
Zamani‑Alavijeh et al. 
Nanoscale Research Letters           (2022) 17:52  
https://doi.org/10.1186/s11671‑022‑03688‑2

NANO EXPRESS

The Growth of Polarization Domains 
in Ultrathin Ferroelectric Films Seeded 
by the Tip of an Atomic Force Microscope
Mohammad Zamani‑Alavijeh1,2, Timothy A. Morgan2, Andrian V. Kuchuk2 and Gregory J. Salamo1,2* 

Abstract 

Piezoresponse force microscopy is used to study the velocity of the polarization domain wall in ultrathin ferroelectric 
barium titanate (BTO) films grown on strontium titanate (STO) substrates by molecular beam epitaxy. The electric field 
due to the cone of the atomic force microscope tip is demonstrated as the dominant electric field for domain expan‑
sion in thin films at lateral distances greater than about one tip diameter away from the tip. The velocity of the domain 
wall under the applied electric field by the tip in BTO for thin films (less than 40 nm) followed an expanding process 
given by Merz’s law. The material constants in a fit of the data to Merz’s law for very thin films are reported as about 
4.2 KV/cm for the activation field, Ea , and 0.05 nm/s for the limiting velocity, v∞ . These material constants showed a 
dependence on the level of strain in the films, but no fundamental dependence on thickness.

Keywords: Polarization domains, Applied electric field by AFM tip, Merz’s law

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Introduction
There have been several recent studies of ferroelectric 
polarization domain formation under an applied elec-
tric field [1–15], many of which have focused on the 
application of PFM to both form and probe polariza-
tion domains [6–16]. In the PFM technique, the tip of 
an atomic force microscope (AFM) makes contact with 
a thin film at a specific point and applies an electric 
potential across a thin film using the AFM tip as one 
electrode and the back side of the sample as the sec-
ond electrode (Fig.  1a). As a result, an electric field is 
applied to the film in a region that is defined by the tip 
geometry at the point of contact. The electric field in 
the region just beneath the tip is nearly perpendicular 
to the thin film surface, except for fringing electric field 
effects. Under the force of the applied electric field, the 
ferroelectric dipoles align in a direction dependent on 

the field direction and crystal orientation, resulting 
in the formation of aligned dipoles directly under the 
AFM tip [6–15]. This is observed using the PFM to scan 
over the thin film which measures and maps out the 
polarization perpendicular to the surface. However, the 
ferroelectric dipoles are not only observed to quickly 
align perpendicular to the surface directly below the 
hemisphere of the tip, but also slowly expand laterally to 
a region beyond several tip diameters [6–15] (Fig. 1b). 
The expansion is observed to depend on the magnitude 
of the electric field [6–8, 14, 16], temperature [1, 6, 17, 
18], and importantly, defects and strain in the material 
[19, 20]. This expanding region of dipole alignment per-
pendicular to the surface is referred to as a polarization 
domain, the process of aligning the dipoles as poling 
and its dynamic expanding edge as a domain wall. Sev-
eral explanations for the observed expanding polariza-
tion domain in thin films have focused on treating the 
AFM tip as a point charge and argued a dependence on 
thin-film thickness [6–15]. Here we give a totally differ-
ent explanation based on: (1) the electric field produced 
by the potential due to the cone geometry of the AFM 
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tip as opposed to a point charge at the AFM tip and (2) 
that the speed of the expanding domain is fundamen-
tally independent of the thickness of ultrathin ferroe-
lectric films.

The velocity of the lateral expansion of this domain 
wall is predicted by [8–11, 19, 21]:

In this equation, v is the velocity of the lateral expansion 
of the domain wall; E, the applied electric field; v∞ , the 
limiting velocity for an infinite applied electric field; U, 
the energy barrier between the initial and final polariza-
tion; Ec , the critical electric field; k, the Boltzmann con-
stant; T, the sample temperature; and µ , an exponent 
factor [19, 20, 22, 23]. In the case that the exponent µ 
is equal to 1, the equation for the domain wall velocity 
reduces to an expression referred to as Merz’s law [1]:

(1)v = v∞ exp

(

−

U

kT

(

Ec

E

)

µ

)

where Ea is called the activation field and is equal to 
(UEc)/(kT ) . Physically, the phenomena of the expand-
ing polarization domain caused by the AFM tip can be 
understood as due to the decrease in the magnitude of 
the applied electric field perpendicular to the film, as a 
function of the lateral distance from the tip, and the cor-
responding electric field-dependent probability per unit 
time of aligning ferroelectric dipoles. Since the elec-
tric field is lower, further from the tip, the probability of 
aligning ferroelectric dipoles is lower, and it consequently 
takes a longer time to align dipoles, resulting in a pro-
gressively expanding domain region and domain wall.

While this behavior, expressed in Eqs. 1 and 2, has been 
investigated [6–15, 24, 25] by several investigators, the 
role of the thickness of the ferroelectric thin films is not 
yet clear. This is evidenced by the fact that very different 
models for the lateral spatial dependence of the electric 
field perpendicular to the surface, away from the AFM tip 
(Fig. 1a), have been proposed to describe the lateral expan-
sion of the domain wall, and these models vary on the 
role of the film thickness [6–15, 26, 27]. In this paper, our 
objectives are to: (1) demonstrate that the electric field in 
an ultrathin film due to an AFM tip, at a lateral distance of 
only one tip diameter away from the tip (Fig. 1b), in a direc-
tion perpendicular to the surface, is produced by the cone 
of the tip rather than produced by the hemisphere of the 
tip; (2) uncover the dependence of the lateral expansion of 
the polarization domain on film thickness and electric field; 
and (3) determine the corresponding material constants, µ , 
Ea and v∞ for BTO thin films.

Experimental Method
Applied Electric Field in Thin Film by AFM Tip
The experimental setup used to study domain formation 
and its lateral expansion, and an AFM tip are depicted in 
Fig. 1a.

Using this experimental setup, several different analytic 
approximations have been developed for the electric field 
in the film perpendicular to the surface. For example, in 
one case, the spherical section of the AFM tip is treated 
as an effective point charge and used to find the electric 
field in the film at all lateral distances away from the tip 
[7, 8, 12, 26, 27]. Other researchers [10, 13, 14] have used 
the electric field of the AFM tip to be given by a point 
charge only for r >> a as:

In Eq. 3, V is the applied voltage; a, the tip apex radius; 
r, the lateral distance from the tip–surface contact 

(2)v = v∞ exp

(

−

Ea

E

)

(3)Ez(r) =
Va

rd

Fig. 1 a For the conductive AFM tip‑ferroelectric film‑conductive 
substrate, the origin is at the tip–surface contact point; V is the 
applied voltage; a, the tip apex radius; r, is the lateral distance from 
the origin; r0 , the distance between the intercept of the cone with the 
surface and the origin; d, the thickness of the film; and θ0 , the cone 
half angle. [001] is the c‑direction of the film and [100] the a‑direction. 
b Polarization domain expands over time under the electric field 
applied by the AFM tip. ri is about a tip diameter away from the origin 
and where the electric field due to the cone dominates



Page 3 of 8Zamani‑Alavijeh et al. Nanoscale Research Letters           (2022) 17:52  

point; and d, the thickness of the film. In general, ana-
lytic approximations for the electric field in the film due 
to the AFM tip have been preferred over exact numeri-
cal simulations because they can be immediately used to 
verify Eqs. 1 or 2 by comparing directly with experimen-
tal observations for the observed velocity of the domain 
wall. In this paper, we define the geometry of the tip as 
composed of two parts: a hemisphere which is attached 
to a truncated cone (Fig.  1). Consequently, we also 
assume that the electric field due to the tip in the thin 
film, perpendicular to the surface, Efilm

z  , can be modeled 
as the electric field due to the tip hemisphere, Etip

z  , plus 
the electric field due to the truncated cone, Econe

z .

It is important to note, however, that all published 
expressions for the electric field in the thin film neglect 
the electric field due to the cone section of the tip, when 
examining the velocity of the domain wall [6–15]. This is 
a reasonable assumption for films that are thicker than 
the tip radius and for distances very close to the tip where 
the fringing field of the tip hemisphere is greater than the 
electric field of the cone. However, for thin films, the per-
pendicular component of the field due to the hemisphere 
is very small at distances on the order of one tip diam-
eter away from the tip. In this case, the electric field at the 
film due to the cone becomes dominant and must be con-
sidered. In this paper, we only consider the velocity of the 
domain wall at lateral distances greater than about one 
tip diameter away from the tip for which Efilm

z ≈ Econe
z  

applies. While the current investigation is focused on the 
expansion of the polarization domain in BTO, it is impor-
tant to also consider the domain expansion as a good test 
for an accurate expression for the electric field due to an 
AFM tip. When the AFM tip is used to study the electro-
mechanical response of materials, a good understanding 
of the expression for the electric field produced by the tip 
can be critical [28, 29]. To find an analytic expression for 
the electric field due to the cone in the film, we used the 
Laplace equation in the spherical coordinate system with 
electric field boundary conditions. The details of finding 
the electric field due to the cone are geometrical and are 
given in Additional file 1. The analytic expression for the 
component of the electric field due to the cone, perpen-
dicular to the film surface, is given by:

In Eq. 5, ǫc is the dielectric constant of the BTO film in 
the c-direction; r, the lateral distance from the origin; 
r0 , the cone intercept with the surface from the origin; 
V, the applied voltage; θ0 , the cone half angle of the tip; 

(4)Efilm
z = E

tip
z + Econe

z

(5)Ez(r) =
V

(r − r0)ǫc | ln | tan θ0
2 ||

r > ri

and ri , the radius of the domain before domain expan-
sion is dominated by the cone electric field (Fig. 1). In our 
model, we considered the AFM tip specification as meas-
urement parameters, and when different tips are used, 
the tip parameters ( r0 , θ0 ) should be known and substi-
tuted in Eq.  5 to arrive at the same values of activation 
field and limiting velocity. Therefore, we used a reference 
sample designed for calibrating AFM tips (test grating 
tips (TGT1) made by ScanSens), to determine the tip 
parameters: r0 , θ0 and a (see Fig. 1 and Additional file 1).

Measurement
The experimental measurements were taken on ferroe-
lectric BTO ultrathin films (2, 10 and 40 nm), grown by a 
Riber 32 MBE, on strontium titanate doped with niobium 
(STO(0.05% Nb)) (purchased from CrysTech) using the 
shutter-RHEED method [30]. The growth temperature 
was 650 ◦ C, and barium and titanium cells were oper-
ated at 590 ◦ C and 1830 ◦ C, respectively. RHEED oscilla-
tions indicate the thickness of the films to be 2, 10 and 40 
nm and are given in Additional file  1 (Additional file  1: 
Fig. S3). Each RHEED oscillation indicates the added 
growth of one BTO monolayer, which corresponds to a 
thickness of 0.4 nm. The root mean square (RMS) of sur-
face roughness (Rq) of the films measured by AFM were 
0.16, 0.19 and 0.24 nm for 2, 10 and 40 nm films, respec-
tively, which corresponds to the order of one monolayer 
of BTO, and XRD 2 theta–omega shows a single-crystal 
structure for BTO films (See Additional file 1; Additional 
file 1: Fig. S4 and Additional file 1: Fig. S5) .

BTO is one the most investigated ferroelectric materi-
als and is utilized in many applications including capaci-
tors [31], electro-optical and electromechanical devices 
[32], dynamic random access memories [33] and among 
others due to its excellent dielectric, ferroelectric and 
piezoelectric properties [34, 35]. The formation of polari-
zation domains can play a role in each. BTO can have 
dipoles aligned along any one of the three perpendicu-
lar crystal directions: [001], [010] or [100] [34]. The fer-
roelectric state of the films was aligned (poled) upward 
([001] direction) or downward ([00-1] direction) by 
choosing the applied potential to be positive or negative. 
To observe the polarization direction, we measured the 
vertical component of polarization (Fig. 2) using an AFM 
D3100 Nanoscope V with PFM tips (SCM-PIT-V2) both 
made by Bruker. The specification of the AFM tips given 
by the manufacturer was confirmed using our measure-
ments on the reference sample (TGT1). These data are 
given in Additional file 1.

At the start of each experiment, we prepared our sam-
ple with dipoles aligned in the downward direction [00-1] 
or opposite to the growth direction, forming a micron-
size poled region (Fig. 2). After preparing the initial state, 
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the tip was placed only at one specific spatial point in the 
poled region (as opposed to scanning when preparing 
the sample), for a given time t. As a result, ferroelectric 
dipoles began flipping as soon as the tip made contact 
with the surface and continued aligning in the [001] direc-
tion for a time t with the tip always fixed at the same spe-
cific point (Fig. 1b). This was followed by examining the 
change in the poled region of the film by PFM, scanning 
with a Vac of 1 V, at a frequency of 26 KHz. Repeating the 
same measurements for different times t indicated that 
a large, circularly symmetric, polarization domain was 
formed, with dipoles aligned along the [001] direction, 
and increased in diameter as a function of time for all 
three film thicknesses (Fig. 3). While the induced polari-
zation is probed here conveniently using the same AFM 
tip, any method to probe the polarization could be used. 
To create the domains, the same AFM tip was used in 
each measurement for accuracy and comparison between 
different samples. During the measurement, the tip size 
was also periodically measured by using the reference 

sample (TGT1) to assure no noticeable tip deformation 
had taken place over the course of the measurements. In 
addition, a minimal contact force (0.05 V deflection set 
point) was used during scanning to help reduce tip defor-
mation and the influence of stress induced by the tip on 
the polarization domain. Before each measurement, the 
sample is preheated to 200◦ C to reduce the possibility of 
any water content at the surface, which has been noted 
to affect ferroelectric domain formation [36–41]. Meas-
urements were always taken after thermal equilibrium at 
room temperature was established to avoid thermal drift 
between the sample and AFM tip, and all measurements 
were taken at room temperature (68◦ F within 1 ◦F). A 
constant low flow of dry nitrogen was also used around 
the sample in the AFM to minimize surface contamina-
tion. We found each of these to be important conditions 
to obtain reproducible results.

Results and Discussion
To study the velocity of the domain wall, we measured 
the position of the domain wall as a function of time, 
which was then used to find the constants µ , Ea and v∞ . 
For example, a series of measurements for the average 
velocity, vave , between two consecutive measured domain 
sizes [10, 42, 43] were used to find µ for the BTO films. 
To determine the domain size, the edge of the piezo-
electric response of the domain is fitted to a Gaussian 
function followed by calculating the position for half 
the maximum amplitude at the domain edge. This point 
was then used to calculate the domain radius. The error 
bar is based on the error of the Gaussian fitting, which 
was small (Figs. 5, 6). For example, for 30 min, using 4V, 
the radius is 70.5±3.5 nm, while it is 104.0±2.5 nm for 
8 V. The logarithm of the resulting average velocity ver-
sus the lateral distance from the tip is plotted for all the 
film thicknesses in Fig. 4. The data are taken with AFM 
tip #1 by applying 7 V to form the domains for all three 
thicknesses (Fig.  3). By putting the electric field due to 
the cone (Eq. 5) in Eq. 1, the logarithm of velocity is as a 
function of (r − r0)

µ . A straight line can be fitted for the 
region larger than about one tip diameter (120 nm) from 
the AFM tip indicating the exponent, µ , in Eq. 1 is 1 for 
all the BTO films. Therefore, µ = 1 indicates that for the 
BTO films at least, Eq. 1 reduces to Eq. 2, and Merz’s law 
applies.

As a result, we can apply the electric field due to the 
cone in Eq. 2 for the velocity of the domain wall for the 
domains radii larger than the tip diameter. Equation 2 for 
the velocity of the domain wall ( v = dr/dt ) can be inte-
grated analytically to find r, the radius of the domain, as a 
function of time, t. The result for r(t) is found to be given 
as (details are given in Additional file 1):

Fig. 2 The downward [00‑1] domain on left is formed by scanning 
− 4 V, and upward [001] domain on right is formed by scanning + 4 V. 
The white line on the figure is 1 µm

Fig. 3 Polarization domain of [001] poled domains on 2, 10 and 40 
nm BTO films as a function of time after poling with 7 V by tip #1 . The 
white line on the figure is 400 nm
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By comparing experimental measurements of the radius 
of the polarization domain as a function of time with 
Eq.  6, the fitting constants, the activation field, Ea , and 
the limiting velocity v∞ , were determined. More specifi-
cally, we determined these constants and their depend-
ence or lack of dependence on the (a) applied electric 
field and (b) thickness of the BTO films.

Dependence on Applied Electric Field
To examine the electric field dependence of Merz’s law 
and determine the constants, Ea and v∞ , tip#2 was used 
for all measurements with applied voltages of 4 and 8 V 
to create and investigate the expansion of polarization 
domains on the 10 nm BTO film (Fig. 5). To create polar-
ization domains with voltages lower than 4 V required a 
very long time to form the domains. For voltages larger 
than 10 V, we observed electric field breakdown or too 
high currents. Consequently, we chose 4 and 8 V for our 
measurement to avoid both issues. The specification 
for tip#2 , θ0 and r0 were measured using the reference 
sample, TGT1 to be 20◦ and 20 nm, respectively. ri and 
ti were determined for each data set to have the best fit. 
The data were plotted and fitted with Eq.  6 for 4 and 8 
V for r and t that are greater than ri and ti as shown in 
Fig. 5b. The constants of the equation were found using 
fitting by Origin software (Table  1). The activation field 
was determined to be about 4.2-4.3 KV/cm and the limit-
ing velocity was about 0.05 nm/s. As expected, the fitting 
constants were the same, within error bars, for both 4 V 
and 8 V, consistent with the fact that Ea and v∞ are mate-
rial constants for the BTO films.

Dependence on the Thickness of the BTO Film
To investigate the role of film thickness, the activation 
field and limiting velocity were determined by com-
paring data to Eq. 6 for the 2, 10 and 40 nm BTO films. 
AFM tip#1 was used on all samples to create polariza-
tion domains by applying 7 V and measuring the domain 
sizes at successive times. The parameters of tip#1 in the 

(6)
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γ
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Fig. 4 Logarithm of the average velocity of the domain wall, vave 
(nm/s) versus r (nm), the lateral distance, on 2, 10 and 40 nm films 
using tip #1 . The unit of vave is nm/s, and the unit of r is nm

Fig. 5 a Polarization domains for two applied voltages using tip#2 ; 
The white line on the figure is 400 nm; b radius of domains, r, as a 
function of time of poling, t using 4 and 8 V. The data fit well to the 
Eq. 6 for r and t greater than ri and ti

Table 1 Fitting constants for 4 and 8 V

V (V) Ea (KV/cm) v∞ (nm/s)

4 4.3 ± 0.1 0.05 ± 0.01

8 4.2 ± 0.3 0.05 ± 0.01
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fitting equation, θ0 and r0 , were measured using TGT1 
and determined to be 20◦ and 45 nm, respectively. The 
radius of domains as a function of time of poling is plot-
ted in Fig. 6 for three films. The data for r and t greater 
than ri and ti were fitted to the equation with no restric-
tions on the fitting constants. The analytical expression 
for the electric field due to the cone is dominant and in 
good agreement for observed polarization domain radii 
larger than about the tip diameter (Fig.  6). As might be 
expected, the constants of fitting Eq. 6 for the 10 nm film, 
using either tip#1 and tip#2 , are equal within the stand-
ard deviation of fitting. In addition, since the material 
is the same for the 2, 10 and 40 nm films, the constants 
determined by fitting to Eq. 6 (Table 2) are also found to 
be the same. One difference exists for the 40 nm film, for 
which Ea = 3.2 KV/cm.

The XRD 2 theta–omega scan and reciprocal map show 
slightly different lattice parameters for 40 nm compared 
to the two thinner samples (Fig.  7). The 10 nm film is 
strained with the lattice parameters of c = 4.147Å and 
a = 3.913Å . Likewise, based on the 2 theta–omega scan 
of the 2 nm film, this film is also strained. The strain in 
these two films is dictated by the substrate. However, 
the 40 nm film lattice parameters are a = 3.982Å and 
c = 4.045Å , indicating it is nearly fully relaxed to the 
bulk BTO parameters [34] of a=3.992 Åand c = 4.036Å . 
Based on this result, the small difference in the activation 
field for our films can be expected due to the small dif-
ference in the compressive strain observed in the films 
which would tend to make it more difficult to flip the 
dipole direction and have greater activation field. This 
result is consistent with a theoretical study by Li. et  al. 
[44] that investigated the effect of strain on the energy 
barrier for domain wall motion and found that the energy 
barrier increases by the compressive strain in the films. 
Since the activation field, Ea , is proportional to the energy 
barrier, U, films with a larger compressive strain have a 
greater activation field. As a result, our observations indi-
cate that the constants in Eq. 1 do not have a fundamen-
tal dependence on the applied voltage and thickness of 
the films with equal strain and that strain in the film can 
impact the activation field. Considering that the previous 
report was for 500-nm-thick films and used a different 
measurement technique [5], our measured values of 3 to 
4 kV/cm for the activation field are in reasonable agree-
ment with the only other previously reported (to our 
knowledge) value for BTO films, of 5 to12 kV/cm.

Simulation of the Electric Field with Finite Elecment 
Method
To further confirm this conclusion, a finite element 
method (COMSOL Multiphysics) was used to calcu-
late the electric field in the BTO thin films between the 

conductive tip and substrate using the sphere–cone 
model for the tip. For this comparison, the same param-
eters for the AFM tip and for the material were used 
for both (1) the COMSOL simulation and (2) the cor-
responding analytical expressions for the electric field 
due to the cone (Eq. 5) and Eq. 3. They are: V = 7 V, a = 
60 nm, d = 40 nm, r0 = 45 nm, ǫa =4000, ǫc =200 and 
θ0 = 20◦ . The details of the COMSOL simulation are 
also given and explained in Additional file 1. The results 
from this comparison are shown in Fig.  8. While the 
electric field expressed by Eq. 3 is about two orders of 
magnitude larger than the simulated electric field, the 
cone electric field (Eq. 5) is an excellent approximation 
at distances r >130 nm for the 40 nm film, at r >120 
nm for 10 nm film and at r > 80 nm for 2 nm film as can 
be compared with experimental results (Fig. 6). Agree-
ment is found for all three films for distances greater 
than approximately one AFM tip diameter. The agree-
ment between the analytical approximation (Eq. 5) and 
the computational values improves with decreasing 
film thickness and tip apex radius.

Fig. 6 Radius of domains, r, vs. time of poling, t on 2, 10 and 40 nm 
films using tip#1 applying 7 V. The data are accurately predicted by 
Eq. 6 for lateral distances greater than about one tip diameter from 
the tip

Table 2 Fitting constants for 2, 10 and 40 nm. d is the thickness 
of the films

d (nm) Ea (KV/cm) v∞ (nm/s)

2 4.0 ± 0.2 0.05 ± 0.01

10 4.1 ± 0.1 0.05 ± 0.01

40 3.2 ± 0.1 0.05 ± 0.01
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Conclusion
We used PFM to quantitatively study the role of film 
thickness and applied voltage on the expansion of the 
polarization domain in ultrathin films. We (1) found 
the electric field due to the cone of an AFM tip is 
needed to explain the observed behavior of the lateral 
expansion of the polarization domain in thin films for 
radii larger than about one tip diameter away from the 
tip; (2) developed an analytic expression for the electric 
field due to the cone; (3) determined the dependence of 
domain expansion on applied voltage and on the thick-
ness of the film; and (4) found that PFM data taken on 
BTO thin films agreed with Merz’s law with exponent 
µ = 1 , limiting velocity, v∞ = 0.05 nm/s, and activation 

field, Ea = 4.0–4.3 KV/cm for 2 and 10 nm strained 
films, and 3.2 KV/cm for the 40 nm nearly relaxed film. 
As a result, the parameters for Merz’s law showed a 
dependence on strain in the film, but no fundamental 
dependence on thickness. The parameters Ea and v∞ 
are unique to the material.
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40 nm films by COMSOL (point line), and the electric field due to the 
cone (Eq. 5) and the electric field expressed by Eq. 3 of previous works 
[10, 13, 14] (solid lines). The tip radius is 60 nm (tip #1). (See Additional 
file 1.)
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