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Abstract 

A dopant-free hole transport layer with high mobility and a low-temperature process is desired for optoelectronic 
devices. Here, we study a metal–organic framework material with high hole mobility and strong hole extraction 
capability as an ideal hole transport layer for perovskite solar cells. By utilizing lifting-up method, the thickness 
controllable floating film of  Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 at the gas–liquid interface is transferred onto 
ITO-coated glass substrate. The  Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 film demonstrates high compactness and 
uniformity. The root-mean-square roughness of the film is 5.5 nm. The ultraviolet photoelectron spectroscopy and 
the steady-state photoluminescence spectra exhibit the  Ni3(HITP)2 film can effectively transfer holes from perovskite 
film to anode. The perovskite solar cells based on  Ni3(HITP)2 as a dopant-free hole transport layer achieve a champion 
power conversion efficiency of 10.3%. This work broadens the application of metal–organic frameworks in the field of 
perovskite solar cells.
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Introduction
Organic–inorganic hybrid perovskite solar cells (PSCs) 
are drawing more and more attention due to its rapid 
upgrade of device efficiency [1–9]. So far, the highest cer-
tified power conversion efficiency (PCE) of the PSCs has 
reached up to 25.5% [10], approaching that of monocrys-
talline silicon-based solar cells. PSCs are thin-film 

devices, and the perovskite light active layer is sand-
wiched between anode and cathode. To improve the PCE 
and stability, the suitable hole transport layers (HTLs) 
are inserted between perovskite layers and anodes [11–
15]. Usually, HTLs have been proven to be an important 
part of PSCs to reduce carrier recombination and collect 
holes effectively, thereby increasing open-circuit voltage 
and fill factor [16]. Ideal HTLs should incorporate the 
following desirable characteristics: (i) high carrier mobil-
ity to facilitate effective transportation holes. (ii) high sta-
bility to prolong device life. (iii) low-temperature solution 
process for deposition of the film.

The HTLs are divided into organic and inorganic 
materials. The organic HTLs have high-quality film and 
adjustable bandgap [17, 18]. The representative organic 
materials used in perovskite solar cells are poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) [19], 
poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] [20], 
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2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-
spirobiflurorene (Spiro-OMeTAD) [21] and poly(3-hex-
ylthiophene) [22–25]. However, the hole mobility of the 
most organic HTLs is within  10−2–10−6  cm2·V−1·S−1 
[26]. It limits the ability to transport holes from active 
layer to electrode and further restricts device efficiency. 
Doping is a useful method to enhance carriers mobil-
ity of organic semiconductors. For example, the hole 
mobility improves enormously after 4-tert-butyl-pyri-
dine and bis (trifluoromethane) sulfonimide lithium salt 
are added into Spiro-OMeTAD. However, it also brings 
the problem of device instability due to the hygrosco-
picity of the additives, and so on [27, 28].

Traditional inorganic materials such as  V2O5,  Cu2O, 
 MoO3, CuSCN,  NiOx, and their derivatives have been 
widely studied due to the advantages of excellent long-
term stability and high intrinsic hole mobility [29–34]. 
Nevertheless, most of these materials are prepared 
through high annealing temperature,  O2 plasma, too 
time-consuming, or limited solubility. These drawbacks 
hinder their further development in large-scale applica-
tions and flexible devices. Therefore, it is necessary to 
find new HTLs with high mobility, low-temperature 
process, and high stability.

Metal–organic frameworks (MOFs) possess properties 
of high degree flexibility, including adjustable electrical 
[35], optical [35], and mechanical properties [36, 37]. It 
has attracted much attention in the fields of electronic 
devices [38, 39], such as memristors, field-effect transis-
tors, supercapacitors [40], and various sensor architec-
tures [41–43]. In recent years, MOFs have been applied 
in PSCs due to the properties of regular micro-pore 
structures and low-temperature process [44–48]. Vino-
gradov et  al. first reported the  TiO2-MOF-based solar 
cells with an efficiency of 6.4% [49]. Utilizing the typi-
cal micro-pore structure of MOFs, Ho et  al. introduced 
MOF-525  (Zr6O4(OH)4(TCPP-H2)3) as the regular scaf-
fold into perovskite film to mediate the arrangement of 
perovskite crystallites. Finally, they improved the mor-
phology and crystallinity of the perovskite thin film [50]. 
Wei and coworkers used zeolitic imidazolate frame-
work-8 as an interface layer to increase the crystallinity 
and grain size of perovskite film [51]. Fan et  al. doped 
 [In2(phen)3Cl6]·CH3CN·2H2O into HTLs to enhance 
light absorption and reduce the pinholes of the film [52]. 
These works improved PSCs performance effectively by 
regulating the morphology and crystallinity of perovskite 
film via adding MOFs. However, to our knowledge, MOFs 
as dopant-free HTLs in PSCs have not been reported. In 
recent years, the emergence of electrically conductive 
MOFs provides new opportunities for their integration as 
electroactive components in electronic devices [53].

Herein, we firstly attempt 
 Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2  (Ni3(HITP)2) 
as dopant-free HTLs in PSCs to extract holes effectively 
for PSCs. The  Ni3(HITP)2 is a p-type semiconductor 
material with a high hole mobility of 48.6  cm2·V−1·s−1 
[54], and the  Ni3(HITP)2 film can be synthesized in a low-
temperature process. The thickness controllable floating 
film of  Ni3(HITP)2 at the gas–liquid interface is trans-
ferred onto indium tin oxide (ITO)-coated glass sub-
strate. The film possesses low surface roughness, which 
provides prerequisites for subsequent deposition of high-
quality perovskite films. Steady-state photoluminescence 
(PL) spectrum shows  Ni3(HITP)2 film can transport holes 
effectively from perovskite layer to anode. As a result, the 
inverted planar PSCs based on  Ni3(HITP)2 film achieve 
the champion PCE of 10.3%.

Results and Discussion
The  Ni3(HITP)2 film is transferred by the following 
method, and experimental details are provided in the 
experimental section and Additional file  1: Figure S1. 
After the reaction mixture is heated to 65  °C, a blu-
ish film spontaneously spreads out and forms at the 
liquid–air interface because of the hydrophobic of the 
 Ni3(HITP)2 film. Then, the ITO-coated glass substrate is 
placed at the air–liquid interface along the edge of the 
beaker in an inclined posture under the film. The side of 
the  Ni3(HITP)2 film contact with water directly adsorbs 
on the ITO-coated glass substrate by homeopathically 
and slowly lifting. Finally, a complete  Ni3(HITP)2 film is 
obtained. Figure 1a shows X-ray diffraction (XRD) char-
acterization. The peaks of the XRD spectrum are located 
at 4.7°, 9.5°, 12.6°, 16.5°, and 27.3°. The peaks of 4.7°, 9.5°, 
12.6°, and 16.5° correspond to the (100) reflections, and 
27.3° originates from (001) reflection. The result is con-
sistent with the structure of  Ni3(HITP)2 reported in the 
previous literature [54]. The transmission electron micro-
scope (TEM) result in Fig.  1b displays that the film is 
highly oriented and uniform without curling on the edges 
of these nanosheets. The  Ni3(HITP)2 has a fringe spacing 
of 1.884 nm, corresponding to the (100) plane [55]. The 
energy-dispersive spectroscopy mapping images (Addi-
tional file 1: Figure S2) reveal the uniform element distri-
bution of Ni, C, and N throughout the whole  Ni3(HITP)2 
film. X-ray photoelectron spectroscopy (XPS) (Addi-
tional file 1: Figure S3) is further carried out to identify 
the formation of  Ni3(HITP)2 film. As shown in Fig.  1c, 
there are no other impurities such as NiO (853.8  eV) 
and Ni(OH)2 (855.2  eV) in the membrane, according to 
the previous reports [21]. The peaks of Ni 2p are located 
at 873.4 eV  (2p1/2) and 855.5 eV  (2p3/2) from  Ni3(HITP)2 
[54]. In addition, the thermogravimetric analysis is con-
ducted to investigate the stability of the  Ni3(HITP)2 film. 
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As can be seen from Fig. 1d, water in the film is lost at the 
initial stage. As the temperature increases,  Ni3(HITP)2 
decomposes between 300 ℃ and 520 ℃. The high ther-
mal stability provides wider application compared with 
organic materials.

By controlling the reaction time, we obtained the dif-
ferent thickness films (Additional file  1: Figure S4). The 
 Ni3(HITP)2 film gradually changes from light blue to 
bluish-black or even black as the film thickness increases 
(Additional file  1: Figure S5). Figure  2a shows the opti-
cal transmittance of  Ni3(HITP)2 films with different 
thicknesses. The transmittance of these films decreases 
with increasing film thickness. The films with thickness 
of 20 and 30  nm maintain over 75% transmittance. The 
hole mobility of the  Ni3(HITP)2 films reaches up to 48.6 
 cm2·V−1·s−1, and it is higher than that of most hole trans-
port materials and even some inorganic materials. The 
high carrier mobility is conducive to hole transportation 
in photo-electronic devices [56]. The electronic prop-
erties of the  Ni3(HITP)2 film are further conducted by 
ultraviolet photoemission spectroscopy (UPS) (Fig.  2b). 
The Femi level (Ef) of 4.48 eV and valence band maximum 
(VB) of 4.98 eV are obtained from the secondary electron 

cutoff and the onset of the UPS spectra according to the 
following equations: Ef = hv − Ecutoff and VB = hv − (Ecut-

off − Eonset), where hv is the incident photon energy of 
the He (I) source (21.22 eV). Figure 2c shows the energy 
level alignment diagram of the inverted PSCs. The result 
demonstrates that the VB of  Ni3(HITP)2 and perovskite 
(~ 5.4  eV) are matched well. It indicates the  Ni3(HITP)2 
film is desirable to act as HTL for PSCs. Steady-state PL 
spectra is performed to ascertain the hole transfer abil-
ity from perovskite film to  Ni3(HITP)2 layer (Fig.  2d). 
After introducing PEDOT/PSS, the perovskite films 
show strong PL quenching, indicating the holes are trans-
ferred from perovskite to HTL of PEDOT/PSS. The PL 
of perovskite film is further quenched, when  Ni3(HITP)2 
replaces PEDOT/PSS. Especially, 30 nm  Ni3(HITP)2 film 
leads to the lowest PL intensity, suggesting more carri-
ers are transferred effectively from perovskite to HTL. In 
addition, we have repeated the PL of 20 nm and 30 nm 
 Ni3(HITP)2 for three times to compare with other thick-
nesses of  Ni3(HITP)2 (Additional file  1: Figure S6). The 
graphs marked with the red box are the PL of perovs-
kite with 20  nm and 30  nm  Ni3(HITP)2 and are further 
amplified in the inset of Additional file 1: Figure S6. The 

Fig. 1 Characterization of the  Ni3(HITP)2 film. a XRD pattern, b TEM micrograph; c XPS spectra of Ni 2p, and d thermogravimetric curve of the 
 Ni3(HITP)2
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time-resolved PL measurement is carried out to analyze 
the hole extraction capability of  Ni3(HITP)2 film (Addi-
tional file  1: Figure S7). The average decay lifetimes of 
the perovskite deposited on ITO substrate with differ-
ent hole transport layers are listed in Additional file  1: 
Table S1. Compared with PEDOT/PSS, the average car-
riers lifetime of perovskite drops greatly upon intro-
ducing  Ni3(HITP)2 film, indicating that the holes can 
efficiently be extracted at the interfaces of perovskite and 
 Ni3(HITP)2. It is worthy of noting that the shorter decay 
lifetimes perovskite based on the 30 nm  Ni3(HITP)2 film 
declines to 1.18  ns, revealing its high carrier extraction 
capability.

To investigate the surface quality of the  Ni3(HITP)2 
films with different thicknesses, scanning electron 
microscopy (SEM) images are exhibited in Fig. 3. Com-
pared with the ITO-coated glass substrate, both 20  nm 
and 30 nm thickness of the  Ni3(HITP)2 films remain the 
similar state of ITO, manifesting highly transparent prop-
erty. Further increasing the thickness of films, the surface 
morphology character of the ITO disappears. Meanwhile, 
the film becomes non-uniform and has some white spots. 
Figure 3f and Additional file 1: Figure S8 show the surface 

morphology of  Ni3(HITP)2 films by atomic force micros-
copy (AFM). The root-mean-square (RMS) roughness 
is 9.74  nm for the  Ni3(HITP)2 films with a thickness of 
20 nm. When increasing to 30 nm thickness, RMS rough-
ness increases to 5.5  nm. Nevertheless, further increas-
ing the thickness of  Ni3(HITP)2 films, the film surface 
becomes rougher with RMS roughness of 14.2  nm and 
16.3  nm for 40  nm and 50  nm thickness of  Ni3(HITP)2 
films, respectively. The results of AFM and SEM show 
that the  Ni3(HITP)2 film with a thickness of 30  nm has 
a smooth and compact surface. It is the guarantee for 
subsequent deposition of high-quality perovskite film for 
solar cells.

To investigate the morphology and crystallinity of the 
perovskite films on  Ni3(HITP)2 films, Fig.  4 and Addi-
tional file 1: Figure S9 show the surface SEM images and 
XRD pattern of perovskite film. The perovskite layer is 
prepared by a two-step method, which avoids  Ni3(HITP)2 
film being corroded by the solvent N, N-dimethyl for-
mamide and dimethyl sulfoxide. As can be seen from 
Fig.  4, all the perovskite films based on different thick-
nesses of  Ni3(HITP)2 films have compact surfaces, but 
they still have obvious differences. The grain boundary of 

Fig. 2 Characterization of optical and electrical properties of  Ni3(HITP)2 film. a Optical transmission spectra of different thickness of  Ni3(HITP)2 
films; b UPS spectra of  Ni3(HITP)2 film; c Energy level alignment diagram of PSCs and d The steady-state PL spectra of perovskite films on different 
thickness  Ni3(HITP)2 films
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Fig. 3 Morphology characterization of  Ni3(HITP)2 films with different thicknesses. SEM images of a Bare ITO-coated glass and b–e  Ni3(HITP)2 films 
with 20 nm, 30 nm, 40 nm, 50 nm, respectively; f AFM image of  Ni3(HITP)2 film of 30 nm thickness

Fig. 4 Morphology characterization of perovskite films deposition on different thicknesses of  Ni3(HITP)2 films. a–d 20 nm, 30 nm, 40 nm, and 
50 nm, respectively
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perovskite film deposited on the 20 nm  Ni3(HITP)2 film 
is clearly visible. When increasing the thickness of the 
 Ni3(HITP)2 film to 30 nm, the perovskite grain bounda-
ries gradually become blurred. It indicates the perovs-
kite grains are closely packed together. Meanwhile, the 
perovskite grain size is increased to 2 um, contributing 
to the smoother film surface of  Ni3(HITP)2 film. When 
further increasing the thickness of  Ni3(HITP)2 film, 
the perovskite grains become smaller, and the perovs-
kite film surface gets uneven. Furthermore, Additional 
file  1: Figure S9 further shows the quality of perovskite 
films deposition on different thicknesses of  Ni3(HITP)2 
membranes. It can be seen that the XRD peak intensity 
of the perovskite deposited on the surface of the 30 nm-
thick  Ni3(HITP)2 film is higher than that of other thick-
nesses of perovskite films. The results demonstrate the 
perovskite film with 30  nm  Ni3(HITP)2 has the highest 
crystallinity.

To build up a good performance solar cell, the 
 Ni3(HITP)2 films with a thickness of 30  nm are used to 
fabricate the p-i-n type inverted PSCs due to its high 
transmittance, good flatness, high hole mobility, and 
appropriate energy level. Figure 5a shows the device has 
clear layers from the cross-sectional view and the thick-
ness of perovskite is about 300  nm. The J–V measure-
ment of PSCs is conducted under the standard AM 1.5G 
illumination. As shown in Fig.  5b, the device exhibits a 
negligible photocurrent hysteresis under different scan-
ning directions [57, 58]. The champion device has a PCE 
of 10.3%, Voc of 0.91 V, Jsc of 17.09 mA·cm−2, and FF of 
66%. Figure 5c shows the steady-state photocurrent den-
sity and efficiency evolved with time at the maximum 
power output point (0.75 V). A reliable output efficiency 
of 9.61% and photocurrent density of 15.45  mA·cm−2 
are obtained. Figure  5d shows the external quantum 
efficiency (EQE) of the device. The integrated Jsc from 

Fig. 5 The characterization of the PSCs. a The device structure and SEM image of cross section; b the J–V curves of the device under forward scan 
and reverse scan; c steady-state photocurrent (black curve) and output efficiency (red curve) of the device; d EQE and corresponding integrated Jsc; 
e histogram of PCEs measured from 22 PSCs
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the EQE spectrum is 16.94  mA·cm−2, which is consist-
ent with the value from the J–V curve. The EQE of the 
device is no more than 73% at the wavelength between 
400—800 nm. To overcome the problem, the  Ni3(HITP)2 
film is inserted between perovskite film and top electrode 
will be a good strategy. This kind of work is underway. In 
addition, Fig. 5e illustrates the good reproducibility of the 
devices with the PCE histogram collected from 22 inde-
pendent devices.

Conclusions
In summary, a dopant-free  Ni3(HITP)2 endows the suita-
ble valence band edge and high hole mobility as HTLs for 
PSCs. The steady-state and time-resolved PL spectrum 
exhibit high hole extraction capability of  Ni3(HITP)2. 
Inverted PSCs based on  Ni3(HITP)2 films have a cham-
pion PCE of 10.3%. This work fills the gap in the appli-
cation of MOFs as dopant-free hole transport layers in 
PSCs and expands the application field of MOFs.

Materials and Methods
Materials
All the chemicals were bought from commercial 
resources without additional purification. Water was 
purified with the Milli-Q purification system. Nickel 
chloride hexahydrate and ammonium hydroxide 
were bought from Sinopharm Chemical Reagent Co. 
2,3,6,7,10,11-hexaaminotriphenylene hexahydrochloride 
was bought from WuXi AppTec. Lead (II) iodide was 
obtained from Sigma-Aldrich.

Synthesis of the Ni3(HITP)2 Film
20  mg of 2,3,6,7,10,11-hexaaminotriphenylene hexahy-
drochloride, 13.2 mg of nickel chloride hexahydrate, and 
40.0 mL  H2O were added into a 50-mL beaker. The reac-
tion mixture was then sonicated until the solids were 
completely dissolved. After that, 0.6  mL ammonium 
hydroxide was dropped into the beaker when the reac-
tion mixture was heated to 65  °C. The  Ni3(HITP)2 film 
was formed at the air–liquid interface after 1 min. Differ-
ent thickness of the films was controlled by the reaction 
time.

Device Fabrication
ITO-coated glass substrates were sequentially cleaned 
by sonication with acetone, deionized water, and ethyl 
alcohol and then were treated using UV-ozone. The 
processed ITO glass was extended to the bottom of 
the film along the edge of the beaker in an inclined 
posture. The complete  Ni3(HITP)2 film was obtained 
by homeopathically and slowly lifted onto ITO-coated 
glass substrate. Then, after further cleaning and drying 

the  Ni3(HITP)2 film adsorbed on ITO-coated glass sub-
strate, the perovskite layer was fabricated as described 
in our previous report [57]. The electron-transporting 
layer,  PC61BM (methyl [6, 6]-phenyl-C61-butyrate) 
(20  mg/mL in chlorobenzene) was deposited by spin-
coating. Finally, the Ag electrode was thermally evapo-
rated in a high vacuum chamber through a metal mask. 
The device’s effective area was 0.0725  cm2.

Characterization
The morphologies images were obtained using AFM 
(Bruker) and SEM (Hitachi SU8010). The TEM images 
were obtained by using FEI Tecnai F-20 microscope 
equipped with a field-emission gun (operating at 
200  kV). The transmission spectra of the films were 
recorded by the Shimadzu spectrophotometer (mode 
UV2450) for PL measurements were performed by a 
Horiba spectrofluorometer (Fluoromax-4). The wave-
length of the excitation light source is 525  nm. XRD 
and TGA measurements were carried out on the D8 
Advance (Bruker) and TG/DTG7300 (SII NanoTech-
nology), respectively. XPS and UPS were performed by 
the Escalab 250Xi (Thermo Fisher). The J–V character-
istics of devices were recorded from a programmable 
Keithley 2400 source meter under simulated AM 1.5G 
solar irradiation at 100 mW·cm−2 in air condition.
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