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Abstract 

Conductive gels are a special class of soft materials. They harness the 3D micro/nanostructures of gels with the electri-
cal and optical properties of semiconductors, producing excellent novel attributes, like the formation of an intricate 
network of conducting micro/nanostructures that facilitates the easy movement of charge carriers. Conductive gels 
encompass interesting properties, like adhesion, porosity, swelling, and good mechanical properties compared to 
those of bulk conducting polymers. The porous structure of the gels allows the easy diffusion of ions and molecules 
and the swelling nature provides an effective interface between molecular chains and solution phases, whereas good 
mechanical properties enable their practical applications. Due to these excellent assets, conductive gels are promising 
candidates for applications like energy conversion and storage, sensors, medical and biodevices, actuators, superhy-
drophobic coatings, etc. Conductive gels offer promising applications, e.g., as soft sensors, energy storage, and wear-
able electronics. Hydrogels with ionic species have some potential in this area. However, they suffer from dehydration 
due to evaporation when exposed to the air which limits their applications and lifespan. In addition to conductive 
polymers and organic charge transfer complexes, there is another class of organic matter called “conductive gels” that 
are used in the organic nanoelectronics industry. The main features of this family of organic materials include control-
lable photoluminescence, use in photon upconversion technology, and storage of optical energy and its conversion 
into electricity. Various parameters change the electronic and optical behaviors of these materials, which can be 
changed by controlling some of the structural and chemical parameters of conductive gels, their electronic and opti-
cal behaviors depending on the applications. If the conjugated molecules with π bonds come together spontane-
ously, in a relative order, to form non-covalent bonds, they form a gel-like structure that has photoluminescence prop-
erties. The reason for this is the possibility of excitation of highest occupied molecular orbital level electrons of these 
molecules due to the collision of landing photons and their transfer to the lowest unoccupied molecular orbital level. 
This property can be used in various nanoelectronic applications such as field-effect organic transistors, organic solar 
cells, and sensors to detect explosives. In this paper, the general introduction of conductive or conjugated gels with π 
bonds is discussed and some of the physical issues surrounding electron excitation due to incident radiation and the 
mobility of charge carriers, the position, and role of conductive gels in each of these applications are discussed.
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Introduction
The organs of some marine animals have structures 
rich in water and organic matter. For example, mer-
maid tissues are composed of 1% organic matter in 96% 
water and are a good example of functional hydrogels. 
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Chemists and materials engineers have long sought to 
mimic nature and make materials with the function of 
natural hydrogels. “Gels” are examples of these materi-
als that can trap very large volumes of solutions in their 
three-dimensional lattice-like structure. These semisolid 
viscoelastic materials are used today in various parts of 
human life, including food and cosmetics. The process 
of gelation or synthesis of hydrogels is accelerated by the 
formation of non-covalent bonds (i.e., hydrogen bonds, 
ionic bonds, π bonds, and van der Waals bonds in low 
molecular weight organic molecules) [1–3]. “Conjugated 
polymers with π-bonds” are another class of materials 
that are widely used in optoelectronic applications. The 
physical foundations, electronic properties, and nano-
electronic applications of this family of materials have 
been studied in detail in other articles on the Nano Edu-
cation site. As mentioned, conductive polymers are often 
used as main components in organic electronics such as 
light-emitting diodes (LEDs), organic field-effect tran-
sistors (OFETs), and organic solar cells. Organic solar 
cells (OSCs) are used. The performance and efficiency of 
these devices are controlled by the degree of crystallin-
ity of these materials in the process of making thin layers. 
Controlling the morphology and crystallinity of conduc-
tive polymers along with limited access to high purity in 
the synthesis process and low solubility of conjugated 
polymers in aqueous solutions is one of the problems and 
challenges facing the organic electronics industry. These 
challenges often lead to the formation of undesirable 
arrays of organic and non-uniform molecules of chemi-
cal composition and crystal structure. To solve these 
problems, “supramolecular polymers made of conjugated 
molecules with π bonds” have been developed [4–6]. The 

formation of these large molecule polymers under certain 
conditions leads to the formation of conductive or con-
jugated gels with π bonds (π gels). In fact, the molecular 
structure of conductive gels consists of regular arrays of 
conjugated molecules of various shapes and dimensions 
[7–11]. Conductive gels, due to the dynamic nature of 
molecular arrays, have the ability to regulate some elec-
tronic properties such as photoluminescence, mobility of 
charge carriers, and electrical conductivity. In this paper, 
recent developments in the field of conductive gels and 
their applications in the field of nanoelectronics will be 
reviewed [12–17]. Many conjugated organic materi-
als with π bonds have a wide barrier band and exhibit 
semiconductor behaviors when doped with appropri-
ate materials [18–22]. Tetrathiafulvalene (TTF) and its 
derivatives are an exception to this rule and, if properly 
doped, show very high electrical conductivity [23–26]. 
In recent years, some researchers have sought to make 
conductive gels based on TTF in order to obtain a very 
high electrical conductivity [27–30]. The chemical struc-
ture of this substance is shown in Fig. 1 (Structure 1) [31]. 
The current curve according to the voltage of this mate-
rial, if not doped with a suitable additive, is in the form of 
a yellow horizontal line, which is shown in Fig. 1b. This 
curve shows that with any voltage difference, the current 
flowing through the material is very small. On the other 
hand, by doping compound I2 at room temperature, the 
electrical conductivity of these materials is improved. A 
new solution to increase the conductivity of these mate-
rials is to bind gold nanoparticles to the ligands of TTF 
molecules. This is shown in Fig. 1 as structures 16 and 17. 
As can be seen, the addition of gold nanoparticles leads 
to metallic behaviors in TTF-based conductive gels. In 

Fig. 1  a Molecular structure of tetrathiafulvalene (TTF)-based conductive gels; b current–voltage diagrams obtained by atomic force microscopy 
(AFM) for conductive gels in the presence and absence of structures 2 and 3 and doping conditions with I2 [37]
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general, in order to be able to use conductive gels in the 
manufacture of nanoelectronic devices, the method of 
doping or adding conductive nanoparticles is very help-
ful [32–36]. As another practical example, large mol-
ecules of conductive gels can be produced as nanofibers 
after doping and their conductivity behaviors in different 
molecular arrangements can be investigated [37–42]. For 
example, Fig. 2 shows two different molecular structures 
in oligothiophene-based conductive gels that are pro-
duced as continuous, cohesive fibers. The current–volt-
age diagram of these nanofibers shows that the molecular 
structure and chemical composition of large molecules 
and their self-arrangement strongly affect the electrical 
resistance of these materials. Therefore, to achieve the 
highest electrical conductivity in conductive gels, control 
of the spatial arrangement of molecules is very important 
[43–45]. Table  1 shows the summary of properties and 
nanoelectronic applications of conductive gels.

Conductive polymers have been researched over the 
past few decades owing to their unique ability to provide 
tunable electrical conductivity and flexibility during pro-
cessing [46–48]. The conductivity of conductive polymers 
depends on the molecular structures of the constituent 
materials, the level of doping, and the ordering of the 
molecular packing. With the rapid emergence of nano-
science and nanotechnology, it is anticipated that con-
ductive polymers with well-defined nanostructures can 
translate the properties of their bulk forms and exhibit 

unusual chemical/physical properties because of the con-
fined dimensions of the nanomaterials [49–54].

Conductive polymers with various nanostructures 
including 0D nanoparticles, [55] 1D nanofibers [56, 57], 
and 2D nanosheets [58] have been developed and applied 
in a range of technological areas, such as sensors, elec-
tronics, and energy storage and conversion devices. 
However, the electrical properties of these nanostruc-
tured conductive polymers could be weakened by struc-
tural defects induced by inhomogeneous aggregation, 
severe restacking, and poor contacts during processing 
and assembly [59]. The development of nanostructured 
conductive polymers with tunable microstructures and 
controllable chemical/physical properties still remains a 
challenge [60–63].

Inspired by the chemical/structural features and syn-
thetic approaches of natural gels [64], conductive poly-
mer gels (CPGs) with 3D networked structures were 
recently developed by cross-linking the conjugated pol-
ymer chains using molecules with multiple functional 
groups [65]. CPGs show the unique features of gel mate-
rials: They are dilute cross-linked systems and exhibit no 
flow when in a steady state. This monolithic structure 
inherits the conductive properties of the conjugated 
polymeric chains and generates highly tunable chemi-
cal/physical properties derived from its cross-linked net-
work [2, 48, 50–54, 60–63, 66–70], including flexibility, 
stretchability, ionic conductivity, electrochemical activity, 

Fig. 2  a Two types of molecular structures of oligothiophene-based conductive gels; b synthesis of aligned nanofibers from conductive gels; c 
current–voltage diagrams of structures 19a and 19b in both self-arranged and non-self-arranged states [56]
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Table 1  Summary of properties and nanoelectronic applications of conductive gels

Conductive components Materials Optical property Application References

Metallic nanoparticles/nanow-
ires

Ag/Au/Cu nanoparticles Transparent or semitranspar-
ent

Biosensor drug delivery, tissue 
engineering

[85, 87–98]

Carbon-based materials CNTs Mostly black or semitranspar-
ent

Strain sensor, tissue engineer-
ing, biosensor, supercapacitor, 
drug delivery

[99–113]

Carbon-based materials GO/rGO/graphene Mostly black or semitranspar-
ent

Strain sensor, tissue engineer-
ing, biosensor, supercapacitor, 
drug delivery

[99–113]

Conducting polymers Polyaniline Mostly black and rarely trans-
parent

Tissue engineering, biosensor, 
drug delivery, supercapacitor, 
bioelectrode, strain sensor

[114–139]

Conducting polymers Polypyrrole Mostly black and rarely trans-
parent

Tissue engineering, biosensor, 
drug delivery, supercapacitor, 
bioelectrode, strain sensor

[114–135, 140–143]

Conducting polymers PEDOT:PSS Mostly black and rarely trans-
parent

Tissue engineering, biosensor, 
drug delivery, supercapacitor, 
bioelectrode, strain sensor

[114–135, 144–147]

Hybrid Pt/Ag/(GO + rGO)/SWC-
NTs + polyaniline

Usually black or semitranspar-
ent

Biosensor, battery, fuel cell, 
supercapacitor, tissue engi-
neering, pressure sensor, strain 
sensor

[148–163]

Hybrid Au/(Fe + Co)/Fe3O4/
CNTs + polypyrrole

Usually black or semitranspar-
ent

Biosensor, battery, fuel cell, 
supercapacitor, tissue engi-
neering, pressure sensor, strain 
sensor

[148–160, 164–167]

Hybrid Graphene/GO + Ni/Ni(OH)2 Usually black or semitranspar-
ent

Biosensor, battery, fuel cell, 
supercapacitor, tissue engi-
neering, pressure sensor, strain 
sensor

[148–160, 168–172]

Hybrid GO + PEDOT:PSS Usually black or semitranspar-
ent

Biosensor, battery, fuel cell, 
supercapacitor, tissue engi-
neering, pressure sensor, strain 
sensor

[148–160]

Hybrid GO + CuS + carbon dot Usually black or semitranspar-
ent

Biosensor, battery, fuel cell, 
supercapacitor, tissue engi-
neering, pressure sensor, strain 
sensor

[148–160, 173–175]

Acids H2SO4/H3PO4 Transparent Supercapacitor [176–187]

Metallic salts LiCl/Na+/Ca2+ Transparent or semitranspar-
ent

Supercapacitor, solar cell, 
nanogenerator, actuator, elec-
tronic eel/fish, displays, touch 
panels, pressure sensor, strain 
sensor, biosensor

[180–182, 188–221]

Metallic salts Al3+/Fe3+/Tb3+/K+ Transparent or semitranspar-
ent

Supercapacitor, solar cell, 
nanogenerator, actuator, elec-
tronic eel/fish, displays, touch 
panels, pressure sensor, strain 
sensor, biosensor

[183–185, 188–221]

Metallic salts Na2S + sulfur + NaOH Transparent or semitranspar-
ent

Supercapacitor, solar cell, 
nanogenerator, actuator, elec-
tronic eel/fish, displays, touch 
panels, pressure sensor, strain 
sensor, biosensor

[186–221, 227–230]

Ionic liquids Ionic liquids 1-Ethyl-3-methylimidazolium 
chloride

Semitransparent [222]

Electron conductive Na++ Au nanoparticles Usually black or opaque Supercapacitor, biosensor, 
pressure sensor, battery strain 
sensor, tissue engineering

[223]
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and so forth. Meanwhile, CPGs have emerged as a unique 
material platform to develop functional materials by 
building interpenetrating structures with a second poly-
meric network, loading specific nanoparticles, or serving 
as a precursor for graphitic carbon frameworks [71].

Conductive hydrogels have drawn significant attention 
in the field of stretchable/wearable sensors due to their 
intrinsic stretchability, tunable conductivity, biocompat-
ibility, multi-stimuli sensitivity, and self-healing ability. 
Recent advancements in hydrogel- and organohydrogel-
based sensors, including a novel sensing mechanism, out-
standing performance, and broad application scenarios, 
suggest the great potential of hydrogels for stretchable 
electronics. However, a systematic summary of hydro-
gel- and organohydrogel-based sensors in terms of their 
working principles, unique properties, and promising 
applications is still lacking. In this spotlight, we present 
recent advances in hydrogel- and organohydrogel-based 
stretchable sensors with four main sections: improved 
stability of hydrogels, fabrication and characterization of 
organohydrogel, working principles, and performance of 
different types of sensors. We particularly highlight our 
recent work on ultrastretchable and high-performance 
strain, temperature, humidity, and gas sensors based on 
polyacrylamide/carrageenan double-network hydrogel 
and ethylene glycol/glycerol modified organohydrogels 
obtained via a facile solvent displacement strategy. The 
organohydrogels display higher stability (drying and 
freezing tolerances) and sensing performances than cor-
responding hydrogels. The sensing mechanisms, key 
factors influencing the performance, and application 
prospects of these sensors are revealed. Particularly, we 
find that the hindering effect of polymer networks on the 
ionic transport is one of the key mechanisms applicable 
for all four of these kinds of sensors [12].

Electronic Properties of Conductive Gels
Chromophore is the part of a molecule that causes color 
in it. Chromaticity occurs when matter can absorb a cer-
tain wavelength of visible light and pass or reflect the 
rest. A chromophore is a region of a molecule where 
the energy balance difference between two molecular 
orbitals is within the energy range of part of the inci-
dent beam spectrum [56]. A certain wavelength of light 
due to a collision with a molecule can be absorbed by its 
electrons and excite them from the ground state to the 

excited state. What is very important in conductive gels 
and affects the efficiency of absorption of light energy by 
conductive gels is the arrangement and spatial arrange-
ment of chromophores giving or receiving electron with 
optimal distance and orientation. To date, a wide range 
of conductive gels have been developed as high-perfor-
mance scaffolds for energy transfer or conversion. In 
each case, they have seized it, despite obstacles we can 
scarcely imagine. In other words, it is generally pre-
ferred that the chromophores giving and receiving con-
ductive gels can be arranged on their own and that the 
electron excitation properties of these materials due to 
light beam can be optimized by controlling the molecu-
lar self-arranging property and increasing the energy 
conversion efficiency [57]. In other words, by controlling 
the amount of energy transfer between the donor and 
electron acceptor molecules in the three-dimensional 
structure and network like conductive gels, the opti-
cal energy absorption or optical behavior of the mate-
rial can be adjusted and used to make optical emitting 
devices (LEDs). In order to be able to use conductive gels 
in the nanoelectronics and organic electronics indus-
tries, it is necessary for the three-dimensional structure 
of these materials to be able to transfer excited electrons 
at a macroscopic distance. The emergence of this fea-
ture requires regular arrangement of electron donor and 
receiver centers in different directions. In practice, the 
self-arrangement of donor and receptor molecules does 
this. Figure  3 shows a diagram of the molecular struc-
ture of multi-chromophore conductive gels arranged in 
self-assembled nanofibers. The core of each nanofiber 
is composed of an elongated chain of conjugated mole-
cules with π bonds that, with their regular arrangement, 
lead to the formation of a continuous structure. The gel 
changes color when exposed to ultraviolet light and its 
macroscopic appearance changes from dark orange to 
yellow. The reason for this discoloration is the excitation 
of electron donor and electron acceptor chromophores 
by the collision of ultraviolet light and their movement in 
the three-dimensional structure of the gel. Today, photon 
upconversion is one of the most important applications 
of electron excitation in conductive gels. In this phenom-
enon, several weak and low-energy photons are absorbed 
by the material due to electron excitation, and in return, 
a higher-energy photon is emitted by the material. It has 
been observed that in conductive gels, the electron donor 

Table 1  (continued)

Conductive components Materials Optical property Application References

components and ions HCl/HClO4/(Na++ SWC-
NTs) + polyaniline

Supercapacitor, biosensor, 
pressure sensor, battery strain 
sensor, tissue engineering

[224–226]
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centers can be combined in a polymer field containing 
electron acceptor centers; with a special arrangement, 
the photon upconversion property in the gel can be 

achieved. Take Fig. 4, for example. In this form, the con-
ducting gel of 9,10-diphenylanthracene as the electron 
receptor is doped by Pt (II) octaethylporphyrin (PtOEP) 

Fig. 3  a Molecular structure of a conductive gel with electron donor and electron acceptor chromophores; b a nanofiber whose core consists of a 
regular array of electron donor and electron acceptor chromophores. These molecules are sensitive to ultraviolet light, and when the beam hits the 
gel, electron excitation occurs and part of the input spectrum is absorbed by the material. Absorption of this spectrum of light causes the color of 
this material to change; c the macroscopic image of the gel which has changed color due to contact with ultraviolet light [1, 2]
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Fig. 4  Molecular structures: a conductive gels and electron donor centers; b a schematic of the specific spatial arrangement of the two-phase 
structure of the conductive gel–electron donor centers after doping; the photon upconversion phenomenon is shown schematically; c the 
photoluminescence spectrum of a conductive gel doped with electron donor centers; and the emission of light output is done in the wavelength 
range of 400 to 475 nm. In this study, 9,10-diphenylanthracene acted as conductive gels (electron receptor centers) and PtOEP acted as electron 
donor centers [3]
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as the electron donor. As can be seen, the collision of the 
incident beam leads to the excitation of electrons in the 
donor centers and the transfer of charge carriers to the 
recipient centers. Finally, matter emits a higher energy 
beam for several electrons excited at a lower energy [58]. 
The photoluminescence spectrum diagram of this con-
ductive gel shows that the output beam has a relatively 
wide range of wavelengths in the range of 400 to 475 nm.

Electron Transfer Due to Optical Excitation
In addition to controllable photoluminescence behav-
ior, one of the main approaches to the development of 
conjugated gels with π bonds is the conversion of opti-
cal energy into electrical energy by electron excitation. In 
other words, scientists are looking for conductive gels to 
emit their excited electrons through an electronic circuit, 
instead of emitting light or exhibiting photon upconver-
sion due to electron stimulation after exposure to the 
incoming beam. Collected and stored. Observations 
show that conductive gels are a good option for convert-
ing solar energy into electric current, because the elec-
tron donor and receiver centers in the three-dimensional 
structure of these materials are arranged independently 
and in a controllable arrangement, and the possibility of 
electron transfer at macroscopic distances [59, 72]. There 
is: One method of producing conductive gel-based sys-
tems to convert solar energy into electricity is to func-
tionalize conductive gels with electron donor–receiver 
units. What is very important in these gel structures is 
to prevent the recombination of electrons, which is also 

done by choosing the right chromophores for giving and 
receiving electrically charged carriers. Recently, efforts 
have been made to design and synthesize gels with opti-
mal conversion and storage properties of electric current 
through visible light absorption. One of these systems 
is a gel-like structure, which is schematically shown in 
Fig.  5. In this gel, naphthalimide as electron donor and 
perylene monoimide as electron receptor are dissolved 
in hexane/dichloromethane solution and then function-
alized with α,β-dihydroxypropyl chains. The function-
alization of these compounds leads to the self-assembly 
of these molecules and the formation of regular molecu-
lar structures within the solution at low concentrations 
(Fig. 5a). As the concentration of the solution increases, 
non-covalent bonds predominate and the cell turns into a 
gel (Fig. 5b). It has been observed that at concentrations 
above a critical limit, a nanostructured gel is formed in 
which the charge carriers generated by the excitation of 
visible light are transferred from the naphthalimide unit 
to the perylene monoimide unit, and thus, the electric 
current in it flows inside the network structure like a con-
ductive gel. Also, if indole is used as the electron donor, 
the electron transfer process will be accelerated and the 
electron path will be from naphthalimide to indole and 
finally to perylene monoimide, respectively. It should be 
noted that in biphasic conducting gels, the rate of elec-
tron–hole recombination is much lower than the rate of 
electron production due to light excitation, and the rea-
son for this is the self-assembly arrangement of the large 
molecules that make up the gel. Such a stable transfer 

Fig. 5  a, b. The molecular structure of a conductive gel synthesized from naphthalimide as the electron donor and perylene monoimide as the 
electron acceptor in a hexane/dichloromethane solution medium to enhance the electron, transfer kinetics in the three-dimensional structure of 
the gel, Indole is also used as an intermediate donor unit has been [4]
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from charge carriers can be used in water splitting and 
artificial photosynthesis.

Mobility of Electric Charge Carriers
As a general rule, the overall efficiency and performance 
of organic electronics, such as FETs and heterogeneous 
solar cells, depend on the mobility of the active charge 
carriers in the system. Self-assembly materials obtained 
from conjugated gels with π bonds are good options for 
making organic electronic devices, because the regular 
molecular arrangement in the gel structure can contrib-
ute to the greater mobility of the electric charge carriers 
in these structures [73, 74]. However, it is very difficult 
to measure the mobility of charge carriers in gels with-
out destroying their molecular arrangement. Conductive 
gels with thienylenevinylene base are among the gels in 
which electric charge carriers have high mobility. Fig-
ure 6a shows two examples of these molecular structures 
(structures 11a and 11b). The large molecules in these 
gels self-assemble into continuous fibers. The absorption 
spectra of these materials show that the mobility of the 
electrons in the mentioned gels is due to the very regu-
lar molecular self-arrangement of these materials and the 
overlap of the band structure of the electron donor and 
receiver units. Also, if N,N-bis(2,5-di-tert-butylphenyl)-
3,4,9,10-perylenedicarboximide (PDI) is used in these 

gel structures, the mobility of the electrons will increase 
(Fig. 6b). In fact, it helps to gel more gel on a molecular 
scale, thereby increasing the mobility of energy carriers. 
On the other hand, the electron mobility in gel struc-
tures is relatively low compared to xerogel structures of 
the same material (Fig. 6c). It should be noted that if the 
gel dries at relatively low temperatures, it becomes a very 
porous solid product called xerogel.

Sensors for Explosives
Photoluminescence is one of the most attractive proper-
ties of conductive gels. This is done by absorbing collid-
ing photons with organic matter, stimulating electrons 
at its HOMO level, and transferring them to the LUMO 
level. Studies show that if the macromolecules of a con-
ductive gel (which are rich in excited electrons) are 
exposed to electron-deficient analyses, the gel-stimulated 
electrons are rapidly transferred to the analytic band 
structure and photoluminescence properties of these 
materials they destroy [71, 75]. This interesting phenom-
enon has recently become the basis for the identifica-
tion of nitro-aromatic explosives using conductive gels. 
For example, the presence of TNT explosives in very 
small amounts (in the range) can be detected using pen-
tafluoroarene functional groups. This is shown in Fig. 7. 
When these functional groups form a gel-like structure, 

Fig. 6  a Molecular structures of thienylenevinylene-based gels (structures 11a and 11b) and optical images of structure 11b in solution (low 
temperature) and gel (high temperature); b a diagram of the electrical conductivity changes of structure 11b in exchange for the addition of 
different amounts of PDI duplex; c comparison of the mobility of thin films made of thienylenevinylene-based gels for the case where the film is 
produced from a solution or xerogel phase [5]
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the macromolecules assume a relatively orderly arrange-
ment and are expected to exhibit photoluminescence 
properties. Now, if this gel is placed on a special paper 
in a thin layer, in the presence of sunlight, it will show 
a special color. If some of the TNT explosives come in 
contact with the surface of the paper, the photolumines-
cence property of the gel is rapidly lost, and the rate of 
drop of this property is directly related to the amount of 
explosive. The higher the concentration of the explosive, 
the lower the intensity of the light emitted by the gel, and 
the presence of an explosive can be detected by the color 
change. It should be noted that the reason for the suit-
ability of conductive gels for the detection of TNT explo-
sives is the efficient absorption of these materials into the 
self-assembled structure of the gel molecules and energy 
absorption by it.

Applications
Recently, conductive gels have been used in the manu-
facture of many nanoelectronic devices due to their 
controllable conductivity. The most important of these 
applications are organic field-effect transistors (OFETs), 
organic solar cells, and organic sensors. In the follow-
ing, the role of these materials in the mentioned appli-
cations is described. It should be noted that one of the 
main applications of conductive gels is the production of 
hydrogen using water splitting, but since the present arti-
cle deals with the nanoelectronic applications of conduc-
tive gels, this issue will not be discussed [76, 77].

Field‑Effect Organic Transistors (OFETs)
Organic semiconductors are preferred over silicon-based 
semiconductors in many applications, including inte-
grated circuits, sensors, and electronic chips, due to their 

low weight and flexibility. The relatively regular arrange-
ment of the large molecules in these materials due to the 
processing of the solution phase can provide continuous 
conduction paths for the electrons and cavities (percola-
tion network) and increase the efficiency and electrical 
efficiency of the devices. Since conductive gels are pre-
pared from solution phase and in which large molecule 
chromophores have the ability of molecular self-assem-
bly, these materials are a very good option for making 
active materials in field-effect organic transistors (OFETs) 
[78, 79]. Before discussing the application of conduc-
tive gels in OFETs transistors, it is advisable to discuss 
the general structure of field-effect capacitors. The most 
common structure of field-effect transistors often con-
sists of a n- and p-type semiconductor junction with two 
layers of oxide insulating material (such as silicon oxide) 
and a conductive layer (non-crystalline metal or silicon). 
Figure  8 shows a schematic of this structure. As can be 
seen, these transistors consist of three main parts: The 
main body is a p-type semiconductor that holds two 
separate n-type semiconductor parts at a certain distance 
from each other. One type n region is called the source 
terminal, and the other is called the drain terminal. The 
area between the source and discharge terminals is cov-
ered by a thin, insulating layer of metal oxide, and the 
conductive layer is placed on top of the oxide layer. The 
whole area between the two terminals is called the gate 
terminal. Due to the nature of n-type semiconductors, 
the concentration of electrons is higher in the areas near 
the source terminal and discharge, but there is no current 
between the two regions [80, 81]. Now, if a positive volt-
age is applied to the gate terminal and the source terminal 
is connected to ground and the discharge terminal is con-
nected to a positive potential, the negative electrons tend 

Fig. 7  a The chemical structure of conjugated Perfluoropyridine molecules with π bonds that, after molecular self-assembly, are turned into a gel 
and placed on a piece of paper; b fluorescent microscope image of paper impregnated with conductive gel A exposed to very small amounts of 
TNT explosives [66]

RETRACTED A
RTIC

LE



Page 11 of 21Trung et al. Nanoscale Research Letters           (2022) 17:50 	

to accumulate in the gate region due to the positive volt-
age of the gate terminal. If we increase the gate voltage 
and the positive voltage applied to the discharge source 
sufficiently, the negative charges accumulated under the 
metal oxide layer will tend to move toward the gate ter-
minal and the discharge terminal. By doing this, applying 
a gate voltage and a positive voltage to the discharge ter-
minal causes the electron current to flow from the source 
terminal to the discharge terminal. In other words, no 
current of electrons will be established between the two 
terminals until the gate voltage reaches a critical level. 
Conversely, if the gate voltage increases exponentially, a 
path of positive charges in the gate region is created and 
the intensity of the electron current flux increases. There-
fore, the gate terminal acts as a valve for the electron flow 
tube. It should be noted that if the main body of the field-
effect transistor is made of p-type semiconductor, it is 
called P-FETs and if it is n-type, it is called N-FETs. The 
same mechanism applies to both types of transistors. In 
recent years, many attempts have been made to use new 
materials as the main body or substrate of FETs transis-
tors on which the source and discharge terminals as well 
as the gate are mounted. Conductive gels are one of these 
emerging materials. For example, Hong et al. used single 
nanofibers made of conjugated gels with π bonds as the 

main body of nanotransistors (Fig.  9). Due to its one-
dimensional self-arrangement and chemical structure, 
this fiber behaves similarly to the p-type semiconduc-
tor. The mobility of cavities in this fiber is in the range 
of 0.48–0.1 cm/s [82]. As shown in Fig. 9, an increase in 
gate voltage leads to an increase in the current flow from 
the source terminal to the discharge terminal. In some 
studies, a thin layer of conductive gels has been used as 
the main body of OFETs transistors. Figure  5 shows an 
example of these structures. As can be seen, a field-effect 
transistor with a downward gate terminal can be pro-
duced using a thin layer of conductive gel with a 23 struc-
ture. The important point is that the large molecules of 
this conductive gel have the property of molecular self-
assembly, and this leads to high mobility of charge car-
riers in this thin layer. The structure 23 behaves similarly 
to the n-type semiconductor, and the majority charge 
carriers are electrons, the gate voltage is negative and the 
voltage applied to the discharge terminal is positive. Also, 
the current–voltage diagrams in Fig. 10 clearly show that 
as the gate voltage increases and the voltage difference 
between the source terminal and the discharge increases, 
the current passing through the transistor increases 
exponentially. However, the effect of gate voltage on the 
current density is greater than the discharge terminal 
voltage.

Organic Solar Cells
Organic solar cells (OSCs) have relatively low efficiencies 
in converting solar energy into electrical energy, but very 
low weight, low cost, and flexibility of organic matter rel-
ative to inorganic semiconductors are the focus of energy 
industries. Has attracted. Has attracted Conductive gels, 
on the other hand, have been considered in comparison 
with other semiconductor or non-conductive organic 
materials for several important reasons for making OSCs 
[83, 84]:

(a)	 Ease of processing, coating, production of thin 
films, and production of nanometer fibers.

(b)	 The possibility of making heterogeneous connec-
tions from chromophores giving or receiving large 
molecules in mesa- or nanodimensions.

(c)	 Possibility of easy self-assembly of large molecules 
and engineering of three-dimensional arrangement 
of electron donor and receiver chromophores to 
achieve high energy conversion efficiency.

In this section, a sample of organic solar cells based on 
conductive gels is reviewed. But before entering into this 
discussion, it is better to introduce the general structure 
of organic solar cells. Figure 10 schematically shows the 
layer structure of an organic solar cell. As can be seen, 

Fig. 8  a Schematic of the three-dimensional structure of field-effect 
transistors based on p-type semiconductors. b Schematic of 
the two-dimensional structure of field-effect transistors and the 
potentials applied to it [57]
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these cells consist of several main parts: (1) glass, (2) a 
transparent conductive oxide layer (such as indium-
tin oxide or ITO), (3) a conductive transparent polymer 
(such as PEDOT: PSS), (4) an active layer or absorber, 
(5) a bonding layer, and (6) a conductive metal layer. In 
general, the conductive metal layer and the transparent 
metal oxide layer act as “contact points” to connect to the 
external circuit. A thin layer of transparent conductive 
polymer such as PEDOT: PSS is usually used as the cav-
ity conductor material directly above the ITO electrode. 
What plays the most effective role in building an organic 
solar cell is the “active layer.” Solar cells are divided into 
several categories in terms of number of layers and elec-
tronic architecture (Fig. 10):

•	 Organic monolayer solar cells

These solar cells are the simplest type of photovoltaic 
device in terms of energy storage conversion mecha-
nism. In the structure of these devices, an organic 

semiconductor is placed between two thin layers of con-
ductive metal. One of these metal layers, such as indium 
tin oxide (ITO), has a very high working function, and 
the other layer, such as aluminum or magnesium, has a 
relatively lower working function (Fig. 10a). The mecha-
nism of storage of electric charge is such that due to the 
collision of the landing photon, a large number of exac-
tions (electron–hole pair) are formed in the band struc-
ture of the organic semiconductor layer. These electrons 
begin to move due to the electric field created between 
the two metal layers due to the difference in their work-
ing function [84]. They flow toward the positive metal 
electrode and the cavity toward the negative electrode. 
The band structure of this type of solar cell and the path 
of electrons and holes are shown in Fig. 10a.

•	 Organic bilayer solar cells

This type of solar cell is made of two separate organic 
layers with completely different electronegativity 

Fig. 9  a Schematic of the molecular structure of field-effect transistors based on single fibers of 6,2-bis (tiny vinyl) anthracene 2,6-bis (2-thienylvinyl) 
anthracene, b the SEM image of the transistor a; c and d current–voltage diagrams of transistors based on gate voltage (VGS) and voltage difference 
between source and discharge terminals (VDS) [58]
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between conductive metal layers. This difference in 
electronegativity leads to the creation of an electro-
static field between two metal layers. The semicon-
ductor layer that has a high electronegativity tends 
to absorb more electrons and the other organic layer 
tends to give electrons. Therefore, when a landing 

photon strikes these two semiconductor layers, it leads 
to the formation of an electron–hole pair at the LUMO 
level of the band structure of the two materials, and the 
electrons and holes due to the electrostatic field created 
between the two layers begin to separate and move. 
They do it in the opposite direction. In other words, the 

Fig. 10  a Schematic of the chemical structure of the self-assembling molecule 23; b current–voltage diagram for a field-effect transistor based on 
structure 23 in terms of gate voltage (VG) and discharge terminal voltage (VSD). The transistor is of type n, and its gate terminal is located below the 
discharge and source terminals [59]
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layer with high electronegativity acts as the electron 
acceptor and repulse of the cavity, and the layer with 
lower electronegativity acts as the electron giver and 
the absorber of the cavity. In this way, the exactions are 
separated from each other and placed in holes in the 
outer circuit by holes and electrons through metal lay-
ers. The band structure of this group of solar cells and 
the path of electron–hole motion are shown in Fig. 11.

•	 Organic solar cells with mass heterogeneous connec-
tions

In organic solar cells, two metal layers (mostly aluminum 
and ITO) are used as the two points of contact for the 
external circuit. Also, conductive gels are often used as 
the organic layer between these two conductive metal 
layers. This layer is also called the active layer. Recently, 
some researchers have used organic gels based on con-
ductive polymers as the active layer in organic solar 
cells [85]. Figure 12 shows the chemical structure of two 
types of polymer molecules (structures 26a and 26b). 
These two molecules are similar in molecular structure, 
but one of them has a CN functional group. The use of 
these materials as an active layer in organic solar cells has 
been shown to improve the energy storage efficiency of 
these systems by 1.76%. This efficiency is also increased if 
heat annealing is used to convert the solution containing 
these molecules into gel structures in which molecules 
26a and 26b are self-arranged. This shows how much the 
gelling of solutions containing conjugated polymers with 
π bonds can affect the self-assembly of molecules and 
energy storage efficiency. Figure  12 shows the increase 
in efficiency of generated solar cells in the form of stored 
current density graphs. Molecular structure 29 in Fig. 13 
is another example of the application of conductive gels 
in the fabrication of solar organic cells as the active layer. 
These large molecules can affect energy conversion effi-
ciency, depending on the number of repetitive units and 
the degree to which they are self-assembled. As can be 
seen in Fig.  13, gelling and self-assembly of large mol-
ecules significantly increase the slope of changes in the 
energy conversion efficiency diagram. Efforts to replace 

Fig. 11  a Schematic of the general structure of organic solar cells; b 
the TEM image of the said solar cell. This solar cell has several single 
layers: glass or SiO2, indium tin oxide or ITO, clear polymers and the 
active layer PEDOT: PSS and MDMO-PPV: PCBM, the intermediate 
layer LiF, and the conductive metal layer or aluminum [72]

Fig. 12  Chemical structures of conductive organic gels (structures 26a and 26b) and energy conversion efficiency diagrams in annealed and 
non-annealed samples. Annealing only results in molecular self-assembly of conjugated polymers with π bonds [86]
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various types of conductive gels in the main body of 
organic solar cells continue today.

Conclusion

a.	 In the organic nanoelectronics industry, in addition 
to organic charge transfer complexes and conductive 
polymers, conjugated gels with π bonds are also used. 
These materials are large molecules that, similar to 
organic charge transfer complexes, have electron 
donor and receptor centers and, like conductive poly-
mers, are composed of conjugated molecules with π 
bonds. These large molecular units in gel structures 
are placed next to each other with non-covalent 
bonds, increasing the viscosity of the system. One 
of the main features of conductive gels is the ability 
to change the optical behavior of these materials by 
controlling chromophores, viscosity, arrangement of 
molecular arrays, and doping with other molecules. 
These materials can also be used in photon upcon-
version technology. Conductive gels are now used in 
the manufacture of solar cells to convert solar energy 
into electricity.

b.	 In the present paper, the nanoelectronic applications 
of conductive gels were reviewed. The most impor-
tant of these applications are sensors for detecting 
explosives, thin-film organic solar cells, and field-
effect nanotransistors. As mentioned, conductive gels 
can be used as non-intrinsic semiconductors due to 
the self-arrangement of large molecules and can be 
used as the active layer in organic solar cells or the 

main body of semiconductors in field-effect transis-
tors. The basis of these materials is the excitation 
of HOMO level electrons and their transfer to the 
LUMO level. The efficiency and performance of this 
group of materials are strongly related to the kinet-
ics of the process of excitation and transfer of charge 
carriers due to the collision of landing photons. Con-
ductivity can significantly increase the conductiv-
ity of conductive gels. The most important method 
is to dope or add a specific functional group to the 
molecular arrays of these materials. More details of 
the mentioned applications are discussed in the pre-
sent article.
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