΔW = (A2 − A1)/A1 × 100 (%). As a result, the current 
responded by the second pulse decreases as the interval 

increases, indicating that the device is suitable for imple-
menting STP. Figure  7b illustrates conductance changes 
before and after giving five identical write pulses and 
summarizes them with pulse amplitudes. As the voltage 
amplitude increases, both potentiation and depression 
have a larger synaptic weight change. Continuous stim-
ulation raises EPSC; the degree of weight strengthening 
can be adjusted according to the amplitude. The strength 
of connections between neurons in biological synapses 
can be controlled by STDP. Therefore, if we can elucidate 
the detailed mechanisms of biological synaptic action and 
imitate the action behavior, it will be possible to mimic 
the energy-efficient processing of the human brain. Fig-
ure 7c explains the configuration of the STDP protocol. 
When the pre-spike signal and post-spike signal, which 
vary with the interval, were applied to the biological 
synapses, the weight was changed and implemented 

Fig. 7  a PPD measurement, b EPSC data according to amplitude. STDP characteristics: c Schematic for measurement imitation between synaptic 
neural structure and RRAM, d pulse authorization for STDP measurement at Δt = 60 μs and e result of STDP measurement



Page 8 of 10Lee et al. Nanoscale Research Letters           (2022) 17:84 

according to the learning behavior. This process was 
mimicked on the memristor in the same way. The pulse 
protocol in Fig. 7d was used for the measurements. The 
same pre and post-signal were composed, but the differ-
ent shape of pulses was finally configured and applied 
according to the interval. Since the final pulse configura-
tion was different, the synaptic weights over time had dif-
ferent weight changes, as shown in Fig. 7e [2, 75, 76]. In 
general, the shorter the absolute time of the spike time 
difference, the greater the change in conductance change 
like a biological synapse.

Conclusions
As a result, the MLC characteristics and quantized con-
ductance were confirmed through the Al2O3-based 
RRAM device deposited with ALD, and excellent biologi-
cal characteristics were investigated through pulse meas-
urement. DC I–V bipolar switching characteristics were 
verified through DC measurement, and it was verified 
that switching characteristics of two different characteris-
tics could be easily controlled only by adjusting a voltage. 
Multi-levels in various cases were confirmed by varying 
the amount of voltage that adjusts different characteris-
tics, and the conductance quantization phenomenon was 
also confirmed within the reset section and pulse meas-
urements. This MLC phenomenon was connected with 
pulse measurement to measure potentiation and depres-
sion, and it was possible to maximize MLC characteris-
tics through voltage control of each segment. Including 
PPD and EPSC, through the measurement of STDP, the 
change in the conductance weight of the device was con-
firmed by imitating the synapse. In conclusion, the MLC 
characteristics of the device and the suitability of neuro-
morphic computing were successfully completed.
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