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Abstract 

Electrochemical hydrogen evolution reaction (HER) refers to the process of generating hydrogen by splitting water 
molecules with applied external voltage on the active catalysts. HER reaction in the acidic medium can be studied by 
different mechanisms such as Volmer reaction (adsorption), Heyrovsky reaction (electrochemical desorption) or Tafel 
reaction (recombination). In this paper, facile hydrothermal methods are utilized to synthesis a high-performance 
metal-inorganic composite electrocatalyst, consisting of platinum nanoparticles (Pt) and molybdenum disulfide 
nanosheets  (MoS2) with different platinum loading. The as-synthesized composite is further used as an electrocatalyst 
for HER. The as-synthesized Pt/Mo-90-modified glassy carbon electrode shows the best electrocatalytic performance 
than pure  MoS2 nanosheets. It exhibits Pt-like performance with the lowest Tafel slope of 41 mV  dec−1 and superior 
electrocatalytic stability in an acidic medium. According to this, the HER mechanism is related to the Volmer-Hey-
rovsky mechanism, where hydrogen adsorption and desorption occur in the two-step process. According to electro-
chemical impedance spectroscopy analysis, the presence of Pt nanoparticles enhanced the HER performance of the 
 MoS2 nanosheets because of the increased number of charge carriers transport.
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Introduction
Various environmental issues are the results of global 
activities and the consumption of fossil fuels. Therefore, 
there have been challenges to figure out sustainable, 
clean, and eco-friendly fuels to overcome this problem. 
An inspiring alternative energy carrier to replace fossil 
fuels is hydrogen  (H2) which is clean and free from  CO2 
emission. Therefore, it is of great interest to produce  H2 
from renewable resources such as water [1–4]. Hydrogen 

could be obtained from the splitting of water, an energy-
intensive process that requires 237  kJ/mol. Electrolytic 
water splitting is a process where an electrical current 
dissociates water into oxygen and hydrogen. This pro-
cess entails substantial effort in discovering breakthrough 
electrolytes and electrodes that are low cost, efficient, 
long-lasting, and stable. Hydrogen evolution reaction 
(HER) is an excellent route to produce high purity (≈ 
100%) hydrogen from water electrolysis [5, 6]. Therefore, 
an ideal catalyst must have high stability and be present 
to start proton reduction with minimum over poten-
tial and large cathodic current densities, which leads to 
enhancing the HER efficiency [7–10].

So far, the most effective HER electrocatalysts reported 
are Platinum (Pt) and its alloy because of rapid reduction 

Open Access

*Correspondence:  minarazavi220@gmail.com; m.sokhakian@um.edu.my; 
yatimah70@um.edu.my
1 Department of Chemistry, Faculty of Science, University Malaya Centre 
for Ionic Liquids, University of Malaya, 50603 Kuala Lumpur, Malaysia
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4061-6227
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-021-03644-6&domain=pdf


Page 2 of 10Razavi et al. Nanoscale Research Letters            (2022) 17:9 

kinetics, low overpotential, and small onset potential for 
high-efficiency energy conversion [11, 12] However, it is 
not adequate to use a large amount of Pt due to its low 
availability and high price as an electrocatalyst [13]. On 
the other hand, it can significantly enhance Pt electro-
catalyst activity by reducing the size and increasing the 
surface area, allowing more atoms at the exterior and 
subsurface site to be involved in the catalytic process [14]. 
Therefore, control of Pt size and avoiding its agglom-
eration are favourable strategies to enance its electro-
catalytic activity [15]. Consequently, it is very effective 
to deposit Pt nanoparticles with high homogeneity on 
the supporting materials such as conductive polymers, 
carbon, metal oxide, and sulfide[16] The supporting 
materials typically provide accessibility and stabiliza-
tion platforms for nanoparticle growth and bring about 
modified reactivity and additional adsorption and active 
sites [17] Therefore, the decoration of Pt nanostructures 
such as nanostructure on supporting materials not only 
enhances the physiochemical properties of supporting 
materials but also prevents agglomeration of Pt, which 
influences the activity of composite towards HER [18–
21]. Newly, earth plentiful source, high efficiency, and 
affordable transition metal dichalcogenides (TMDs) are 
considered good alternatives for HER. Synthesizing TMD 
nanomaterials as HER electrocatalysts requires consider-
able effort due to their noteworthy characteristics such 
as excellent electrochemical, optical, mechanical proper-
ties. They have low overpotential, small Tafel slope, and 
high air stability which exhibit high HER performance. 
Molybdenum disulfide  (MoS2) and tungsten disulfide 
 (WS2) are two materials among the TMDs group, which 
have electrical properties that can be altered from metal-
lic to semiconducting by varying their crystal structure 
and the number of layers.  MoS2 is one of the well-known 
and most widely investigated semiconductors which is 
an eco-friendly, non-toxic, and abundant semiconduc-
tor with an atomic-thickness layer structure similar to 
graphene [22–25].  HER performance of bulk  MoS2 was 
investigated by J.C.Bennett et al. in 1977 and found that 
its activity is low, as evidenced by a large Tafel slope of 
692 mV/dec and a high onset potential of about − 0.09 V 
versus HER.  MoS2 nanoparticles were reported as HER 
active species by Hinnemann et  al. in 2005. Afterward, 
 MoS2 has taken back popularity, and a slew of new tech-
niques have arisen to improve its HER electrocatalytic 
performance.[26]. According to the recent work, the HER 
activity of  MoS2 is highly related to the exposed edges, 
while due to its semiconductive nature, it has poor con-
ductivity [27]. To solve this problem, designing a novel 
composite based on  MoS2 with the high exposed active 
sites and enhancing its conductivity is the key to elevat-
ing the properties of  MoS2-based electrocatalysts for 

HER [2, 28] Moreover,  MoS2 nanosheets possess good 
electrochemical stability and high surface area. They also 
function as effective support materials to efficiently deco-
rate highly catalytic active species such as Pt nanoparticle 
to attain HER catalytic activity [29]

Herein, we successfully demonstrate a productive and 
straightforward hydrothermal method for synthesizing 
 MoS2 nanosheets supported Pt nanoparticles (Pt/Mo). 
The as-synthesized Pt/Mo composites with different Pt 
loading were used as electrocatalyst for HER. Optimiza-
tion of Pt loading on the surface of  MoS2 nanosheet is 
an attempt to understand the effect of Pt loading on the 
electrocatalytic activity of  MoS2 nanosheet in HER. This 
technique decreases Pt consumption in the composite 
because  MoS2 nanosheets compensate Pt effects in the 
composite, which is a more affordable way in the hydro-
gen production economy.

Experimental Methods
Chemical Reagent
All chemicals that were used in this experiment, such as 
Chloroplatinic acid solution  (H2PtCl6), Thioacetamide 
powder  (C2H5NS), Ammonium heptamolybdate powder 
((NH4)6Mo7O24) and Sulfuric acid solution  (H2SO4) were 
purchased from Sigma Aldrich.

Synthesis of  MoS2 Nanosheets
Hydrothermal treatment was performed to synthe-
size  MoS2 nanosheet, in which 188  mg of  C2H5NS and 
309 mg of  (NH4)6Mo7O24 were taken and completely dis-
solved for an hour in 45 ml of distilled water. Later this 
colourless mixture was transferred into a stainless 45 ml 
Teflon-lined autoclave and kept at 180 °C for 18 h. After 
that, the black powder  MoS2 was centrifuged and washed 
with distilled water three times. The final black powder 
product dried at 65 °C for a day.

Synthesis of Pt/Mo Composites
In a typical process, 50  mg of  MoS2 nanosheets were 
dispersed in 25  ml of deionized water under sonication 
for 30  min to get homogenous dispersion. Then, 60 μL 
of  H2PtCl6 (8% in  H2O) solution was dissolved in 20 ml 
of distilled water, and then the solution was added drop 
wisely to the  MoS2 dispersion under sonication for an 
hour. The final mixture was heated at 70 ºC for 4 h. The 
as-synthesized Pt/Mo-x composites with x = 60, 90, and 
120 μL of  H2PtCl6 were referred to as Pt/Mo-60, Pt/
Mo-90, and Pt/Mo-120 with 1.17 ×  10–2 gr, 1.75 ×  10–2 gr, 
and 2.34 ×  10–2 gr Pt loading, respectively. The same pro-
cedure was done in the previous section for washing and 
drying Pt/Mo composite with different Pt loading.
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Physical and Chemical Characterization
The physical characterization of the material, such as 
crystal structure, size, and morphology, was studied by an 
X-ray diffractometer (XRD Smart Lab Guidance, Rigaku) 
and a High-resolution transmission electron microscope 
(HR-TEM Techno, FEI). Prior to drop-casting on the 
copper grid, the dilute and homogenous dispersion was 
prepared in DI water under sonication. The chemical 
analysis of the material, such as elemental composition 
and oxidation states, was conducted by X-ray photo-
electron spectroscopy (XPS Model 1257, Perkin Elmer) 
and Raman (HR800 JY, Lab RAM HR) spectroscopy. The 
electrochemical measurements were carried out by gal-
vanostat/potentiostat (Autolab PSTAGT50).

Electrode Fabrication
Preparation of the electrode for electrochemical meas-
urement was carried out by the drop casting method. 
Briefly, 5  mg of the different electrocatalysts was soni-
cated in 5 ml of distilling water for 30 min. Same meth-
ode was done to prepare solution of 20 wt% Pt/C for 
electrochemical mesearment. The working electrode uti-
lized in this system is a glassy carbon electrode (GCE). 
Then, five μL of homogenous dispersion was drop casted 
on the surface of the clean GCE. The electrodes stayed at 
room temperature for complete dryness.

Electrochemical Measurement
Electrochemical measurement was performed in the 
solution of 0.5  M  H2SO4. Briefly, 15  ml of the 0.5  M 
 H2SO4 solution was used as the electrolyte in the three-
electrode cell. The electrocatalytic HER activities of pure 
 MoS2, Pt/Mo-x composites with different Pt loading 
(x = 60, 90, 120), and commercial Pt (Pt/C) were studied 
in the 0.5 M  H2SO4 solution by linear sweep voltamme-
try (LSV) and electrochemical impedance spectroscopy 
(EIS) techniques using a three-electrode cell. The as-syn-
thesized samples-modified GCE was used as the work-
ing electrode. The reference and counter electrodes were 
chosen to be an Ag/AgCl electrode and a graphite rod, 
respectively. The polarization curves were obtained by 
sweeping the potential from 0.1 to − 0.6 V υs RHE at a 
potential sweep rate of 20 mV/s.

Results and Discussion
Structural and Morphological Analysis
X-ray diffractograms of the pure  MoS2 nanosheets 
and Pt/Mo-x composites with three different Pt load-
ing (x = 60, 90, 120) are shown in Fig. 1. The two peaks 
at 2θ values of 33.791° and 59.471° are indexed to the 
(100) and (106) planes, respectively (JCPDS Card No. 
98–002-4000), of the hexagonal structure of  MoS2 (2H 

phase) with lattice constants of a = 3.15  Å, b = 3.15  Å 
and c = 12.3  Å [22] However, compared with the pure 
 MoS2 nanosheets, the X-ray diffractograms of the Pt/
Mo-x composites with three different Pt loading exhibits 
an additional (111) peak at 2θ = 39.57° can be assigned to 
the (111) diffraction of cubic platinum (JCPDS card no. 
00-004-0802) with the lattice constant a = b = 3.923  Å 
[29]. In addition, no other peaks were observed apart 
from the peaks of  MoS2 and Pt, indicating a high phase 
purity of the Pt/Mo-x composites. Notably, the XRD 
results of Pt/Mo-x composites with three different Pt 
loading demonstrates that as Pt loading content in com-
posite increases, the intensity of the peak at 2θ = 39.57° 
increases.

Raman spectroscopy technique is an efficient non-
destructive chemical analysis to investigate the struc-
tural properties and the details of the thickness of  MoS2 
nanosheets. Figure  2 shows the Raman spectra of pure 
 MoS2 nanosheets and Pt/Mo-90 composite, obtained 
over the range of 360–430   cm−1, where two longitu-
dinal peaks of pure  MoS2 at 384   cm−1 and 407   cm−1 
are assigned to the E1

2g and A1g modes. The former one 
could be attributed to the planar vibrations between S 
and Mo atom, while the latter one illustrates the vibra-
tion of sulfides in the out-of-plane direction [22]. Based 
on the peak position difference between E1

2g and A1g 
modes which were calculated to be 23   cm−1, the  MoS2 
nanosheets were determined to be tri-layers [30] On the 
other hand, the Raman spectra of Pt/Mo-90 shows simi-
lar spectra compared to blank  MoS2, but only an increase 
in peak intensity and slight red shift of both the E1

2g and 
A1g peaks were observed in the Raman spectrum of Pt/
Mo-90, implying a successful formation of the composite 

Fig.1 X-ray diffraction patterns of pure  MoS2 nanosheets and Pt/
Mo-x (x = 60, 90, 120) composites
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with the decoration of Pt nanoparticles on the surface of 
 MoS2 nanosheets [31]. Noted, the slight red shift of pho-
non modes may be assigned to the heating of the com-
posite during the Pt decoration [31].

The XPS analysis was performed to investigate the sur-
face atom electronic structure of the Pt/Mo composite 
(Fig. 3). From the wide scan XPS spectrum of Pt/Mo-90 
composite, the elements of sulfur (S), molybdenum 
(Mo), and Platinum (Pt) can be determined. As shown 
in Fig. 3a, four peaks obviously observed in the XPS sur-
vey spectrum of Pt/Mo-90 composite at 74.2 eV (Pt 4f), 
162.4 eV (S 2p), 229.6 eV (Mo 3d), and 408.9 eV (Mo 3p). 
The atomic ratio value of S 2p: Mo 3d is estimated at 2.04, 
which reveals a successful hydrothermal process that 
leads to the formation of the  MoS2 nanosheets [32]

The XPS spectrum corresponding to that of Mo 3d of 
the Pt/Mo-90 composite shows two strong peaks at 229.4 
and 232.5 eV, which are referred to as the Mo 3d5/2 and 
Mo 3d3/2 doublet, respectively (Fig.  3b) [33]. Notably, 

Fig. 2 The Raman spectra of pure  MoS2 nanosheets and Pt/Mo-90 
composite

Fig. 3 Wide scan XPS spectra of a Pt/Mo-90 composite; The high-resolution XPS spectra of b Mo 3d, c S 2p, and d Pt 4f of Pt/Mo-90 composite
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the XPS spectra of Mo 3d clearly confirmed the existence 
of Mo (IV) in the  MoS2 structure due to of presence of 
these two different strong peaks. The S 2p component of 
Pt/Mo-90 composite, which suggests S binding, exhib-
its two binding energies at 162.1 eV and 163.3 eV corre-
sponding to the S 2p3/2 and S 2p1/2 in  MoS2 structure 
(Fig.  3c) [33]. Besides, in the spectrum of Pt 4f of Pt/
Mo-90 composite, two peaks were observed at 72.6  eV 
and 65.8  eV which are related to the Pt 4f7/2 and Pt 4f 
5/2, respectively (Fig. 3d) [34].

The morphology of the as-synthesized Pt/Mo-90 com-
posite was carried out by TEM analysis (Fig. 4 and 5). Fig-
ure  4a represents the TEM image of the as-synthesized 
Pt/Mo-90. The average diameter of the as-synthesized Pt/
Mo-90 was obtained 1 μm, and the surface structure of 
the nanosheet is wrinkle shape. According to Fig. 4b, in 
Pt/Mo-90 the Pt nanoparticles have grown uniformly on 
the surface of  MoS2 nanosheet.

Figure 5 shows the high-resolution TEM image of Pt/
Mo-90 composite in which Pt nanoparticles are success-
fully decorated on the surface of the  MoS2 nanosheet 
having an average size of 2 nm. Notably, Fig. 5 confirmed 
that some of the Pt nanoparticles being also located 
between the crumpled  MoS2 nanosheets.

Catalytic Performance for HER
To obtain knowledge about the effect of Pt loading on 
HER electrocatalytic performance of  MoS2 nanosheet, 
the linear sweep voltammetry (LSV) was performed in 
 N2-saturated 0.5  M  H2SO4 using a three-electrode elec-
trochemical cell. Figure 6a shows the polarization curves 

of different electrocatalysts such as bare GCE, pure  MoS2 
nanosheets, Pt/Mo-x (x = 60, 90, 120), and 20 wt.% Pt/C-
modified GCE at the scan rate of 20 mV  s−1. There is not 
any HER activity observed from the bare GCE; hence the 
effect of GCE is neglected.

According to Fig. 6a, the presence of Pt nanoparticles 
causes in enhancing of the onset potential, half-wave 
potential, and overpotential of  MoS2 nanosheets. How-
ever, with the increase of the Pt loading up to 90 μl, the 
LSV curve initially enhances for Pt/Mo-90, but further 
increase in Pt loading up to 120  μl leads to worsening 
of the LSV curve. Based on the LSV curve, at a current 
density of − 10 mA  cm−2, the pure  MoS2 nanosheets, Pt/

Fig. 4 a, b TEM image of Pt/Mo-90 composite

Fig. 5 High magnification TEM image of Pt/Mo-90 composite
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Mo-120, and Pt/Mo-60 composites exhibit onset poten-
tial of − 0.15, − 0.03, and − 0.01  V, respectively, while 
Pt/Mo-90 and Pt/C show a remarkable onset potential 
of + 0.05 and + 0.07  V, respectively. Another prominent 
factor in HER activity is the half-wave potential (the 
potential where the current is half of the limiting cur-
rent). According to Fig.  6a, the half-wave potential of 
Pt/Mo-x (x = 60, 90, 120) composite electrodes showed 
a more positive potential compared with pure  MoS2 
nanosheets because of the presence of Pt nanoparti-
cles in composites. Moreover, the Pt/Mo-90-modified 
GCE at the current density of − 10  mA   cm−2 showed 
a lower overpotential of − 0.01  V, comparing with the 
pure  MoS2-modified GCE (− 0.24  V), Pt/Mo-120-mod-
ified GCE (− 0.16  V), and Pt/Mo-60-modified GCE (− 
0.09 V), respectively. Notably, the overpotential value of 
Pt/Mo-90 (− 0.01  V) was very near to that of 20 wt.% 
Pt/C (+ 0.01 V), showing that the composite electrocata-
lyst had Pt-like electrocatalytic activity.

The Tafel plot is another important metric in HER. It is 
utilised to investigate the kinetics of the materials’ HER 
electrocatalytic activity. Figure 6b exhibits the Tafel plots 
of the different electrocatalysts. As observed, among all 
electrocatalyst composites, Pt/Mo-90-modified GCE 

exhibited the smallest Tafel slope of 41 mV  dec−1, which 
is very near to the commercial of 20 wt.% Pt/C (37 mV 
 dec−1). Pt/Mo-60 (75 mV  dec−1) and Pt/Mo-120 (112 mV 
 dec−1) showed larger Tafel slop comparing to Pt/Mo-90 
while lower than pure  MoS2 nanosheet (126 mV  dec−1). 
According to the earlier works, HER reaction in the 
acidic medium can be studied by three different mech-
anisms. Volmer reaction is the first one, in which the 
source of the proton is the hydronium ion  (H3O+) for the 
primary discharge step [35]:

Based on the above formula, b is the Tafel slope, F is the 
Faraday constant, R is the ideal gas constant, α is the 
symmetry factor ( ≈ 0.5), and T is the temperature. Hey-
rovsky reaction (Electrochemical desorption) or Tafel 
reaction (recombination) will occur in the following steps 
as shown by Eq. 2 and 3, respectively.

According to the as-calculated Tafel slope of Pt/Mo-90 
composite (41 mV  dec−1), the HER mechanism is related 
to the Volmer-Heyrovsky mechanism, where hydrogen 
adsorption and desorption occur in the two-step process.

Durability and Stability
Two key factors to investigate the HER electrocatalytic 
activity are long-term stability and durability. Therefore, 
to study the as-synthesized Pt/Mo-90 composite durabil-
ity, continuous cyclic voltammogram (CV) scanning was 
performed in 0.5  M  H2SO4 as an electrolyte under the 
scan rate of 50 mV  s−1. As seen in Fig. 7a, the LSV curve 
of Pt/Mo-90-modified GCE even after 2000 cycles does 
not show any changes or drift, which indicates that the 
as-synthesized Pt/Mo-90 composite has high durability.

The stability of the electrodes is another critical 
parameter in HER application. For this reason, the 
chronoamperometric (current vs. time) response of 
the as-synthesized Pt/Mo-90 composite was done in 
 N2-saturated 0.5 M  H2SO4 electrolyte (Fig. 7b). As seen 
in Fig. 7b, the as-synthesized Pt/Mo-90 composite shows 
high stability during 20 h of the experiment at a constant 
potential of − 0.25  V, which is more stable than Pt/C. 

(1)
H3O

+
+ e− → Hads +H2O

b =
2.3RT

αF
≈ 120 mV

(2)
Hads +H3O

+
+ e− → H2 +H2O

b =
2.3RT

(1+ α)F
≈ 40 mV

(3)
Hads +Hads → H2

b =
2.3RT

2F
≈ 30 mV

Fig. 6 a LSV curves of a bare GCE, b Pure  MoS2 nanosheets, c Pt/
Mo-120, d Pt/Mo-60, e Pt/Mo-90 composite, and f Pt/C; b Tafel plot of 
different electrocatalyst
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Table 1 demonstrates some of the HER activity parame-
ters such as overpotential, Tafel slope, and stability of the 
Pt/Mo-90 and some of the recently reported composites. 
As seen, the Pt/Mo-90 composite is comparable to that of 
the other electrocatalysts.

As seen in LSV curve and Tafel, Pt nanoparticles 
increased the HER activity of  MoS2 nanosheets in the 
Pt/Mo-x (x = 60, 90, 120) composites This enhance-
ment could be due to the synergistic interaction between 
the  MoS2 nanosheets and Pt nanoparticles which are 

active the materials and results in increasing, the num-
ber of charge carriers transport. Therefore, to examine 
the kinetic interactions at the cathode, electrochemical 
impedance spectroscopy (EIS) was done in the frequency 
range of 0.1–105 Hz at a five mV AC signal amplitude (the 
reaction between ion diffusion and electrode). Figure  8 
shows the Nyquist plots of the bare GCE, pure  MoS2, 
Pt/Mo-60, Pt/Mo-90, and Pt/Mo-120-modified GCE in 
0.5 M  H2SO4 electrolyte. As shown in the inset of Fig. 8, 
the EIS curves were simulated using the non-linear least 
square method according to the equivalent circuit. On 
the basis of the fitting circuit, different parameters were 
observed, such as R1 (solution resistance), R2 (charge 
transfer resistance), Q (constant phase element), and C 
(double-layer capacitance).

A semicircle at the low-frequency region is because of 
a charge transfer between the electrolyte and the elec-
trode. As is seen in Fig. 8, a semicircle can be observed 
at a low-frequency region, revealing that Faradaic charge 
transfer is happening among the electrolyte and the 
cathode interface (R2). Getting a satisfactory correlative 
between the simulated complex circuit with the experi-
mental data, Q and R3 components were introduced to 
the circuit.

As is shown in Table 2, pure  MoS2 and the Pt/Mo-x 
(x = 60, 90, 120) composites exhibit almost the same 
solution resistances (R1). However, the R2 of the Pt/
Mo-90 composite is smaller than the pure  MoS2 
(Table 2). This indicates that the electrocatalytic activ-
ity of the  MoS2 nanosheets was increased by the pres-
ence of Pt caused by the increased number of charge 
carriers transport, resulting in a faster rate of charge 
transfer. However, the further increment of Pt loading 
beyond the optimum level of 90 μL caused a decrease 
of catalytic activity, as shown by the increased R2 value 
of the Pt/Mo-120-modified GCE electrode (Fig. 8 and 
Table  2). It was indicated that excessive loading of Pt 
could lead to agglomeration of Pt nanoparticles during 

Fig. 7 a LSV curves of Pt/Mo-90 composite prior to and posterior to 
2000 CV cycles; b The chronoamperometric response of Pt/Mo-90 
and Pt/C under − 0.25 V

Table 1 A Summary and a comparison of the current work with earlier studies in the literature

Modified electrode Electrolyte Vover (mV) Tafel slop (mV  dec−1) Stability References

Rh-MoS2 0.5 M  H2SO4 − 47 24 20 h [36]

MoSx@NiO 1 M KOH − 406 43 13 h [37]

Co-WS2 0.5 M  H2SO4 − 134 76 – [38]

FeP/C 0.5 M  H2SO4 − 95 74 15 h [39]

MoS2 0.5 M  H2SO4 − 194 59 9 h [40]

Pt/CoSe 1 M PBS − 19 35 40 h [41]

Ni-CoCHH/NF-S 1 M KOH − 100 40 25 h [42]

MoC@GS 0.5 M  H2SO4 − 132 46 10 h [43]

Pt/Mo-90 0.5 M  H2SO4 − 10 41 20 h This work



Page 8 of 10Razavi et al. Nanoscale Research Letters            (2022) 17:9 

synthesis, causing reduced surface area and catalytic 
active sites. This increase in R2 value brought about a 
significant decrease in HER catalytic performance.

To understand better the mechanism of electron 
transfer, we propose here a band alignment of the most 
efficient Pt/Mo-90 composite device.

Figure 9 shows the effect of Pt nanoparticles on the 
electron–hole recombination of the HER devices that 
could be obtained from the Bode EIS plot [44]. The 
electron lifetime ( τr ) can be estimated using the fre-
quency fp at the middle frequency peak (1–100 Hz) in 
the Bode phase plot from the following equation [45]

Based on the Bode plot (Fig.  9, it is obvious that the 
electron lifetime of Pt/Mo-90 composite is higher than 
pure  MoS2 because of the lower fp . Therefore, presence 
of Pt nanoparticles in composite has enhanced electron 
lifetime which leads to improve the HER activity of the 
device.

(4)τr =
1

2π fp

Conclusion
In conclusion, a hydrothermal method is utilized to 
synthesis  MoS2 nanosheets with an average diameter of 
1 μm. At the later stage, Pt nanoparticles having a diam-
eter of 2  nm on average and different Pt content were 
deposited onto  MoS2 nanosheets to produce Pt/Mo-x 
(x = 60, 90, 120) composites as electrocatalysts for the 
HER. XRD micrographs, XPS, TEM, and Raman support 
the presence of Pt nanoparticle on the surface of  MoS2. 
Among these different electrocatalysts, the Pt/Mo-90- 
modified GCE showed excellent electrocatalytic activity, 
stability, and durability for HER application. Regarding 
the overpotential, the Pt/Mo-90 composite showed Pt-
like activity with an overpotential of only −  0.01  V μs. 
RHE to reach a current density of −  10  mA   cm−2 in 
0.5 M  H2SO4. Moreover, in comparing with the Tafel slop 
of Pt/C (37  mV  dec−1), the Pt/Mo-90 composite exhib-
ited the smallest Tafel slope of 41 mV  dec−1. This com-
posite showed good long-term stability after 20 h as well. 
The EIS measurement confirmed that the electrodes’ 
electrocatalytic activity depends on the amount of Pt 
loading; increasing the Pt loading up to 120 μl leads to a 
rise in charge transfer resistance of the composite elec-
trode, which results in a decrease in the HER electrocata-
lytic activity.

Fig. 8 Nyquist plots of bare GCE, Pure  MoS2 nanosheets, Pt/Mo-60, 
Pt/Mo-90, and Pt/Mo-120-modified GCE in 0.5 M  H2SO4 solution; 
inset: the equivalent circuit

Table 2 Electrochemical parameters achieved from the simulation of the EIS results

Electrode R1 R2 R3 C Q n
(Ω  cm2) (Ω  cm2) (Ω  cm2) (μF  cm2) Y0 (μ Ω−1 sncm−2)

MoS2-GCE 35.6 996 4.5 ×  103 122 10.60 0.80

Pt/Mo-60-GCE 38.1 242 1.59 ×  103 83 4.08 0.85

Pt/Mo-90-GCE 34.8 147 1.22 ×  103 27 2.83 0.89

Pt/Mo-120-GCE 35.1 635 1.97 ×  103 31 2.63 0.77

Fig. 9 Bode EIS plots of the pure  MoS2 and Pt/Mo-90 composite
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