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Abstract 

Controlling the upconversion luminescence (UCL) intensity ratio, especially pumped at 808 nm, is of fundamental 
importance in biological applications due to the water molecules exhibiting low absorption at this excitation wave-
length. In this work, a series of β-NaYbF4:Er microrods were synthesized by a simple one-pot hydrothermal method 
and their intense green (545 nm) and red (650 nm) UCL were experimentally investigated based on the single-particle 
level under the excitation of 808 nm continuous-wave (CW) laser. Interestingly, the competition between the green 
and red UCL can be observed in highly  Yb3+-doped microcrystals as the excitation intensity gradually increases, 
which leads to the UCL color changing from green to orange. However, the microcrystals doped with low  Yb3+ con-
centration keep green color which is independent of the excitation power. Further investigations demonstrate that 
the cross-relaxation (CR) processes between  Yb3+ and  Er3+ ions result in the UCL competition.
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Introduction
Rare-earth-ion doped UC nanomaterials have drawn 
great attention recently due to their promising applica-
tions in biological issues [1], super-resolution imaging 
[2], multicolor display [3], thermometer sensor [4], laser 
refrigeration [5, 6], and laser materials [7, 8]. These UC 
nanomaterials can efficiently convert near-infrared light 
into visible emissions according to the anti-Stokes pro-
cess. Generally, the achieving of UCL relies on the sen-
sitizer–activator pair. To obtain the efficient UCL, the 
sensitizer–activator pair of lanthanides should incor-
porate in appropriate host lattices [9]. To date, the 
 NaYF4 has been considered as the most efficient host 

for generating UCL owing to its low phonon energy 
(~ 350   cm−1) [10]. In general, the typical  Yb3+ ions act 
as the sensitizer absorbing the excitation energy and the 
activator of  Er3+  (Tm3+ or  Ho3+) is responsible for emit-
ting the UCL [11–13].

It is well-known that the  Yb3+ ions have a large absorp-
tion cross-section at 980  nm, which can be efficiently 
excited by the high-performance and commercial laser 
diode [14]. However, owing to the large absorption coef-
ficient of water molecules at 980 nm, the  Yb3+-sensitized 
UC nanoparticles would face severe overheating prob-
lems, which limits its further application in biologi-
cal tissues and aqueous environment by decreasing the 
depth of penetration [15]. To overcome the overheating 
effects, the conventional approach is to dope  Nd3+ ions 
as sensitizer which can shift the excitation wavelength 
from 980 to 808  nm [16, 17]. Nonetheless, the dopant 
of  Nd3+ usually yields small nanoparticles and hardly 
grows to microcrystals due to the larger  Nd3+ (r = 1.249 
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Å) substitution of the relatively smaller  Y3+ (r = 1.159 
Å) in  NaYF4 lattice [10]. Importantly, compared with the 
nano-scale UC particles, micro-scale UC particles facili-
tate more advantages for applications in micro-optoelec-
tronic devices, volumetric color display, and microlasers 
based on their high crystallinity and luminescent effi-
ciency [18–22]. However, the most present researches are 
mainly conducted in aqueous solutions, organic solvents 
or as-prepared solid powders. This may lead to severe 
overheating problems and the UCL will be influenced 
by the adjacent particles. Therefore, exploring the UCL 
and tunable color in single microparticle level, especially 
pumped at 808 nm wavelength, will effectively avoid the 
effects of external environment and broaden its further 
applications in micro-optoelectronic devices and aque-
ous environments.

In this study, we firstly report the effect of excita-
tion-power-dependent UCL competition in single 
 Yb3+-sensitized  NaYbF4:Er microcrystal pumped at 
808 nm. The properties of the UCL competition are char-
acterized by the single microcrystal level. The competi-
tion between green and red UCL is clearly observed in 
highly  Yb3+-doped microcrystals with varying the excita-
tion intensity, and the UCL color was tuned from green 
to orange. On the contrary, there are no UCL competi-
tions observed in lowly  Yb3+-doped microcrystal and the 
UCL color always maintains green which is independent 
of the excitation power. The mechanism of the UCL com-
petition is also demonstrated in detail.

Experimental Sections
Chemicals
The chemicals of yttrium nitrates (Y(NO3)3, 99.9%), 
ytterbium nitrates (Yb(NO3)3, 99.9%), erbium nitrates 
(Er(NO3)3, 99.9%), nitric acid  (HNO3, analytical rea-
gents), Ethylenediamine tetraaceticacid disodium salt 
dihydrate (EDTA-2Na, analytical reagents), sodium 
hydroxide (NaOH, analytical reagents) and ammonium 
fluoride  (NH4F, analytical reagents) were purchased from 
Aladdin (China). All the chemicals were directly used as 
received without further purification.

Synthesis of β‑NaYF4:Yb,Er Microcrystals
The β-NaYF4:Yb,Er microcrystals were synthesized by 
a similar hydrothermal method procedure according 
to our previous study [23]. In a typical procedure, for 
instance, synthesis of the β-NaYbF4:2%Er (mol%) micro-
crystals: firstly, the Yb(NO3)3 and Er(NO3)3 powders 
were weighted according to the stoichiometric ratio and 
then dissolved in deionized water yielding a clear solu-
tion (0.2  mol  L−1); then the EDTA-2Na (1  mmol) and 
NaOH (5  mmol) were mixed with 12.5  mL deionized 
water under continuously stirring in a beaker; following, 

5 mL of Yb(NO3)3 (0.2 mol  L−1) and Er(NO3)3 (0.2 mol 
 L−1) aqueous solutions (the total  Yb3+ and  Er3+ ions are 
1  mmol), 8  mL of  NH4F (2  mol  L−1) aqueous solutions 
and 7  mL of dilute hydrochloric acid (1  mol  L−1) were 
added into the beaker; finally, the above mixtures were 
stirred for 1.5 h and transferred into a 50 mL Teflon-lined 
autoclave and heated at 200 °C for 40 h. The as-prepared 
white precipitates were collected by centrifugation, 
washed with deionized water and ethanol for several 
times, and dried in air at 40  °C for 8  h. The microcrys-
tals doped with different concentrations of  Yb3+ or  Er3+ 
can be similarly synthesized by varying the volume of 
RE(NO3)3 aqueous solutions.

Structural Characterization
The morphology and size of the β-NaYbF4:Er microcrys-
tals were characterized by scanning electron microscope 
(SEM) (S4800, Hitachi). X-ray diffraction (XRD) patterns 
of the microcrystals were measured using a powder X-ray 
diffractometer with Cu K radiation at 40 kV and 200 mA 
(TTR III system, Rigaku).

Upconversion Luminescence Measurements
In the photoluminescence experiments, the 808  nm 
CW laser (Mira-900F, Coherent) was integrated with 
an inverted microscope (Observer A1, Zeiss) and irra-
diated on the microcrystals with a 100× objective lens 
(NA = 1.4). The diameter of the excitation spot was 
estimated to be ~ 2.0  μm. The UCL generated from the 
microcrystals was collected by the same objective lens 
and then transmitted to a spectrometer (SR-500I-B1, 
Andor) coupled with a charge-coupled device (DU970N, 
Andor) for optical signal analysis. The UCL colors of the 
microcrystals were photographed using a high-sensitivity 
camera (DS-Ri2, Nikon).

Results and Discussion
Figure  1a and Additional file  1: Fig. S1 show the SEM 
images of the as-prepared β-NaYbF4:Er microcrystals 
doped with different  Yb3+ concentrations. The results 
indicate that the microcrystals exhibit the hexagonal 
prism morphology and uniform size distribution (with 
the lengths of ~ 15  μm and diameters of ~ 6  μm). Nota-
bly, adjusting the doping  Yb3+ concentrations slightly 
varies the size of microcrystals. Figure  1b gives the ele-
ments mapping of single  NaYF4:60%Yb,2%Er micro-
crystal, which demonstrates that the  Y3+,  Yb3+ and  Er3+ 
ions are homogeneously incorporated in the  NaYF4 
host lattices. Figure 1c displays the XRD patterns of the 
β-NaYF4:x%Yb,2%Er microcrystals with different  Yb3+ 
concentrations. It reveals that all the diffraction peaks are 
well in accordance with the standard hexagonal phases of 
 NaYF4 host (JCPDS No. 16-0334). The SEM images and 
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XRD patterns confirm that the  NaYF4 microcrystals are 
successfully synthesized and highly crystalline.

Figure  2 shows the UCL spectra of single 
β-NaYF4:x%Yb,2%Er microcrystal under the excitation of 
808  nm CW laser with different excitation density. The 
corresponding UCL photographs are also provided in the 
inserts of relevant spectrum, respectively. Figure 2a gives 
the spectra of the highly  Yb3+-doped single  NaYbF4:2%Er 
microcrystal. The typical green (525 and 545  nm) and 
red (650  nm) UCL can be clearly observed, which are 
ascribed to the transitions of (2H11/2/4S3/2) → 4I15/2 and 
4F9/2 → 4I15/2 from  Er3+, respectively. Under the excita-
tion density of 1.59 kW   cm−2, the relatively weak green 
and red UCL emerge in the spectrum. The intensity of 
the green (545  nm) UC emission is larger than the red 
(650  nm) one, leading to the single hexagonal micro-
crystal exhibiting green color. As the excitation intensity 
slightly increases to 3.18 kW  cm−2, the red UCL increases 
faster than the green UCL and their intensities are almost 
equal. This results in the UCL color changing to dark yel-
low. Notably, it can clearly observe that the UC emissions 
are transparent to the hexagonal microcrystal and trans-
port from the middle of the microrod to the two side 
ports. This phenomenon has also been demonstrated in 
previous studies [21, 24]. When further rises the excita-
tion intensity up to 12.7 kW  cm−2, the red UCL enhances 
rapidly and exceeds the green UC emission, which 

causes the luminescence color tuning to yellow. Moreo-
ver, a new blue UCL centered at 410 nm appears, which 
is originated from the transition of 2H9/2 → 4I15/2 from 
 Er3+. As the excitation intensity continues to increase to 
38.2  kW   cm−2, the red UCL increases remarkably and 
further surpasses the green UC emission leading to the 
UCL color turning into orange. The results demonstrate 
that the green and red UCL compete with each other as 
varies the excitation power. It is the first time that the 
UCL competition is observed in  Er3+ ions for the highly 
 Yb3+-doped micromaterials pumped at 808 nm.

To explore the influence of the  Yb3+ concentration on 
the UCL competition, we further investigate the UCL 
properties of the single  NaYF4:x%Yb,2%Er microcrystal 
doped with different  Yb3+ concentrations. Additional 
file  1: Figure S2 displays the UCL spectra of the single 
 NaYF4:60%Yb,2%Er microcrystal. The same phenomenon 
to the microcrystal doped with 98%  Yb3+ can be observed 
(Fig. 2a). Differently, the red UCL exceeds the green UCL 
at a relatively high excitation intensity which is higher 
than that of the  NaYF4:98%Yb,2%Er microcrystal. More-
over, the UCL color of the single  NaYF4:60%Yb,2%Er 
microcrystal changes from green to yellow as the exci-
tation intensity increases. However, as shown in Fig. 2b, 
when the doping  Yb3+ ions further decrease to 20%, the 
green and red UCL keep a similar growth trend as the 
excitation intensity gradually reinforces. This leads to the 

Fig. 1 a SEM images of the β-NaYF4:98%Yb,2%Er microcrystals. b The elements mapping of β-NaYF4:60%Yb,2%Er microcrystals. c XRD patterns of 
the β-NaYF4:x%Yb,2%Er microcrystals
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UCL color maintaining green and no UCL competition 
occurs in the single microcrystal. Thus, the results verify 
that the highly  Yb3+-doped microcrystals can efficiently 
generate the green and red UCL competition, causing the 
UCL color tunning from green to orange with increasing 
the excitation intensity. In contrast, for lowly  Yb3+-doped 
microcrystals, the green UCL is always larger than the 
red one and the UCL color is green regardless of the vari-
ation of excitation intensity.

To further investigate the UCL competition behav-
iors, we have calculated the ratios of red-to-green (R/G) 
UCL intensity based on the peak maxima for the single 
 NaYF4:x%Yb,2%Er microcrystal under different pump 
powers, as shown in Fig.  3a, b. For  NaYF4:98%Yb,2%Er 
microcrystal (Fig. 3a), the R/G ratios increase from 0.59 
to 2.51 when the excitation intensity increases from 1.59 
to 38.2  kW   cm−2. Moreover, the red and green UCL 
are equivalent when the excitation intensity pumps at 
3.18  kW   cm−2. However, Additional file  1: Fig. S3a dis-
plays the R/G ratios rise merely from 0.19 to 1.36 as the 
excitation intensity gradually enhances. The excitation 
intensity for the red UCL exceeds the green one occurs 
at 12.7  kW   cm−2. Exceptionally, for  NaYF4:20%Yb,2%Er 
microcrystal shown in Fig.  3b, this R/G ratio keeps 
at ~ 0.20 which is independent of the excitation intensity. 

Figure  3c, d  and Additional file  1: Fig. S3b show the 
dependences of UCL intensity on the excitation inten-
sity for  NaYF4:x%Yb,2%Er microcrystals doped with dif-
ferent  Yb3+ concentrations. The slopes for the green and 
red UCL are all approximate to ~ 2, which indicates that 
these two UCL are derived from the two-photon absorp-
tion processes. Notably, for doping with 98% and 60% 
 Yb3+ concentrations of microcrystals, the red and green 
UCL appear saturation effects. In addition, the excitation 
intensity for the  NaYF4:98%Yb,2%Er microcrystal is lower 
than the  NaYF4:60%Yb,2%Er microcrystal. However, the 
UCL slope of  NaYF4:20%Yb,2%Er microcrystal is consist-
ent under different excitation intensity due to without 
occurring saturation effects.

Next, we further investigate the influence of doping 
 Er3+ concentration on the UCL competition. Figure  4a 
illustrates the ratios of R/G as a function of the excita-
tion intensity for single β-NaYbF4:x%Er microcrystals 
doped with different  Er3+ concentrations. It reveals that 
the R/G ratios reduce as the doping  Er3+ concentrations 
increase. Moreover, we make further efforts to explore 
the UCL properties for the single  Er3+-doped  NaYF4 
microcrystal. Figure  4b shows the UCL spectra of sin-
gle β-NaYF4:2%Er microcrystal under the excitation of 
808  nm CW laser with different excitation density. The 

Fig. 2 The UCL spectra of single a β-NaYF4:98%Yb,2%Er, and b β-NaYF4:20%Yb,2%Er microcrystal under the excitation of 808 nm CW laser with 
different excitation density. The insert UCL photographs are corresponding to the relevant spectrum, respectively
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UCL spectra demonstrates that the green UCL is con-
stantly larger than the red UCL and there is no UCL 
competition appearance. Therefore, its UCL color main-
tains green and is independent of the excitation intensity.

Having systematically demonstrated the experimen-
tal phenomenon, here we discuss the mechanism of the 
UCL competition induced by variation of excitation 
power. Figure 5 gives the proposed UCL mechanism and 
possible routes for populating the upper emitting states 
of  Er3+ ions. The corresponding UCL transitions as well 
as the energy-transfer (ET) processes are also provided. 
The population of the  Er3+ ions can be divided into two 
steps: firstly, the electrons in the ground state of  Er3+ 
are excited to the 4I9/2 state by ground-state-absorption 
(GSA) or through ET from  Yb3+ after absorbing the 
808  nm photon; then continues to reach the 2H9/2 state 
by absorbing a second 808  nm photon or 4I11/2 state 

through a non-radiative transition [25]. After that, the 
emitting states (2H11/2, 4S3/2, and 4F9/2) can be populated 
by excited-state-absorption (ESA), CR, ET, and non-radi-
ative transition processes, which are elaborated in Fig. 5. 
The significant population of the upper states of  Er3+ ions 
can efficiently generate the UCL.

Notably, under the excitation of 808  nm laser, the 
doping  Yb3+ concentrations will affect the populating 
routes for upper states of  Er3+. For highly  Yb3+-doped 
 NaYF4:2%Er microcrystal, the distance between the  Yb3+ 
and  Er3+ is relatively close, thus leads to the significant 
CR processes happening. The proposed CR processes are:
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Fig. 3 The ratios of R/G for single a β-NaYF4:98%Yb,2%Er, and b β-NaYF4:20%Yb,2%Er microcrystal as a function of the excitation intensity. The 
dependences of the UCL intensity on the excitation intensity for single c β-NaYF4:98%Yb,2%Er, and d β-NaYF4:20%Yb,2%Er microcrystal. All 
excitation wavelengths are at ~ 808 nm
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The above CR processes can efficiently enhance the 
population of red-emitting state (4F9/2) and depopu-
late the green-emitting states (4S3/2 and 2H11/2). There-
fore, under relatively lower excitation intensity, it 
mainly populates the green-emitting states, thus the 
green UCL is larger than red one and the UCL color 
tends to be green. When gradually increasing the exci-
tation intensity, the CR processes become efficient, 
thus enhancing the red UCL and suppressing green 
UC emissions. This causes the red and green UCL to 
compete with each other. This experimental phenom-
enon is similar to our previous literature reported that 
the highly-Yb3+ doped  NaYF4:Er microcrystals always 
tend to generate red UCL color under 980 nm excita-
tion [23]. However, for lowly  Yb3+-doped  NaYF4:2%Er 
microcrystal, there is no CR processes occurrence 
because of the relatively far distance between  Yb3+ 
and  Er3+ ions. Therefore, the green- and red-emitting 
states maintain the same populating proportion as 
increases the excitation intensity, which results in the 
microcrystal keeping green UCL color.

Conclusions
In conclusion, we have systematically investigated the 
excitation power induced UCL competition in single 
 NaYF4:x%Yb,2%Er microcrystal under the excitation of 
808 nm. It finds that, for highly  Yb3+-doped microcrystals, 
the red and green UCL compete with each other and its UCL 
color can be finely tuned from green to orange when gradu-
ally increasing the excitation intensity. On the contrary, there 
is no competition in lowly  Yb3+-doped microcrystals and the 
UCL color retains green which is unchanged. The mecha-
nism of the UCL competition is interpreted by CR pro-
cesses owing to the short distance between  Yb3+ and  Er3+ 
ions in highly  Yb3+-doped microcrystals. However, for lowly 
 Yb3+-doped microcrystals, the long-distance between  Yb3+ 
and  Er3+ ions prohibits the CR processes and the population 
of  Er3+ ions keeps the original approaches, thereby creating 
the lowly  Yb3+-doped  NaYF4:2%Er microcrystal facilitates 
green UCL color. Owing to the remarkable optical proper-
ties in micro-scale and particularly pumped at 808 nm laser, 
these microcrystals can be potentially applied in biological 
issues, aqueous environments and micro-optical devices.

Fig. 4 a The ratios of R/G for single β-NaYbF4:x%Er microcrystal doped with different  Er3+ concentrations as a function of the excitation intensity. b 
The UCL spectra of single β-NaYF4:2%Er microcrystal under the excitation of 808 nm CW laser with different excitation density
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