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Abstract 

With the increasing demand of silicon carbide (SiC) power devices that outperform the silicon‑based devices, high 
cost and low yield of SiC manufacturing process are the most urgent issues yet to be solved. It has been shown that 
the performance of SiC devices is largely influenced by the presence of so‑called killer defects, formed during the 
process of crystal growth. In parallel to the improvement of the growth techniques for reducing defect density, a 
post‑growth inspection technique capable of identifying and locating defects has become a crucial necessity of the 
manufacturing process. In this review article, we provide an outlook on SiC defect inspection technologies and the 
impact of defects on SiC devices. This review also discusses the potential solutions to improve the existing inspection 
technologies and approaches to reduce the defect density, which are beneficial to mass production of high‑quality 
SiC devices.
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Introduction
Owing to the rapid growth of power electronics market, 
SiC, a wide-bandgap semiconductor, emerges as a prom-
ising candidate to develop the next-generation power 
devices used in electric vehicles [1], aerospace [2] and 
power conversion applications [3, 4]. SiC-based power 
electronics offers several advantages over conventional 
devices made from Si or GaAs. Table 1 shows the physi-
cal properties of SiC compared with those of Si and GaAs 
as well as other wide-bandgap materials, such as GaN 
and diamond. Attributed to a wide bandgap (~ 3.26  eV 
for 4H-SiC), SiC-based devices can operate at higher 
electric fields and higher temperatures with a better reli-
ability over Si-based power electronics. SiC also exhibits 
excellent thermal conductivity (about three times that of 
Si), which enables higher power density package for SiC 

devices with better heat dissipation. Its superior satura-
tion electron velocity (about two times that of Si) allows 
for higher frequencies of operation with lower switching 
losses than Si-based power devices [4, 5]. The outstand-
ing physical properties of SiC make it very promising for 
the development of a wide range of electronic devices, 
such as power MOSFETs with high blocking voltage and 
low on-resistance [6–8] as well as Schottky barrier diodes 
(SBD) that can withstand large breakdown fields with 
small reverse leakage currents [9].

Improving SiC wafer quality is important for manu-
facturers as it directly defines the performance of SiC 
devices and thus, dictates the production cost. How-
ever, the growth of SiC wafers with low defect density 
remains very challenging. Recently, the evolution of SiC 
wafer fabrication has accomplished a difficult transition 
from 100  mm (4-inch) to 150  mm (6-inch) wafer. SiC 
needs to be grown in a high-temperature environment 
along with its high rigidity and chemical stability, which 
leads to a high density of crystallographic and surface 
defects in the grown SiC wafer, resulting in poor qual-
ity of substrates and subsequently fabricated epitaxial 
layers. Figure  1 summarizes various kind of defects in 
SiC and the process steps which these defects originate 
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from, and further discussion will be covered in the fol-
lowing section.

Various types of defects cause different degrees of 
deterioration to device performance and may even lead 
to complete failure of the device. In order to improve 
the yield as well as the performance, the technology of 
inspecting defects prior to device fabrication becomes 
very important. Therefore, a rapid, highly accurate, and 
non-destructive inspection technology plays an impor-
tant role in the production line of SiC. In this article, 
we illustrate each type of defect and their impact on 
device performance. We also put forward a thorough 
discussion about the pros and cons of different inspec-
tion technologies. The analysis presented in this review 
article not only provides an overview of various defect 
inspection techniques available for SiC but also helps 
researchers to make a wise choosing among these tech-
niques in the context of industrial applications (Fig. 2). 
Table 2 lists the acronyms of the inspection techniques 
and defects in Fig. 2.

Defects in SiC
Defects in SiC wafer are typically classified into two 
major categories: (1) crystallographic defects within the 
wafer and (2) surface defects at or near the wafer surface. 
As we further discuss in this section, crystallographic 
defects include Basal plane dislocations (BPDs), stacking 
faults (SFs), threading edge dislocations (TEDs), thread-
ing screw dislocations (TSDs), micropipes and grain 
boundaries, etc., as depicted in the cross-sectional sche-
matic shown in Fig. 3a. Epitaxial layer growth parameters 
of SiC are very critical to the quality of wafer. Crystal-
lographic defects and contaminations during growth 
processes [13] may extend into epitaxial layer and wafer 
surface to form various surface defects, including carrot 
defects, polytype inclusions, scratches, etc., or even con-
vert to produce other defects [14], leading to detrimental 
effects on the final SiC devices.

The SiC epitaxial layers grown on 4° off-cut 4H-SiC 
substrate are the most common wafer type used today 
for a variety of device application. It is known that most 

Table 1 Physical properties (room temperature values) of wide‑bandgap semiconductors for power electronic applications in 
comparison with conventional semiconducting materials [10–12]

Property Silicon 3C-SiC 4H-SiC GaAs GaN Diamond

Bandgap energy (eV) 1.1 2.2 3.26 1.43 3.45 5.45

Breakdown field  (106  Vcm−1) 0.3 1.3 3.2 0.4 3.0 5.7

Thermal conductivity  (Wcm−1  K−1) 1.5 4.9 4.9 0.46 1.3 22

Saturated electron velocity  (107 cm  s−1) 1.0 2.2 2.0 1.0 2.2 2.7

Electron mobility  (cm2V−1  s−1) 1500 1000 1140 8500 1250 2200

Melting point (°C) 1420 2830 2830 1240 2500 4000

Fig. 1 Schematic diagram of SiC growth process and various kind of defects caused by each step
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of the defects are oriented parallel to the growth direc-
tion, therefore, epitaxial growth of SiC at an off-cut angle 
of 4° on SiC substrates not only preserves the underly-
ing 4H-SiC crystal, but also allows the defects to have 
a predictable orientation. In addition, total number of 
wafers, that can be sliced from a single boule, increases. 
However, lower off-cut angle may generate other type of 
defects, such as 3C-inclusions and in-grown SFs [18–21]. 
In the coming subsections, we discuss the details about 
each type of defects.

Crystallographic Defects
Threading Edge Dislocations (TEDs) and Threading Screw 
Dislocations (TSDs)
Dislocations in SiC are the main source for deteriora-
tion and failure of electronic devices [22–24]. Threading 
screw dislocations (TSDs) and threading edge disloca-
tions (TEDs) both run along the [0001] growth axis with 
different Burgers vectors of <0001> and 1/3<11–20>, 

respectively. Both TSDs and TEDs may extend from the 
substrate to the wafer surface and bring about small pit-
like surface features [15], as shown in Fig. 3b [25]. Typi-
cally, density of TEDs is about 8000–10,000 1/cm2, which 
is almost 10 times larger than that of TSDs. An extended 
TSD, where the TSD extends from the substrate to the 
epitaxial layer, may transform into other defects on the 
Basal plane and propagate along the growth axis during 
the SiC epitaxial growth. Harada et  al. show that TSDs 
are converted to the stacking faults (SFs) or carrot defects 
on Basal planes during the SiC epitaxial growth [26], 
while TEDs in the epilayer are shown to be converted 
from BPDs inherited from the substrate during epitaxial 
growth.

Basal Plane Dislocations (BPDs)
Another type of dislocations is Basal plane dislocations 
(BPDs), which lie in the [0001]-plane of the SiC crystal 
with Burgers vector of 1/3<11–20>. BPDs rarely appear 

Fig. 2 Available defect inspection technologies for SiC

Table 2 The acronyms of the inspection techniques and defects in Fig. 2

SEM: Scanning electron microscopy OM: Optical microscopy BPD: Basal plane dislocation

DIC: Differential interference contrast PL: Photoluminescence TED: Threading edge dislocation

OCT: Optical coherence tomography CL: Cathodoluminescence TSD: Threading screw dislocation

XRT: X‑ray topography Raman: Raman spectroscopy SF: Stacking faults



Page 4 of 17Chen et al. Nanoscale Research Letters           (2022) 17:30 

on the surface of SiC wafer [15]. These generally con-
centrate at the substrate with a density of 1500  1/cm2 
while their density in the epitaxial layer is only about 
10  1/cm2. Kamei et  al. have reported that the density 
of BPDs decreases with increasing SiC substrate thick-
ness [26]. BPDs show line-shaped features when using 
photoluminescence (PL) inspection, as shown in Fig. 3c 
[15]. An extended BPD may transform into SFs or TEDs 
during the SiC epitaxial growth.

Micropipes
The common dislocations observed in SiC are the so-
called micropipes, which are hollow threading dislo-
cations propagating along the [0001] growth axis with 
a large <0001> component of the Burgers vector. The 
diameter of micropipes ranges from a fraction of a 
micron to tens of microns. Micropipes show large pit-
like surface features on the surface of SiC wafer [15]. 
Spirals which emanate from the micropipes, appear-
ing as screw dislocations, are shown in Fig. 3d [16, 27]. 
Typically, the density of micropipes is around 0.1–1 1/
cm2 and it continues to decrease in commercial wafers.

Stacking Faults (SFs)
Stacking faults (SFs) are defects with disarray of stack-
ing sequence in SiC Basal planes. SFs may appear inside 
epitaxial layer by inheriting SFs in the substrate [15, 28, 
29], or be associated with the transformation of extended 
BPDs and extended TSDs. Typically, the density of SFs 
is lower than 1 per  cm2 and these show triangle-shaped 
features by using PL inspection, as shown in Fig. 3e [15]. 
However, various types of SFs can be formed in SiC, such 
as Shockley-type SFs and Frank-type SFs, etc., since just a 
small amount of stacking energy disorder between crystal 
plane may lead to considerable irregularities in the stack-
ing sequence [30].

Point Defects
The point defect is formed by vacancy or interstitial of 
a single lattice site or a few lattice sites, which have no 
spatial expansion. Point defects can occur in every pro-
duction process, especially in ion implantation. However, 
they are difficult to be detected and the interrelationship 
between point defects and the transformation of other 
defects is too complicated, which beyond the scope of 
this review.

Fig. 3 Various kind of defects appearing in SiC wafers. a Schematic cross‑sectional view of SiC defects and image of b TEDs and TSDs [15], c BPDs 
[15], d Micropipes [16], e SFs [15], f carrot defects [16], g polytype inclusions [15], h Scratches [17]
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Other Crystallographic Defects
There exist a few more type of defects in addition to those 
described in the above subsections. The grain bound-
ary is a distinct boundary caused by the lattice mismatch 
between two different SiC crystal types when they inter-
sect [31]. The hexagonal void is a crystal defect in which 
there is a hexagonal cavity within a SiC wafer and it 
has been proven to be one of the sources of micropipe 
defects that make high voltage SiC devices fail [32]. Par-
ticle inclusions are caused by downfall particles during 
growth process, and their density can be greatly reduced 
by proper cleaning, careful operation of pumping and 
control of gas flow procedures.

Surface Defects
Carrots
Generally, surface defects are formed from extended 
crystallographic defects and contaminations. Carrot 
defect is a stacking fault complex with its length indicates 
the location of the TSD and SFs on Basal planes at both 
ends. The Basal faults are terminated by Frank partial 
dislocations, and the size of the carrot defect is related 
to the prismatic stacking faults [33]. The combination 
of these features forms the surface topography of a car-
rot defect, which resembles the shape of a carrot in its 
appearance with a density less than 1 per  cm2, as shown 
in Fig. 3f [16]. Carrot defects are easily formed at polish-
ing scratches, TSDs or an imperfection in the substrate 
[7].

Polytype Inclusions
Polytype inclusion, often referred to as triangular defect, 
is a lamellar inclusion of 3C-SiC polytype that extends to 
the surface of the SiC epilayer in a direction along Basal 
plane, as shown in Fig.  3g [15]. It may be generated by 
the downfall particles on the surface of the SiC epilayer 
during the epitaxial growth. As a result, the particle 
embedded in the epilayer and interferes with the growth 
process, creating a 3C-SiC polytype inclusion that shows 
acute-angled triangular surface feature with the particle 
located at the apex of the triangular region [15]. Many 
studies have also attributed the origin of polytype inclu-
sions to surface scratches, micropipes and improper 
parameters of the growth process [34–36].

Scratches
Scratches are mechanical damages on the surface of SiC 
wafer formed during production processes, as shown in 
Fig. 3h [17]. Scratches on a bare SiC substrate may inter-
fere with the growth of the epitaxial layer to create a 
high-density row of dislocations within the epitaxial layer, 
which are referred to as scratch traces [15], or scratches 
may become the basis for the formation of carrot defects 

[37]. Therefore, proper polishing of SiC wafers is critical, 
as scratches can have a significant impact on the device 
performance when these are present in the active region 
of the device.

Other Surface Defects
Step bunchings are surface defects formed during the 
SiC epitaxial growth and bring about obtuse-angled tri-
angular or trapezoidal features on the surface of the SiC 
epilayer. There are many other surface defects such as 
surface pits, bumps and stain. These defects are usually 
created by non-optimized growth processes and incom-
plete removal of polishing damage, resulting in signifi-
cantly detrimental impact on the performance of devices.

Inspection Techniques
Quantifying the SiC substrate quality is an essential step 
before epitaxial layer deposition and device fabrica-
tion. After the epitaxial layer is formed, wafer inspection 
should be performed again to ensure that the location 
of defects is known, and their number is under control. 
Inspection techniques could be classified into surface 
inspection and subsurface inspection, depending on their 
ability to effectively extract structural information over 
or beneath the surface of the sample. As we further dis-
cuss in this section, in order to accurately identify the 
type of surface defects, KOH (potassium hydroxide) is 
usually used to visualize surface defects by etching them 
to a visible size under the optical microscope [38]. How-
ever, this is a destructive approach that cannot be used 
in in-line mass production. For in-line inspection, high-
resolution non-destructive surface inspection techniques 
are required. Common surface inspection techniques 
include scanning electron microscopy (SEM), atomic 
force microscopy (AFM), optical microscopy (OM) 
and confocal differential interference contrast micros-
copy (CDIC), etc. For subsurface inspection, commonly 
used techniques include photoluminescence (PL), X-ray 
topography (XRT), mirror projection electron micros-
copy (MPJ), optical coherence tomography (OCT) and 
Raman spectroscopy, etc. In this review, we divide SiC 
inspection techniques into optical and non-optical meth-
ods and provide a discussion on each of techniques in the 
following sections.

Non-optical Defect Inspection Technologies
Non-optical inspection techniques, those not involving 
any kind of optical probing, such as KOH etching and 
TEM, have been widely used for characterizing the qual-
ity of SiC wafers. These methods are relatively mature 
and precise to inspect defects on SiC wafers. However, 
these methods cause irreversible damage to the samples 
which then are not suitable for the use in the production 
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lines. Although there exist other inspection methods like 
SEM, CL, AFM and MPJ which are non-destructive, the 
throughput of these methods is low and can serve as an 
assessment tool only. Next, we briefly introduce the prin-
ciples of the above-mentioned non-optical technologies. 
Advantages and disadvantages of each individual tech-
nique are also brought under discussion.

Transmission Electron Microscopy (TEM)
The transmission electron microscopy (TEM) can be 
used to observe the subsurface structure of the sample 
at a nano-scale resolution. TEM makes use of acceler-
ated electron beams incident onto the samples of SiC. 
Electrons with ultra-short wavelength and high energy 
pass through the surface of the sample which elastically 
scattered from the subsurface structure. Crystallographic 
defects in SiC, such as BPDs, TSDs and SFs, can be 
observed by using TEM [39–42].

A scanning transmission electron microscope (STEM) 
is a type of transmission electron microscope, which 
can obtain atomic-level resolution through high-angle 
annular dark-field imaging (HAADF). Images obtained 
through TEM and HAADF-STEM are shown in Fig. 4a. 
A trapezoidal SF and partial dislocations are clearly 
visualized by the TEM image while the HAADF-STEM 
images show three kind of SFs observed in 3C-SiC. These 
SFs consist of 1, 2, or 3 faulted atomic layers, indicated 
by the yellow arrows [43]. Though TEM is a useful defect 
inspection tool, it can only provide one cross-sectional 
view at a time, so it takes a lot of time if one needs to 
inspect whole SiC wafer. Besides, mechanism of the TEM 
demands that the sample must be very thin, with a thick-
ness of less than 1  μm, which makes preparation of the 
sample quite complicated and time-consuming [44]. 
Overall, TEM is used to understand the fundamental 
crystallography of defects, but it is not a practical tool for 
large scale or in-line inspection.

KOH Etching
KOH etching is another non-optical technique used 
to inspect defects of several kinds, such as micropipes, 
TSDs, TEDs, BPDs and grain boundaries. The patterns 
formed after KOH etching depend on experimental con-
ditions such as etching duration and temperature of the 
etchant. When molten KOH at about 500℃ is added to 
SiC sample, it exhibits selective etching of SiC sample 
between areas with defects and those without defects in 
about 5 min [45]. After cooling and removing KOH from 
SiC sample, there are a lot of etched pits with different 
topography which are related to different types of defects. 
As shown in Fig. 4b, the dislocations produce large hex-
agonal etched pits assigned to micropipes, medium-sized 
pits to TSDs, and small-sized pits to TEDs. [45]

The advantage of KOH etching is that it can inspect 
all defects under the surface of SiC sample at one time, 
preparation of SiC sample is easy, and the cost is low. 
However, KOH etching is an irreversible process that can 
cause permanent damage to the sample. Further polish-
ing of the sample is required to obtain a smooth surface 
after KOH etching.

Mirror Projection Electron Microscopy (MPJ)
Mirror projection electron microscopy (MPJ) is another 
promising subsurface inspection technique that allows 
the development of high throughput inspection sys-
tems capable of inspecting nanoscale defects. Since the 
MPJ reflects the equipotential image of surfaces on SiC 
wafers, the potential distortion caused by charged defects 
is distributed over a wider area than the actual defect 
size. Therefore, nanoscale defects can be inspected even 
the spatial resolution of the tool is in microscale. The 
electron beam from the electron gun passes through the 
focusing system and irradiates uniformly and normally 
onto the SiC wafer. Notably, the SiC wafer is irradiated 
by UV light, so the excited electrons are trapped by the 
defects present in the SiC wafer. Besides, SiC wafer is 
negatively charged to nearly equal to the acceleration 
voltage of the electron beam so that the incident electron 
beam decelerates and reflects before reaching the wafer 
surface. This phenomenon is similar to the reflection 
of light by a mirror, so the reflected electron beams are 
referred to as "mirror electrons." When the incident elec-
tron beam irradiates the SiC wafer carrying defects, the 
negatively charged state of the defect varies the equipo-
tential surface, resulting in nonuniformity of the reflected 
electron beam. MPJ is a non-destructive inspection tech-
nique capable of imaging the static electrical potential 
topography on SiC wafers with high sensitivity. Isshiki 
et al. use MPJ to clearly identify BPDs, TSDs and TEDs 
after KOH etching [50]. Hasegawa et al. show images of 
BPDs, scratches, SFs, TSDs, and TEDs inspected by using 
MPJ [51] and discuss the relationship between latent 
scratches and step bunching [52].

Atomic Force Microscopy (AFM)
Atomic force microscopy (AFM) is generally applied to 
measure the surface roughness of SiC wafers with dem-
onstrated resolution on atomic scale. The major dif-
ference between AFM and other surface inspection 
methods is that it does not suffer from diffraction limit 
of optical beams or aberration of lenses. AFM uses the 
interaction force between the probe tip on the cantilever 
and the surface of SiC wafer to measure the deflection of 
the cantilever which is then transduced into an electri-
cal signal proportional to the characteristic appearance 
of the surface defects. AFM can form three-dimensional 
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images of surface defects, but it is limited to resolve the 
topology of the surface and is time-consuming, so the 
throughput is low [53].

Scanning Electron Microscopy (SEM)
Scanning electron microscopy (SEM) is another non-
optical technique used extensively for defect analysis of 
SiC wafers. SEM has high spatial resolution on the order 

Fig. 4 Different defect inspection methods and obtained images of defects. a TEM and HAADF image of SF [43]. bOptical micrograph image after 
KOH etching [45]. c PL spectrum with and without SF while the inset shows the monochromatic micro‑PL mapping at a wavelength of 480 nm. 
[46]. d A real‑color CL SEM image of SF at room temperature [47]. e Raman spectrum of various defects [48]. f Micro‑Raman intensity map of the 
204  cm−1 peak of a micropipe‑related defect [49]
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of nanometers. A focused electron beam generated by 
accelerator scans the surface of SiC wafer and interacts 
with SiC atoms to produce various types of signals such 
as secondary electrons, back-scattered electrons and 
X-rays. SEM images corresponding to the output signal 
show the characteristic appearance of surface defects, 
which is useful for understanding structural informa-
tion of SiC crystals. However, SEM is limited to surface 
inspection only and does not provide any information on 
sub-surface defects.

Cathodoluminescence (CL)
Cathodoluminescence (CL) spectroscopy makes use of 
focused electron beams to probe electronic transitions 
in a solid which results in the emission of characteris-
tic light. CL facility usually comes with SEM because an 
electron beam source is common feature of the two tech-
nologies. Accelerated electron beams strike the SiC wafer 
and produce excited electrons. The radiative recombina-
tion of excited electrons emits photons with wavelengths 
in the visible spectrum. By combining the structural 
information and the functional analysis, CL gives a full 
description of a sample with direct correlation of a sam-
ple’s shape, size, crystallinity, or composition with its 
optical properties. Maximenko et  al. show the all-color 
CL image of SFs at room temperature, as displayed in 
Fig. 4d [47]. Different kinds of SFs corresponding to dif-
ferent wavelengths are apparent, and a common single-
layer Shockley-type stacking fault with a blue emission at 
~ 422 nm and a TSD at ~ 540 nm is found by the CL [47]. 
Although SEM and CL have a high-resolution owing to 
the electron beam source, the high energy electron beam 
might cause damage to the surface of the sample.

Optical-Based Defect Inspection Technology
In pursuit of in-line mass production with high through-
put without loss of inspection accuracy, optical-based 
inspection methods are promising because they can pre-
serve the samples and most of them can provide rapid 
scanning capabilities. Surface inspection methods can 
be listed as OM, OCT and DIC, while Raman, XRT and 
PL are subsurface inspection methods. In this section, we 
describe the principles of each inspection method, how 
these apply in inspecting defects, and pros and cons of 
each method.

Optical Microscopy (OM)
The optical microscopy (OM), originally developed to 
closely view samples using light and optical magnifying 
components, can be utilized to inspect surface defects. 
This technique enables producing images in dark-field 
mode, bright-field mode, and phase mode, each giving 
specific defect information, and the combination of these 

images provides the ability to identify most of the sur-
face defects [54]. When the inspection light illuminates 
on the surface of the SiC wafer, the dark-field mode cap-
tures the scattered light by surface defects, so the image 
has a dark background that excludes the unscattered 
light as well as bright objects that indicates the location 
of defects. On the other hand, the bright-field mode cap-
tures the unscattered light, showing a white background 
image with dark objects due to scattering of defects. The 
phase mode captures the images with phase shift, which 
are accumulated by the contamination on the surface of 
the SiC wafer, showing a phase-contrast image. The scat-
tering image of OM is advantageous in lateral resolution, 
while the phase-contrast image mainly aims at examin-
ing the smoothness of the wafer surface. Several studies 
have made efficient use of optical microscopy to charac-
terize surface defects. Pei Ma et  al. show that very thin 
carrot defects or micropipe defects are too small to be 
inspected by optical coherence tomography (OCT) but 
can be examined by optical microscopy due to its advan-
tages in lateral resolution [33]. Zhao et  al. use OM to 
study the origin of polytype inclusions, surface pits and 
step-bunching [34].

Optical Coherence Tomography (OCT)
Optical coherence tomography (OCT) is an optical 
inspection techniques that can provide rapid, nonde-
structive and 3D subsurface images of investigated sam-
ples. Since OCT was originally applied for the diagnosis 
of many diseases, most of its applications have been to 
resolve images of biological and clinical biomedical 
samples. However, there has been a growing interest in 
applying OCT for inspection of defects in SiC wafers 
since the resolution of OCT has been improved to a sub-
micron scale due to the development of advanced opti-
cal components for visible and infrared wavelengths. 
The light source used in OCT has a broadband spec-
trum consisting of a wide range of frequencies in the 
visible and infrared region, so the coherence length is 
small, which means that the axial resolution can be very 
high, while the lateral resolution depends on functional-
ity of the optics. The principle of OCT is based on low-
coherence interferometry, which is typically a Michelson 
type setup. The source light of the OCT is divided into 
two arms, a reference arm and an inspection arm. The 
light beam to the reference arm is reflected by a mirror, 
while the light beam to the inspection arm is reflected 
by the SiC wafer. By moving the mirror in the reference 
arm, the combination of the two light beams gives rise 
to interference, but only if the optical path difference 
between the two beams is less than a coherence length. 
Therefore, the interference signal acquired by the detec-
tor contains cross-sectional information of the SiC wafer, 
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and by combining these cross-sectional inspections later-
ally, a 3D image of OCT can be achieved. However, the 
inspection speed and lateral resolution of OCT are still 
not comparable to other 2D inspection techniques, and 
the interference of surface scattering and absorption loss 
in the operating spectral range are the main limitations of 
OCT image formation. Pei Ma et al. use OCT to analyze 
carrot defects, polytype inclusions, grain boundaries and 
hexagonal voids [33]. Duncan et al. apply OCT to study 
the internal structure of single crystal SiC [55].

Differential Interference Contrast (DIC)
Differential interference contrast (DIC) is a microscopy 
technique that introduces phase contrast to the images 
of surface defects. The advantages of using DIC over OM 
are that the resolution of DIC is much higher than the 
phase mode of OM, because the image formation in DIC 
is not restricted by the aperture, and DIC can produce 
three-dimensional defect images by employing a confo-
cal scanning system. The source light of DIC is linearly 
polarized by a polarizer and then split into two orthogo-
nally polarized sub-beams, i.e., the reference beam and 
the inspection beam, by making it pass through a Wol-
laston prism. The reference beam strikes the normal sur-
face of the SiC wafer, while the inspection beam strikes 
the surface of the SiC wafer with defects, producing a 
phase delay corresponding to the geometry of defects 
and alteration of optical path length. Since the two sub-
beams are orthogonally polarized, they cannot interfere 
with each other during inspection until they are brought 
together after passing through a Wollaston prism again 
and enter an analyzer to generate defect-specific interfer-
ence patterns. The processor then receives the defect sig-
nals to form a two-dimensional differential interference 
contrast image. To generate a three-dimensional image, a 
confocal scanning system can be used to shut off the two 
sub-beams that are offset from the focus of the system to 
avoid false inspections. Therefore, by making the focal 
point of the confocal system move in the direction of the 
optical axis, a three-dimensional defect image of the SiC 
wafer surface can be obtained. Sako et al. show that a sur-
face defect with a scraper-shaped surface profile on the 
SiC epitaxial layer has been observed using CDIC. [56]. 
Kitabatake et al. establish the integrated evaluation plat-
form using CDIC to inspect surface defects on the SiC 
wafers and the epitaxial films [57, 58].

X‑Ray Diffraction Topography (XRT)
X-ray diffraction topography (XRT) is a powerful subsur-
face inspection technique that can help investigate the 
crystallographic structure of SiC wafers since the wave-
length of X-rays is comparable with the distance between 
interatomic planes of SiC crystal. It is used to evaluate 

the structural characteristics of SiC wafers by measur-
ing the change in diffraction intensity due to the strain 
field caused by defects. This means that crystallographic 
defects cause a change in lattice spacing or lattice rota-
tion around them, forming a strain field. XRT is com-
monly used in production line with high throughput and 
sufficient resolution; however, it requires a large-scale 
apparatus for emission of X-rays and its defect mapping 
capabilities still require improvement. The image for-
mation mechanism of XRT is based on Laue condition 
(momentum conservation), where a collimated beam of 
X-rays is produced when the electron beam generated by 
a heated filament is collimated and accelerated by a high 
electric potential to obtain sufficient energy, which is then 
directed to the metal anode. When X-rays are irradiated 
onto a SiC wafer, a unique diffraction pattern with several 
narrow and sharp peaks is formed and inspected by the 
detector due to the constructive and destructive interfer-
ence of X-rays scattered at specific angles from the inter-
atomic planes of SiC. Thus, crystallographic defects can 
be characterized by diffraction peak broadening analysis, 
where the diffraction spectrum is narrow and sharp if no 
defects are present; otherwise, the spectrum is broad-
ened or shifted if there is a defect-induced strain field. 
The detection mechanism of XRT is based on X-rays dif-
fraction rather than electrons scattering, thus classifying 
XRT as an optical technique while SEM is a non-optical 
technique. Chikvaidze et al. use XRT to confirm defects 
with different stacking sequence in the SiC sample [59]. 
Senzaki et al. show the transformation of extended BPDs 
to TED is origins of triangular-shaped single Shockley-
type stacking fault (1SSF) inspected using XRT under 
current stress test [60]. Current in-line XRT is typically 
used to identify the defect structure without recognizable 
inspection signal from other inspection techniques such 
as PL and OM.

Photoluminescence (PL)
Photoluminescence (PL) is one of the most common sub-
surface inspection technique being used to inspect crys-
tallographic defects. The high throughput of PL makes 
it suitable for in-line mass production. SiC is an indirect 
bandgap semiconductor that shows PL at near band-edge 
emission of about 380  nm wavelength. Recombination 
at through defect level in SiC wafers could be radiative. 
UV excitation-based PL technique has been developed to 
identify defects present inside SiC wafers, such as BPDs 
and SFs [61]. However, defects without characteristic 
PL features or with weak PL contrast against defect-free 
SiC region, such as scratches and threading dislocations, 
should be evaluated by other inspection methods. Since 
emission energy varies depending on the trap levels of 
defects, PL images with spectral resolution could be used 
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to differentiate each type of defects and map them [15]. 
The PL spectrum of polytype SF exhibits multi-peak 
spectra in the wavelength range of 350–550  nm due to 
the quantum-well-like band structure induced by SFs. 
Each type of SF can be distinguished by examining their 
emission spectra using bandpass filter that filters out 
individual spectra, as shown in Fig. 4c [15, 46]. Berwian 
et al. construct a defect luminescence scanner based on 
UV-PL to clearly inspect BPDs, SFs and polytype inclu-
sions [62]. Tajima et al. use PL with a variety of excitation 
wavelengths ranging from deep UV to visible and NIR 
to inspect TEDs, TSDs, SFs and examine the correlation 
between the PL and etched pit patterns [63]. Neverthe-
less, the PL images of some defects are similar, such as 
BPDs and carrot defects, which both show line-shaped 
features, making it difficult for PL to distinguish between 
them, so other structural analysis tools, such as XRT or 
Raman spectroscopy, are often used in parallel with PL to 
accurately classify these defects.

Raman Spectroscopy
Raman spectroscopy has a wide variety of applications 
in biology, chemistry and nanotechnology to identify 
features of molecules, chemical bonds and nanostruc-
tures. Raman spectroscopy is a non-destructive sub-
surface inspection method that can verify different 
crystalline structures and crystallographic defects in SiC 
wafers [64, 65]. Typically, the SiC wafer is irradiated by 
a laser and the laser light interacts with molecular vibra-
tions or phonons in the SiC that puts the molecule into 
a virtual energy state, resulting in an upward or down-
ward shift in the wavelength of the inspected photons, 
referred to as Stokes Raman scattering or Anti-Stokes 
Raman scattering, respectively. The shift in the wave-
length gives information about the vibrational modes in 

SiC, corresponding to the different polytype structures. 
It has been shown that the characteristic peaks at 200 
and 780  cm−1 in the measured Raman spectrum indicate 
the 4H-polytype of SiC, while the characteristic peaks 
at 160, 700 and 780   cm−1 represent the 6H-polytype of 
SiC [66]. Chikvaidze et  al. use Raman spectroscopy to 
confirm a 2H-SiC polytype with Raman peaks around 
796 and 971   cm−1 present in the 3C-SiC sample [67]. 
Hundhausen et al. use Raman spectroscopy to study the 
polytype conversion of 3C-SiC during high-temperature 
annealing [68]. Feng et al. find the peak center shift and 
the intensity variation of micropipes, TSDs and TEDs, as 
shown in Fig. 4e [48]. For spatial information, an image 
of Raman mapping is shown in Fig. 4f [49]. Generally, the 
Raman scattering signal is very weak, so it takes a long 
time for Raman spectroscopy to collect sufficient signal. 
The technique could be used for detail analysis of the 
defect physics, but it is not suitable for in-line inspection 
due to weak signal and current technology limits.

The types of defects that can be inspected by the 
inspection methods discussed in this paper and their cor-
responding researches are summarized in Table 3, which 
still requires more research data to be completed.

Impact of Defects on Devices
Each type of defect adversely affects the quality of 
the wafer and deteriorates the devices subsequently 
fabricated on it. The deterioration between defects 
and device failures is related to the kill ratio, which 
defined as the proportion of defects estimated to cause 
device failure. The kill ratio for each defect type varies 
depending on the end application. Specifically, those 
defects that cause significant impact on the device are 
referred to as killer defects [88]. Previous studies have 
shown the correlation between defects and device 

Table 3 Research on various inspection methods and inspected defect types

Non-optical Optical

Inspection Metrology Inspection Metrology

KOH SEM AFM TEM CL MPJ OCT DIC XRT PL Raman

Crystal defect

Micropipe [45] [16] [69] [70] [71] X O O [72] [15] [48]

TSD/TED [45, 46, 73] [73] O [74] [47] [51, 73] O O [16, 75] [15, 61, 76] [48]

BPD [46, 73] X X [74] [77] [51, 73] X X [75] [15, 61] O

SF [78] [16] O [43, 46, 74] [47] [51] O O [76] [15, 61, 46] [17]

Surface defect

Scratch [79] [79] O [51, 79] O O [15, 80] X [17]

Carrot [16] O [81] [82] [33] [82] [83] [15] O

Triangular [16] [25] [71] O [33] [84] [84] [85] [84–86]

Downfall [87] O [87] X O O X X O
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performance [89, 90]. We discuss the impact of differ-
ent defects on different devices in this section.

In MOSFET, BPDs increase on-resistance [91] and 
reduce the gate oxide reliability [92]. Micropipes limit 
the operation current and increase the leakage current 
[93, 94] while defects such as SFs, carrots and polytype 
inclusions reduce blocking voltage [4, 91] and scratches 
on the surface cause reliability issues [95]. Isshiki et al. 
show that there are latent scratches, consisting of com-
plex stacking faults and dislocation loops lying beneath 
the SiC substrate, resulting in formation of step bunch-
ing and degradation of dielectric strength of oxide film 
in SiC-MOSFETs [79]. Other surface defects such as 
trapezoidal features might lead to significant impact on 
the channel mobility or the oxide breakdown character-
istics in SiC MOSFETs [96].

In Schottky barrier diode, BPDs, TSDs and TEDs 
increase the reverse leakage current [97–101] while 
micropipes and SFs reduce the blocking voltage [85, 
89, 102]. Carrots and polytype inclusions both reduce 
blocking voltage and increase leakage current while 
scratches cause barrier height inhomogeneity [103].

In a p–n diode, BPDs increase the on-resistance and 
leakage current [91] while TSDs and TEDs reduce 
blocking voltage [104]. Micropipes limit the operation 
current and increase the leakage current [93, 94] while 
SFs increase forward voltage [105]. Carrots and poly-
type inclusions reduce blocking voltage and increase 
leakage current [72, 106] while scratches on the sur-
face have no direct impact on p–n diode. Skowronski 
et  al. show that during the diode operation, the BPD 
within the SiC epitaxial layer is transformed into a 
SFs or allows the SFs to extend along the BPD through 
electrical conduction, resulting in current degradation 
that increases the resistance of the SiC p–n diode [60]. 
Studies have also proved that the SFs may give rise to a 
3C-SiC polytype, resulting in decrease in minority car-
rier lifetime of the SiC p–n diode because the 3C-SiC 
polytype has a lower bandgap than the 4H-SiC poly-
type, so a SF act as a quantum well that enhances the 
recombination rate [107]. Moreover, the single Shock-
ley-type SFs are expanded under PL characterization, 
causing a change in junction potential which in turn 
deteriorates the on-resistance of SiC p–n diode [108]. 
Furthermore, TSDs result in degradation of the block-
ing voltage and TEDs reduce the minority carrier life-
time of the SiC p–n diode [109].

In bipolar devices, BPDs reduce the gate oxide reliabil-
ity [51, 110] while TSDs and TEDs reduce carrier lifetime 
[111]. Micropipes limit the operation current [94] while 
SFs reduce carrier lifetime [111]. Carrots and polytype 
inclusions reduce blocking voltage and increase leakage 
current and reduce carrier lifetime [84, 112].

Point defects (vacancies) in SiC reduce the carrier life-
time of the device [24], leading to junction leakage cur-
rents [113] and resulting in lower breakdown voltages. 
Although point defects have a negative impact on elec-
tronic devices, they find some useful applications as well, 
such as in quantum computing [114, 115]. Lukin et  al. 
show that point defects in SiC such as silicon vacancy 
and carbon vacancy can produce stable bound states with 
suitable spin–orbit attributes, serving as hardware plat-
form choices for quantum computation [116].

The impacts of defects on different devices are organ-
ized in Fig. 5. As one can see, defects can deteriorate the 
device characteristics in many ways [91, 117]. Although 
the negative effects of defects can be counteracted by 
designing different device structures [1–3, 118–123], 
establishing a fast and accurate defect inspection system 
is amid a pressing need to help one observe defects and 
further optimize the process to reduce them. Note that 
analyzing the characteristics of SiC devices to identify 
type and the presence of defects could potentially be used 
as a defect inspection method (Figs. 6 and 7).

An efficient defect inspection system requires the abil-
ity to identify surface defects and crystallographic defects 
simultaneously, put all defects to the correct category 
and then display the mapping of defects distribution data 
of the entire wafer by using multi-channel machine learn-
ing algorithms. Kawata et al. design an automatic inspec-
tion algorithm for the dislocation contrasts of n-type SiC 
wafers in a birefringence image and succeed in inspecting 
the position of the dislocation contrasts of XRT images 
with relatively high precision and sensitivity [124]. Leon-
ard et al. use deep convolutional neural network (DCNN) 
machine learning for automated defect inspection and 
classification by using PL images of unetched wafers 
coupled with automatically labelled images of the cor-
responding etched wafers as the training set. The defect 
locations and classifications determined by DCNN cor-
relate well with the subsequently etch delineated features 
[125]. Monno et al. propose a deep learning system which 
inspecting defects on SiC substrate by SEM and classify-
ing them with a 70% accuracy. The proposed approach 
can combine multiple tiles without inconsistency of lin-
ear defects and can inspect and classify the seven defects, 
with a very good degree of accuracy [126, 127].

Apart from inspecting defects, reducing their density 
is also a useful approach to improve the quality and the 
yield of SiC devices. By using micropipe-free seeds or 
a solution-based growth, the density of micropipe and 
TSDs can be decreased [112, 128]. To reduce the surface 
defects caused by mechanical processes, some studies 
point out that femtosecond lasers can be used to improve 
the efficiency of chemical–mechanical planarization 
[129] and the cutting quality [67, 130–133]. Femtosecond 
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Fig. 5 The impact of defects on different devices

Fig. 6 Defect detection and device performance estimation assisted by AI
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laser annealing can also improve the quality of ohmic 
contact between Ni and SiC and increase the conductiv-
ity of the device [134]. In addition to the application of 
femtosecond lasers, some other teams also found that 
the use of laser-induced liquid phase doping (LILPD) can 
effectively reduce the damage generated during the pro-
cess [135].

Conclusion
In this review article, we described the importance of 
defect inspection in the SiC industry, especially of those 
known as killer defects. Details of the crystallographic 
and surface defects that often arise during the produc-
tion of SiC wafers as well as the nature of deterioration 
caused by these defects in different devices are com-
prehensively reviewed. Surface defects are detrimen-
tal to most devices, while crystallographic defects are 
risky for defect transformation and wafer quality. After 
understanding the impact of defects, we summarize the 
principles of common surface and subsurface inspec-
tion techniques, how these are applied in inspecting 
defects, and pros and cons of each method. The destruc-
tive inspection techniques can provide observable, reli-
able, and quantitative information; however, these cannot 
meet the requirements of in-line mass production since 
these are time consuming and adversely affect the quality 
of sample. On the other hand, non-destructive inspection 
techniques, especially optical-based techniques, are more 
applicable and efficient in production line. Note that dif-
ferent inspection techniques are complementary to each 
other. A combinational use of inspection techniques 
could potentially balance the tradeoff between through-
put, resolution and equipment complexity. In the future, 
it is anticipated that non-destructive inspection meth-
ods with high-resolution and rapid scanning capabilities 
are integrated into the perfect defect inspection systems 

capable of simultaneously inspecting surface defects 
and crystallographic defects, then using multi-channel 
machine learning algorithms to assign all defects to the 
correct category and display the mapping image of defect 
distribution data to the entire SiC wafer.
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