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Abstract 

Improving the anode properties, including increasing its capacity, is one of the basic necessities to improve bat-
tery performance. In this paper, high-capacity anodes with alloy performance are introduced, then the problem of 
fragmentation of these anodes and its effect during the cyclic life is stated. Then, the effect of reducing the size to the 
nanoscale in solving the problem of fragmentation and improving the properties is discussed, and finally the various 
forms of nanomaterials are examined. In this paper, electrode reduction in the anode, which is a nanoscale phenom-
enon, is described. The negative effects of this phenomenon on alloy anodes are expressed and how to eliminate 
these negative effects by preparing suitable nanostructures will be discussed. Also, the anodes of the titanium oxide 
family are introduced and the effects of Nano on the performance improvement of these anodes are expressed, and 
finally, the quasi-capacitive behavior, which is specific to Nano, will be introduced. Finally, the third type of anodes, 
exchange anodes, is introduced and their function is expressed. The effect of Nano on the reversibility of these 
anodes is mentioned. The advantages of nanotechnology for these electrodes are described. In this paper, it is found 
that nanotechnology, in addition to the common effects such as reducing the penetration distance and modulating 
the stress, also creates other interesting effects in this type of anode, such as capacitive quasi-capacitance, changing 
storage mechanism and lower volume change.
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Introduction
Graphite is a carbon material with a layered structure in 
which the distance between the layers is about 35.3 Å, 
in which there is a suitable space between the layers for 
the placement of lithium atoms [1–4]. During charging, 
lithium ions are reduced in the anode and converted to 
lithium atoms, which are placed between the graphite 
layers. After the arrival of lithium, the distance between 
the plates reaches 3.5 Å [5–10]. During discharge, the 
lithium atoms are oxidized to lithium ions and trans-
ported through the electrolyte to the cathode. Due to 

the insertion of lithium atoms in graphite (at the time of 
charging), these materials are called intercalation anodes 
[6–14]. According to Fig.  1 in graphite, a maximum of 
one lithium atom can be stored for every 6 carbon atoms 
[5]. Because capacity is directly related to the amount of 
lithium stored, graphite has a lower capacity than lith-
ium metal anodes, but as mentioned earlier, it is used as 
a commercial anode because it does not have dendritic 
growth problems. Note that in this article and future arti-
cles, the anode and cathode means the active substance 
in the anode and cathode [6–8]. Due to the low capac-
ity of graphite, anodes with high capacity are required 
[15–18]. A group of anodes that can store large amounts 
of lithium atoms are alloy-type anodes made of metal or 
semiconductors. The function of these anodes is to form 
an alloy with a metal or semiconductor, thereby storing 
the lithium atom [19–21]. In this type of material, com-
pared to graphite, where only one lithium atom is stored 
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for every 6 carbon atoms, several lithium atoms can be 
stored for each metal atom [9–11]. The most important 
of these anodes are silicon, and antimony. For silicon the 
capacity is about 4000 mAh/g and for tin the mentioned 
capacity is 900 mAh/g compared to graphite which has a 
capacity of about 350 mAh/g. According to Fig. 2, among 
alloy anodes, silicon has the highest volume and weight 
capacity, is found in abundance in nature, and the entire 
electronics industry is based on silicon; Thus, as Fig.  2 
shows, silicon is the most important of the alloy anodes 
[12–15]. Therefore, most of the material in this article is 
about silicon, but the principles mentioned can be gen-
eralized to other alloy anodes. Active anode material, 
Theoretical capacity, Advantages and study results are 
presented in Table 1.

Problems of Alloy Anodes
In these anodes, the storage and release of lithium is 
accompanied by a large volume change that can reach 
up to 400% of the initial volume, as shown in Fig. 3. Dur-
ing the work cycle, due to the stresses caused by volume 
change, the phenomenon of pulverization of active sub-
stances occurs [7, 10, 39, 40]. Fragmentation causes the 

connection between the active material itself, between 
the active conductive–additive material and between the 
active-collecting active substance to be cut off [18–20]. 
When this phenomenon occurs, the active substance is 
electrically isolated; therefore, electron transfer does not 
take place to carry out the oxidation reaction. Therefore, 
a large volume of active ingredients remains unused and 
do not participate in capacity, and ultimately this causes a 
sharp drop in capacity during the work cycle [21, 41, 42]. 
Figure 3 shows the crushing phenomenon. Unfortunately, 
Fig.  3 does not show the entire structure of the anode 
electrode. In fact, in a conventional electrode, micron 
particles of active materials are used along with binders 
and carbon conductive materials, etc. [43–46]. Which is 
broken if the electronic connections mentioned above 
are broken. Figure  4 shows the charge and discharge 
curves for silicon particles measuring 10 microns. It can 
be seen that the capacity even at the first discharge is 
only 800 mAh/g (compared to the initial 4000 charged). 
In graphite, on the other hand, capacity decreases by only 
0.03 per work cycle. These anodes have a higher voltage 
than graphite (according to the formula stated earlier, the 
higher the anode voltage, the lower the battery voltage) 
[10, 21, 39]. For example, silicon has a voltage of 0.3 to 
0.4 higher than lithium, while in graphite the voltage is 
about 0.05  V higher than lithium, but silicon and other 
alloy anodes have such a high capacity that the voltage 
does not have a significant effect, and the energy is sig-
nificantly higher than graphite.

Nanotechnology Solution
Battery performance can be improved if the shredding 
phenomenon can be prevented in some way. Research 
has shown that when the dimensions of silicon reach the 
nanometer range (less than 150  nm), the crushing phe-
nomenon no longer occurs [47–50]. Figure 5 shows the 
TEM image of silicon nanoparticles during lithium ioni-
zation. These two particles change volume due to the 
entry of lithium, but do not break under stress [7, 18, 40]. 
This shows that in order to use the extraordinary capacity 
of silicon, we must inevitably go to the nanoscale [51–53]. 
If nanoparticles are used, the problem of fragmentation is 
solved, but they are not normally connected to the elec-
tron supply. Therefore, for the first time, the research-
ers used silicon nanowires grown vertically on a current 
collector as shown in Fig.  6 (SEM image). In this way, 
the problem of crushing can be solved, because there 
is enough space between the nanowires to change the 
volume of each nanowire during the duty cycle without 
generating extensive stress, the diameter of each nanow-
ire is also less than the critical dimension [19–22, 30, 
54–56]. As it is known, after alloying (entry of lithium), 
the width of the nanowires increased and the side walls 

Fig. 1  Shows how lithium is stored in graphite. For every 6 carbon 
atoms, 1 lithium atom is stored [12]

Fig. 2  Types of anodes with capacity [13–15]
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became textured, and although there was a large volume 
change, no fragmentation occurred [57]. In nanowires, 
electron transfer (communication between the current 
collector and the active substance) takes place through 
the length of the nanowires. Since the electron transfer 
is good, the full capacity of the silicon active material can 
be used [31, 32, 35–37]. Nanowires have a higher elec-
trolyte bond season than bulk material [41–43]. Due to 
the fact that the oxidation reaction takes place through 
the electrode–electrolyte interface, the speed of the reac-
tions also increases. on the other hand, because nanow-
ires have small dimensions compared to the bulk material 
that ions have to travel longer distances, ion transfer 
through lateral dimensions is easy. Faster ion transfers 
and oxidation reactions increase power and even energy, 
because ion transfer (sometimes in addition to electron 
transfer) is a potential loss (concentration polarization) 
of both the anode and cathode electrodes of a lithium 
battery, this polarization decreases as the penetration 
distance decreases and the energy density improves 

[44–46]. Finally, because silicon is a semiconductor, it has 
less electron conductivity than graphite, which is a metal-
loid [33, 38, 58].

Different Nano Morphologies
It has been shown that using silicon nanotubes instead 
of nanowires is more effective. In nanotubes, the neces-
sary space is provided for volume change on both sides 
of the inner and outer walls [34, 59–61]. In addition, 
nanotubes are usually thinner than nanowires, so trans-
mitters are better, because silicon is a semiconductor 
and is also amorphous during the duty cycle due to 
stresses, it does not conduct well electronically during 
the duty cycle [47, 48, 54]. As a result, electrons do not 
flow well in all parts of the silicon. Hybrid nanostruc-
tures can be used to solve this problem, for example a 
silicon nanotube whose core contains conductive mate-
rials or vice versa has a conductive coating [62–66]. A 
comparison between the two categories of uncoated 
and carbon-coated silicon nanowires has shown that 

Table 1  Research on active anode material, theoretical capacity, advantages

Active anode material Theoretical 
capacity (mAh 
g−1)

Advantages Common issues References

Insertion/de-insertion materials
A. Carbonaceous
a. Hard carbons
b. CNTS
c. Graphene

200–600
1116
780/1116

Good working potential
Low cost
Good safety

Low coulombic efficiency
High voltage hysteresis
High irreversible capacity

[3, 22–28]

Insertion/de-insertion materials
B. Titanium oxides
a. LiTi4O5
b. TiO2

175
330

Extreme safety
Good cycle life
Low cost
High power capability

Very low capacity
Low energy density

[29]

Alloy/de-alloy materials
a. Silicon
b. Germanium
c. Tin
d. Antimony
e. Tin oxide
f. SiO

4212
1624
993
660
790
1600

Higher specific capacities
High energy density
Good safety

Large irreversible capacity
Huge capacity fading
Poor cycling

[25, 26, 30–34]

Conversion materials
a. Metal oxides (Fe2O3, Fe3O4, CoO, Co3O4, MnxOy, 
Cu2O/CuO, NiO, Cr2O3, RuO2, MoO2/MoO3 etc.)

500–1200 High capacity
High energy
Low cost
Environmentally compat-
ibility
High specific capacity
Low operation potential 
and Low polarization than 
counter oxides

Low coulumbic efficiency
Unstable SEI formation
Large potential hysteresis
Poor cycle life
Poor capacity retention
Short cycle life
High cost of production

[32, 33, 35–38]

Conversion materials
b. Metal phoshides/sulfides/nitrides
(MXy; M ¼ Fe, Mn, Ni, Cu,
Co etc. and X ¼ P, S, N)

500–1800 High capacity
High energy
Low cost
Environmentally compat-
ibility
High specific capacity
Low operation potential 
and Low polarization than 
counter oxides

Low coulumbic efficiency
Unstable SEI formation
Large potential hysteresis
Poor cycle life
Poor capacity retention
Short cycle life
High cost of production

[33, 37, 38]
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carbon-coated nanowires maintain considerable capac-
ity. Another solution is to use nanocomposite anodes 
[49–51]. One of the most widely used materials in 
nanocomposites in the role of stress modulator (buffer) 
is carbon. For example, carbon nanocomposite in the 
field of carbon is one of the solutions to the stress prob-
lem. Figure 7 shows a Tin–carbon nanocomposite. Tin 
acts as an active ingredient as an alloy anode. Carbon 
in this nanocomposite acts as both a buffer and a con-
ductor, and in addition to their various carbon struc-
tures, they can store some lithium. As shown in Fig. 7, 
the tin capacity is less than the theoretical capacity 
(900  mAh/g) due to the presence of carbon, but has 

a good cycle life. Maintains well up to 1000 working 
cycles [52, 67–70].

The question may arise in the mind of the reader as to 
why other alloy anodes are being explored, given that sili-
con has a much higher capacity than other alloy anodes 
[71–73]. The answer that is given and can be generalized 
to the whole collection of nanotechnology and battery 
articles is that because nanomaterials are synthesized in 
different ways and with different morphologies (shapes) 
in different ways [74–78]. Each synthesis method is dif-
ferent from the discussion of price, quality, safety, scal-
ability, environmental effects, etc.; for example, metals 
cannot be prepared with the sol–gel method, which is 

Fig. 3  Pulverization and disconnection of its electrical connection [10]
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a simple method [79–81]. Even for a specific material 
such as silicon, one-dimensional nanomaterials, such as 
nanofibers, can be produced by electrospinning, which is 
a mass-produced method, in the form of nanowires by the 
expensive chemical vapor deposition method, another 
method for laboratory testing [22, 52–54]. Nanowires can 
be fabricated by silicon etching. In the latter method, the 
crystalline direction and doping can be easily controlled, 
and the effect of different dopants and crystalline direc-
tions on lithium storage can be determined [23, 82–88]. 
Even a nanomaterial with a specific shape and composi-
tion can be used in different ways and even in a specific 
method, different reactants can be used with different 
temperature conditions, etc., each of which may have 
different results in terms of price, safety and since the 
key to commercialization other than investing is to find 
the right production method by considering the factors 
listed above, so there is an inseparable link between pro-
duction and performance in batteries and very good and 
appropriate articles Available in connection with the syn-
thesis method [30, 31, 56, 57, 89–92]. In addition to one-
dimensional nanostructures (nanowires and nanotubes), 
efforts have been made to use zero-dimensional nano-
structures (nanoparticles) (as a good nanoparticle are 
easier to synthesize than nanowires). The problem with 
nanoparticles is that on the one hand it is not possible 

Fig. 4  Charging and discharging diagram for 10-micron silicon 
particles [17]

Fig. 5  TEM image of silicon nanoparticles during lithium ionization progressed from a to h it lithium ionization, respectively [19]
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to easily make a connection between the nanoparticles 
themselves and on the other hand between them and the 
conductive and collecting material [32, 35, 36]. For exam-
ple, Fig. 8a shows that the primary nanoparticles (left of 
the image) increase in volume after absorbing lithium 
during charging, and after a few cycles, disconnect the 
electron connection when it returns to its original state 
without lithium [3, 24, 93–95]. In the usual method of 
preparing the anode (also the cathode), the powder of the 
active substance (here silicon) is used together with the 
conductive carbon (to improve the conductivity) and the 
PDVF binder (for the bonding of the particles) shown in 
Fig. 8b. According to Figure b, because the silicon nano-
particles change volume, after returning to another initial 
state, the electrical connection between the nanoparti-
cles, the carbon conductive material is lost, the capacity 
is reduced. To solve the above problem in the method 
shown in Figure c, amorphous silicon, which also has a 
stress-modulating role, is used as an adhesive to bond 
silicon nanoparticles so that the electrical connection is 
no longer interrupted and the capacity will remain [25, 

37, 38, 96, 97]. In another method, nanoparticles in the 
field of polyaniline conductive polymer, which have both 
a modulating and electron conducting role, have been 
prepared and observed to have a good cycle life of 1000 
while maintaining a capacity of 1600 mAh/g. In compari-
son, the PVDF binder method loses more than 50% of its 
capacity in 100 working cycles. Another way to solve the 
problem is hollow nanostructures. In this method, the 
necessary empty space is provided during the entry and 
exit of lithium through a hollow volume [26, 27, 33, 58, 
59]. The finite element method shows that in the same 
volume, the hollow structure undergoes less stress dur-
ing the work cycle, so they have better resistance to the 
crushing phenomenon (Fig. 9).

Electrolyte Decomposition in the Anode
As we know, any substance is stable in a potential range 
and undergoes a reduction or oxidation process more 
or less within this range [28, 98, 99]. That is why we can 
decompose (electrolyze) water to produce hydrogen and 
oxygen. These cells are the opposite of galvanic cells 

Fig. 6  SEM image of silicon nanoparticles during lithium [20]

Fig. 7  TEM image and life cycle curve of tin nanocomposite in carbon, dark tin nanoparticles are marked [54]
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Fig. 8  a Shows how the electrical relationship of nanoparticles with the current collector is broken, b shows another type of disconnection, silicon 
nanoparticles in orange and carbon in black and PDVF polymer chains are shown in green. c Use amorphous silicon adhesive to bond nanoparticles 
even after deformation [47].

Fig. 9  Hollow nanoparticles to solve the volume change problem [48]
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(batteries), called electrolyte cells. In these cells, unlike 
the battery, we give energy to force a reaction that is not 
thermodynamically desirable [60].

When charging the battery, just like decomposing 
water, we give energy to the battery through the charger 
to reverse the reaction that took place in the battery and 
return the battery to its pre-discharged state [100–104]. 
The organic electrolyte used in lithium-ion batteries 
(such as water electrolysis) changes as a result of the 
energy from the charger. As mentioned, in a lithium-ion 
battery, at the negative pole (graphite anode), lithium-ion 
reduction occurs during charging. Due to the fact that 
the tendency to electrolyte reduction is thermodynami-
cally higher than lithium ion, so electrolyte reduction is 
done instead of lithium ion reduction. This causes a solid 
layer to form on the graphite surface. This solid layer is 
called SEI (solid electrolyte interface). The composition 
of this layer is complex and a mixture of several chemi-
cals. Figure 10 shows a schematic of this layer. As can be 
seen from the figure, the composition of this substance 
contains lithium ions and carbon; therefore, the forma-
tion of this layer is accompanied by a decrease in lith-
ium, which reduces the capacity in the first charge [34, 
61]. This layer of thickness is in the nanometer range as 
shown in Fig.  10. The formation of the SEI layer itself 
limits the continuation of the electrolyte reduction reac-
tion, because it prevents the electrolyte molecules from 
reaching the graphite anode surface as a physical barrier. 
In fact, it acts as a kinetic inhibitor (like the passive layer 
of aluminum oxide, which prevents oxygen from reach-
ing the lower aluminum and prevents the rest of the alu-
minum from oxidizing). On the other hand, because it is 
an electron insulator, it also prevents the electron from 

reaching the electrolyte [62–65]. Therefore, neither the 
electron can reach the electrolyte molecule nor the elec-
trolyte molecule can move towards the electron in the 
anode, both of which cause the electrolyte to regenerate 
and have a self-limiting reaction. Fortunately, this layer 
is permeable to lithium ions, and lithium ions can pass 
through it to the anode surface, capture electrons, and 
regenerate [105–108]. This layer reduces battery power 
as it increases the penetration distance of the lithium ion 
to reach the anode [109–111].

Figure 11 shows the range of electrolyte stability against 
the potential of anodes and cathodes. If the cathode has a 
potential higher than the electrolyte stability range, the 
electrolyte is oxidized at the cathode and during charg-
ing, and also if the anode has a lower potential than the 
stability range, it is regenerated at the anode and during 
electrolyte charging. Fortunately, as shown in Fig.  11, 
conventional cathodes do not have the problem of elec-
trolyte instability, but in graphite and silicon anodes there 
is instability and SEI is formed [66–68].

SEI Problem in Silicon
In general, for anodes less than one volt relative to lith-
ium metal, the electrolyte is unstable and SEI is formed. 
Hence, SEI is formed in the silicon anode, which has a 
potential of 0.3 to 0.4 higher than lithium [112–115]. 
Unfortunately, because silicon changes volume and 
breaks down, new levels of silicon are exposed to the elec-
trolyte, so the electron reaches the electrolyte and a new 
SEI is formed on these new surfaces. As a result, capacity 
is constantly reduced during work cycles. It is necessary 
to say this, because tests are often performed on lithium 
metal, voltages relative to lithium are measured in all 

Fig. 10  Schematic of SEI formation and composition of this layer [66]
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battery articles [69]. In silicon nanomaterials, because of 
the higher chemical activity, it is even more susceptible 
to the formation of SEI. In the case of nanomaterials, it is 
true that they do not break down, but they do change vol-
ume. According to Fig. 12, this volume change causes SEI 
to grow continuously and we see the disadvantages of SEI 
growth, such as reduced capacity and power, and so on. 
Figure 13 of section a better illustrates the reason for SEI 
growth in nanomaterials. If we have the cross section of a 
nanowire (or nanoparticles, etc.) in the initial state with-
out lithium, shown on the left side of the figure, during 
charging, because the silicon is lithium-containing, its 
volume increases and due to electrolyte instability at the 
same time an SEI layer is formed on the nanowire [116–
119]. Now during discharge, the lithium comes out and 
the particle shrinks while the SEI does not shrink. This 
causes the SEI to crumble under stress (or even in the 
second stage of silicon enlargement under lithium ioniza-
tion, at which point stress occurs and the SEI crumbles 
because the exact boundary between the SEI and the par-
ticle does not exactly match). Therefore, when recharg-
ing (lithium ionization), a new SEI layer is formed again. 
Repetition of this cycle leads to continuous SEI growth 

and we have problems with its growth, while in graphite 
SEI would not grow without a slight change in its volume. 
It should be noted that what has been said about SEI and 
silicon also applies to other alloy anodes [70, 120–123]. 
As seen in section b, this problem also exists for silicon 
nanotubes, but if we can somehow prevent the silicon 
from coming into contact with the electrolyte from the 
beginning and changing its volume in the vicinity of the 
electrolyte, this problem will be solved.

Wu et al. [18] used a mechanical locking layer as shown 
in Fig.  13c; this layer, which is made of silicon oxide, 
prevents the change in the outer volume of the nano-
tubes due to its mechanical strength. Thus a stable SEI is 
formed without changing the volume (a stable SEI layer 
like graphite). This oxide layer is the conductor of lithium 
ions so it does not cause a problem to react. The neces-
sary space for volume change is also provided through 
the inner wall of the nanotube. So there is no problem of 
crushing. Because the study showed that the electrolyte 
does not penetrate into the nanotube, there is no contact 
between the electrolyte and the inner wall of the nano-
tube. All these advantages make it offer a long cycle life 
and good power. Figure  14 (shown in this figure with 

Fig. 11  Shows the voltage of common anodes and cathodes and the range of electrolyte stability potential and the potential range of SEI 
formation [67]

Fig. 12  How the SEI layer grows [19]
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DWSiNT) shows part of the deep discharge cycles of this 
sample. In deep discharge, the cycle life is always reduced 
faster. However, it is observed that after 900 cycles, the 
prepared sample still has a good capacity, but the normal 

nanotube and nanowire samples lose their capacity rap-
idly. Discharged) For the plotted sample, it shows that the 
capacity maintains its capacity even after this relatively 
high C rate even at up to 6000 open cycles. In another 

Fig. 13  Shows the growth of SEI in different conditions [20]

Fig. 14  a Comparison between the cycle life of black, blue and red for oxide-coated, b oxide-free and non-oxide nanotubes, respectively [21]
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example [19], a core–shell structure is prepared, as 
shown in Fig. 15c, a carbon coating is used with silicon 
nanoparticles inside the carbon coating. The thickness of 

the carbon coating is in the range of 10 nm and includes 
100  nm silicon particles. The carbon shell is provided 
with enough space to easily change the volume of the 
silicon nanoparticle, as shown in Figure c. On the other 
hand, silicon nanoparticles are attached to the carbon 
shell from one point, so electron and ionic transitions 
take place in it, because carbon is in the vicinity of the 
electrolyte and not silicon, like graphite, a stable SEI is 
formed without crushing because the change in volume 
of silicon is not transferred to carbon and from carbon to 
SEI, so similar to the figure in Fig. 12, it has a long cycle 
life. If we use silicon nanoparticles normally, in addition 
to the SEI problem, as we saw in the previous article and 
Figure a, it shows that there is no empty space between 
the silicon nanoparticles to change the volume, so there 
is stress between the particles when they change volume, 
but when Using this hollow structure (Figure b) there is 
no longer any stress between the particles.

This anode has other advantages in addition to the 
SEI problem, compared to the sample in Fig.  12. One 
advantage of nanoparticle synthesis advantages over 
nanotubes, and more importantly, the use of nanoparti-
cles compared to nanowires, is well compatible with the 
slurry method, which is the conventional method of pre-
paring electrodes in batteries.

Introducing LTO Anode
So far, we have talked about two types of graphite anodes 
and alloy (silicon) anodes. Another anode that is very 
popular is the anode with Li4Ti5O12 compound, which 
is called LTO for short. This anode is like intercalation 
graphite [29, 124–127]. Figure  16 shows the structure 
and reaction of this type of anode. The LTO anode has a 
limited capacity of 175 mAh/g (compared to 300 graphite 
and 4000 silicon). The voltage of this anode is also about 

Fig. 15  a Display of electrodes made of silicon nanoparticles. b 
Electrode display made of silicon nanoparticles with carbon coating 
and hollow structure. c The structure of the core-hollow shell used 
in b, the silicon is inside the hollow carbon and its volume change is 
observed during lithium ionization [10]

Fig. 16  Shows the structure and entry of lithium ion in LTO along with its reaction [74]
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1.5  V compared to lithium metal according to Fig.  17 
(the lower the anode voltage, the higher the battery volt-
age). This high voltage and low capacity both make this 
anode have very low energy, but it is still one step ahead 
of silicon in commercial terms. One of the most impor-
tant features of this anode is the safety issue, because in 
electric vehicles there are unpredictable conditions, and 
the other is the long cycle life, and finally its power [72, 
73, 128–130].

Due to the fact that the voltage of this anode is high, it 
is in the range of electrolyte stability according to Fig. 17, 
so SEI is not formed. On the other hand, as shown in 
Fig.  17, there is enough space for lithium ions in this 
composition and it does not change volume, while even 
in graphite, some volume change is seen due to the entry 
and exit of lithium. Unlike the previous two anodes, lith-
ium ions (not lithium atoms) are stored in this anode, 
and the oxidation reaction is due to the conversion of 
titanium to 3-valent titanium, not to a change in lithium 
capacity [28, 74, 75, 131].

This battery, because it has neither SEI nor volume 
change, maintains the capacity well and has a very long 
cycle life (more than graphite) of about 20,000 cycles. 
Because it is an oxide compound and is very safe due 
to the lack of volume change. Because it does not have 
SEI, its power is not bad either, only its lithium ion dif-
fusion coefficient is low and its electron conductivity is 
poor. To solve this problem, they provide LTO nano-
structures. Because this anode did not have SEI from 
the beginning, when it becomes Nano, it does not have 
the problem of forming more SEI, so it does not have 
more nanomaterial activity [32, 35–37].

It has been observed that nanoparticles cause the 
LTO anode to charge and discharge within 5 min (12C). 
To prepare the nanostructure, first titanium oxide 
nanostructure is prepared and then reacted with a lith-
ium source material when heated. This is also an advan-
tage of LTO, as the preparation of TiO2 nanostructures 
is very popular. Due to the problem of low volumetric 
density and agglomeration of nanomaterials, micron 

Fig. 17  a Displays the nanostructure discussed including Nano primary nanoparticles, b charge–discharge curve for ordinary micro particles, and c 
for a-shaped particles [74]
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secondary particles made from nanoscale primary par-
ticles are more useful [33, 38, 58, 59].

Figure  17 shows part an of this nanostructure. As 
can be seen, from the controlled community of smaller 
particles measuring 10  nm, larger micron particles are 
formed. According to the comparison of parts b and c in 
Fig. 17, it is quite clear that this nanostructure is superior 
to ordinary micron particles, because it has less capacity 
and potential (especially in discharge). From this nano-
structured anode, a battery is made and it is observed 
that this battery is superior to the battery with graphite 
anode both in terms of cycle life and power, which is not 
given due to the brevity of these curves [75]. The ben-
efits of Nano-LTO have been well documented in many 
articles, but what makes it stand out is an important dis-
cussion of proper engineering of the structure, proper 
synthesis method, and how to use the conductive mate-
rial to improve conductivity for further improvement. 
The future will be talked about. In addition, it is not dis-
puted that nanotechnology is useful for LTO, but many of 
the phenomena that occur at the nanoscale for LTO are 
discussed so that some are not fully understood.

Another phenomenon that occurs at the nanoscale 
is the change in charge–discharge curves for the LTO 
anode. This anode provides a constant voltage over a 
wide range of capacities (red box in Fig. 18). When LTO 
ions are Nano, the constant voltage range decreases until 

after a critical limit (in the range of a few nanometers) 
there is no longer a constant voltage range [76].

One of the things that happens on the surface is the 
insertion of more lithium ions into the surface lay-
ers. In the surface after insertion, we reach the formula 
Li8.5Ti5O12, which is 1.5 mol more than the inner layers 
with the formula Li7Ti5O1, but in the micron material, 
because the percentage of surface is not high, it shows 
its effect, but for Nano, because the amount of surface 
is large, the effects are large. There are several on the 
charge–discharge curve.

TiO2 Anode
There is also a TiO2 anode from the LTO family. These 
anodes are easier to synthesize, and because they do not 
want to react with heat-induced lithium ion precursors, 
they do not have heat-induced problems such as nano-
material growth. In addition, according to the chemi-
cal formula, titanium oxide has a capacity of twice the 
amount of 335  mAh/g (LTO). The general response of 
these anodes is TiO2 + xLi

+
+ xe

−
↔ LixTiO2.

TiO2 has four types of phases or crystallographic struc-
tures (different atomic arrangements) known as Brocket, 
Anastasi, Rutile, and (TiO2 (B). The Brocket phase does 
not matter to the battery. Antara and rutile, which are 
very popular phases, are important as anodes. Phase 
(TiO2 (B) performs better than others due to its atomic 

Fig. 18  Shows the linear curve range at the LTO anode in the charge–discharge axis [75]
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open space and suitable channel for ion transport, and is 
the most important [75, 76, 132–136].

If we consider the theoretical capacity based on the 
chemical formula (one mole of lithium ion per mole of 
TiO2), it is equal to the above value, but based on the 
phase and position that can be placed according to the 
lithium ion crystal lattice, different theoretical capacities 
for different phases have been reported; for example, for 
anisate, according to network sites, the half-capacity is 
high, 0.5 mol of lithium ion per mole of TiO2, 167 mAh/g.

Because all of these phases have poor ionic conduc-
tivity, the nanoscale is very effective in increasing both 
power and capacity. What is interesting is that the nano-
structured capacity of Anastasi is more than the theoreti-
cal capacity based on the position of the network, but it 
is definitely less than the theoretical capacity of Formula 
334 in all phases. Rutile in micron mode can only store 
0.1  mol of lithium ion per grid unit. In rutile, lithium 
locations are located throughout the network, but the 
diffusion coefficient in the direction of the c-axis is one 
order of magnitude greater than that of the ab plate [137–
141]. The lithium atom penetrates well in the direction of 
the c-axis, but must be diffused throughout the space by 
penetrating the ab plane, and because the diffusion veloc-
ity is low in the ab plane, lithium ions accumulate in the 
c channel, causing a charge repulsive force. Lithium ion 
positive is generated. This repulsive force prevents more 
ions from entering the network. As an interesting result 
of the Nano effect, it has been shown that when the 
dimensions of rutile become Nano, the capacity reaches 
0.8  mol of lithium ion, which has a reversible capacity 
during different cycles, which reduces the penetration 

distance and the effect of its quadratic power [142–146]. 
There is no repulsive force. Figure  19 shows the charge 
and discharge curves and the cycle life for rutile bulk 
(micron), commercial rutile micro particles, and rutile 
nanowires. As can be seen, nanowires show good cyclic 
longevity and capacity. The shape also confirms that the 
shape of the nanomaterials also affects the performance 
of the anode. Morphology such as nanoparticles, nanow-
ires, etc. differ in both capacity and life cycle and power, 
but the type of morphology alone is not decisive but the 
geometry of the structure that determines the perfor-
mance (in the future about the geometry of the structure 
for all active materials for example, nanowires connected 
to a current collector, nanowires mixed with graphene, 
and insulated nanowires each present different results. In 
addition, there are test conditions and C rate and many 
other factors [77]. Phase (TiO2 (B), which is newer than 
other phases, offers the best power and capacity due to 
its suitable channels for lithium ion transport [147–151]. 
Figure 20 shows the structure of the penetration site. The 
capacitance can be significantly increased. This phase 
offers the best power and capacity among all titanium 
anodes including LTO, so that by Nano partying it in 
just 4.5 s, the anode can be charged or discharged with a 
capacity of 73% of theory. We do not have volume change 
in this anode either.

Quasi‑capacitive Capacity
So far, it has been discussed about the storage capacity 
of lithium ions in the form of a degree in the nuclear net-
work, and this capacity is improved in the nanoscale due 
to the reduction of the penetration distance, and so on 

Fig. 19  a Charge–discharge curve for the first time, b cycle life [77].
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[152–155]. But one of the interesting phenomena that 
occurs for these anodes at the nanoscale is the storage of 
lithium ions at the surface due to the large surface-to-vol-
ume ratio. This type of storage is different from the insert 
and alloy capacity mentioned so far. This type of stor-
age is very fast because it does not require penetration, 
and also because it does not create stress and the like, it 
has the best cycle life and power compared to other lith-
ium storage methods [156–158]. Of course, this type of 
capacity generates less energy. This capacity is discussed 
in more detail in the topic of super capacitors. The Fig. 21 
shows a comparison between the storage capacity of LTO 
capacity in three different Nano dimensions [78]. Accord-
ing to Fig. 21 in small Nano dimensions, this capacity is 
significant and decreases significantly with increasing 
dimensions. It should be noted that capacitive capaci-
tance is not only related to titanium oxide compounds 
but is also present in many other active substances that 
are mentioned when introducing them.

Introduction of Exchange Anodes
So far, we have talked about two types of insert electrodes 
and alloys. The third type of electrode operation is based 
on a conversion reaction. Figure 22 shows the mechanism 
and reaction of this type of electrode. In this form, M (or 
Me) is an intermediate element that is oxidized, and X is 
an anion such as oxygen, sulfur, and the like [159–161]. 
The advantage of these anodes is that for every MxXy 
unit, n lithium ions (n more than one) are involved in 
the reaction, whereas in the graphite insert anodes we 
see one lithium ion for every 6 carbon atoms stored in 
titanium compounds. A maximum of one lithium ion is 
stored per TiO2 formula unit. But in the exchange anode, 
for example, for CoO and FeO, the value of n is equal to 
2, and in Co3O4, the value of n is equal to 8. Figure  23 

shows a number of exchangeable oxide anodes with their 
reaction and capacity [22, 30, 55].

Exchange Anode Problems
Exchange anodes are very similar to alloy anodes, as 
alloys have problems with volume change, fragmen-
tation, and SEI formation. In these anodes the ionic 
and electron conduction is low, and in addition the 
exchange rate is slow. This low speed leads to high 
potential during charging and discharging. At these 
potentials, there is a large difference between the charg-
ing and discharging voltages, called hysteresis, which 
is shown in Fig. 24 with a red arrow. This figure shows 
that in the first stage of lithium extraction, the anode 
behavior is significantly different from the next stage 
of charge and discharge. The hysteresis in this type of 

Fig. 20  Showing the atomic structure of the phase (TiO2 (B) [77]

Fig. 21  Demonstration of input and super capacitor capacities in 
titanium oxide [78]
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anode is up to one volt, while in the graphite and LTO 
anode it is about 0.2 V. This hysteresis is mostly due to 
activation polarization [78, 79].

Nano Sizing Effects
Figure  25 shows the lithium ionization behavior (in the 
test mode, against lithium metal) for anodes made of fine 
nanoparticles (20 nm) and micro-nanoparticles (500 nm) 
of iron oxide (SEM) images of these particles in Fig. 26. 
Available it can be seen that the capacity of the Nano 
anode is slightly higher. More importantly, it can be seen 
that the charge–discharge behavior of these two anodes 
is very different from each other, which is examined in 
Fig.  26. Figure  26 shows the charge–discharge curves 
in different cycles as well as the cycle life for the same 
samples in Fig.  25 to determine the reason for the dif-
ference in charge–discharge curves in Fig. 25. Note that 
instead of capacity, lithium that enters and leaves (which, 

Fig. 22  Shows the structure and entry of lithium ion with its reaction [22]

Fig. 23  Shows the reaction and capacity of a number of conversion 
oxide anodes [30, 55]

Fig. 24  Show charge–discharge curves of exchange anodes [79]

Fig. 25  Demonstration of lithium ionization for n-Fe2O3 and 
micro-M-Fe2O3 [80]
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according to the arguments, represents capacity) is used. 
In the charge–discharge curves of Fig. 26, lithium ioniza-
tion continued only up to 1 mol because its purpose was 
to investigate the behavior in this range of lithium ions. 
As can be seen, the effective surface mass for the material 
is only 2 m2/g while for the Nano it has an effective sur-
face area of 60  m2/g, which indicates how much higher 
the effective surface area is at the Nano. The difference 
between Nano and Nano performance is also quite clear. 
As shown in Fig.  26, the amount of reversible lithium 
(which can be removed during charging) for Nano is 
much higher than the corresponding amount for bulk. 
This shows that the capacity that can be recovered after 
the initial charge is much better in Nano than in micro. 
Also, according to the same figure, in the next consecu-
tive charge-discharges, the amount of lithium entering 
and leaving is less than 0.25 (from 0.75 to 1), while for 
Nano, the amount of lithium entering and leaving is more 
than 0.5 (the amount of lithium ion). In the composi-
tion it has changed from the range of less than 0.5 ions 

to 1 ion), according to this, the capacity offered in Nano 
is much more than bulk. In the micron-sized anode of 
Fe2O3 (hematite), before the exchange reaction begins, 
about 0.1 mol of lithium ion per mole of oxide compound 
can be stored in the lattice, but above this critical limit, 
the exchange reaction takes place; on the other hand, 
when we increase the dimensions of iron oxide parti-
cles to 20  nm, the amount of lithium stored in degrees 
reaches 1  mol, which causes a volume change of only 
about 1%. Of course, about 0.5 mol is reversible (Fig. 25). 
In fact, the type of storage mechanism (input, exchange, 
etc.) changes and the type of mechanism affects the 
shape of the charge–discharge curve. The above para-
graph indicates that when the oxide dimensions enter the 
Nano field, the storage mechanism is also affected. So far 
it has been said that Nano makes volume change easier 
without failure, but here it can be seen that even Nano 
has reduced the amount of volume change from a few 
percent for the exchange reaction to one percent for a 
degree reaction. The reason for this change is the storage 

Fig. 26  Display of SEM images, charge–discharge curves and cycle life for Nano-iron oxide and bulk [80]
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mechanism for iron oxide due to thermodynamic prob-
lems. The opposite happens for the Co3O4 anode because 
it is kinetic and is related to the current density (the 
current density is obtained by dividing the current by 
the surface); when the current is constant, in the Nano-
dimensions, because the surface is higher, the current 
density decreases and the Co3O4 anode shows exchange 
behavior, but in the micro, due to the high current den-
sity, the anode shows the insertion behavior [76–79].

It can be seen from Fig.  26 that at the nanoscale, the 
cycle life is also much better than bulk. The reason for the 
improvement of these expressed properties is the ease of 
volume change and release of stress, ionic and electronic 
transitions are easier due to the reduction of the penetra-
tion distance, which was expressed in this series of arti-
cles. Due to high hysteresis, less attention has been paid 
to compounds with hysteresis [22, 51–54, 80].

Nanomaterials in Batteries
Nanomaterials have been widely applied in the life sci-
ences, information technology, the environment, and 
other related fields. Recently, nanostructured materials 
have also attracted attention for application in energy 
storage devices, especially for those with high charge/
discharge current rates such as lithium ion batter-
ies. The development of next-generation energy stor-
age devices with high power and high energy density is 
key to the success of electric and hybrid electric vehicles 
(EVs and HEVs, respectively), which are expected to at 
least partially replace conventional vehicles and help 

solve the problems of air pollution and climate change. 
These energy storage technologies will rely on innova-
tive materials science, i.e. developing electrode materials 
capable of being charged and discharged at high current 
rates. Generally, the potential advantages of nanostruc-
tured active electrode materials can be summarized as 
follows: new reactions can be used that are not possible 
with bulk materials; a larger electrode/electrolyte contact 
area, leading to higher charge/discharge rates; short path 
lengths for both electronic and Li ion transport (permit-
ting operation even with low electronic or low Li ion con-
ductivity, or at higher power); etc. Here, we review some 
recent experimental results that show the advantages of 
nanostructured active electrode materials [147]. Table 2 
summarizes the nanotechnologies that are used to pro-
duce nanomaterials, such as mechanical ball milling, 
chemical vapour deposition, the template method, elec-
trochemical deposition, hydrothermal reaction, dehy-
dration, sintering, pulsed laser deposition, ultrasound, 
sol–gel synthesis, and micro emulsion.

The first group of applications of nanotechnology in 
batteries is itself divided into two categories: the first 
group nanoscale the active substance in the electrode, 
the second group use nanotechnology to improve the 
performance of electrodes (cathode or anode) by adding 
nanomaterials other than the active substance, or the use 
of Nano coatings. For example, Nano-dimensional addi-
tives such as Nano carbons, graphene, carbon nanotubes, 
etc. have better electron conduction, or the use of Nano-
thick coatings on the active material to prevent unwanted 

Table 2  Techniques and nanomaterials used in batteries

Techniques Nanomaterials Lithium storage capacity for 
electrode materials

References

Mechanical milling
MWNT made by chemical vapor deposition

SWNT 600 mAh/g [162]

Mechanical milling
MWNT made by chemical vapor deposition

Sn 670 mAh/g (1st cycle) [163]

Mechanical milling
MWNT made by chemical vapor deposition

MWNT-Sn 570 mAh/g (1st cycle) [163]

Mechanical milling
MWNT made by chemical vapor deposition

MWNT-SnNi 512 mAh/g (1st cycle) [163]

Mechanical milling Ag3.64Fe15.6Sn48 530 mAh/g (1st cycle) [164]

Mechanical milling Ag3.64Fe15.6Sn48 420 mAh/g (300 cycle) [164]

Chemical vapor deposition MWNT 340 mAh/g [165]

Electrochemical deposition Cu6Sn5 400 mAh/g (30 cycle) [166]

Mechanical milling Si (78 nm) composites 1700 mAh/g [167]

Sol–gel based template synthesis V2O5 (nanowires) 147 mAh/g [168]

Sol–gel synthesis LiMxFe1−xPO4 (M = Mg, Ti, Zr) 
(40–150 nm)

160–165 mAh/g at C/8 [169]

Hydrothermal reaction TiO2 nanotubes 170 mAh/g (1st cycle) [170]

Sintering WS2 nanotubes 915 mAh/g (1st cycle) [171]
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reactions with the electrolyte, stress modulation, pro-
vide stability and …. for it. For example, for a LiFePO4 
cathode, the amount of electron conductivity is poor. 
Conductivity is improved by using a conductive carbon 
coating on its particles or by using a conductive carbon 
material as an additive, A Nano-thick coating of oxide is 
used [83, 94, 172–177]. For example, for a LiFePO4 cath-
ode, the amount of electron conduction is poor, Conduc-
tivity is improved by using a conductive carbon coating 
on its particles or by using a conductive carbon material 
as an additive, or the LiCoO2 cathode is unstable at high 
currents in the vicinity of the electrolyte, using a Nano-
thick oxide coating to stabilize it [162, 163, 178, 179]. If 
we want to illustrate the field of nanotechnology in this 
category with an example, in the same LiFePO4 cathode it 
has been shown that carbon coating increases conductiv-
ity and consequently power, capacity, etc., but one of the 
areas of research is how to create this coating. Be cheap, 
effective, etc.; therefore, research in the field of synthe-
sis methods is very important. On the other hand, how to 
add the same coating and additives to be more effective, 
so the engineering and architecture of nanostructures is 
one of the important areas of research and the prepara-
tion of these engineered structures is also an interesting 
issue. Consider Fig.  27 to clarify the matter. This figure 
shows two types of Nano-engineered structures for the 
LiFePO4 cathode that use carbon nanotubes to improve 
conductivity. In addition to differences in performance, 
each of these structures has a different synthesis method, 
which indicates the importance of synthesis.

Silicon has attracted tremendous attentions as one of 
the most promising candidates for the next-generation 
Li-ion batteries (LIBs). Compared to the traditional 
graphite anode, it has many obvious advantages such 

as large capacity, high abundance and environmental 
friendliness [1–4]. Unfortunately, due to the huge vol-
ume expansion (~ 300%) in lithiation, silicon particles 
are pulverized and solid electrolyte interphase (SEI) lay-
ers formed on their surface are unstable. Therefore, the 
long-term cycling stability of silicon anode is poor [5–8]. 
Moreover, the low intrinsic conductivity of Si causes 
unsatisfying rate-capability [9–12]. Thus, a large amount 
of Si/metal (e.g., Ag, Cu, Al, Sn) composites have been 
developed to solve the low conductivity [13–16]. How-
ever, the large volume expansion cannot be relieved 
effectively. On the other hand, carbon Nano layers are 
coated on the electrode materials to increase their con-
ductivity, enhance their mechanical strength and provide 
them stable interfaces with electrolyte. Therefore, various 
conformal carbon layer coated silicon (Si@C) nanostruc-
tures are developed. For example, Si@C with core–shell 
structure are formed by pyrolyzing various precursors 
(e.g., pitch, glucose) to coat carbon layers on the pre-pre-
pared silicon nanoparticles [17–21].

Cui et  al. designed a hierarchical pomegranate-struc-
tured Si@C composite and a nonfilling carbon-coated 
porous silicon micro particle via the pyrolysis of res-
orcinol–formaldehyde resin (RF), respectively [23, 82]. 
And Yu et  al. prepared double carbon shells coated Si 
nanoparticles via chemical vapor deposition (CVD), with 
acetylene as carbon source [24]. All these designs provide 
sufficient voids to allow large volume changes of Si dur-
ing the lithiation/delithiation. However, most of Si@C 
composites were prepared in separate steps by either pre-
coating or post coating carbon on silicon nanomaterials. 
It led to a complicated preparation strategy.

Continued interest in high performance lithium-ion 
batteries has driven the development of new electrode 

Fig. 27  a, b With carbon nanotube core and LiFePO4 wall, and Figure c LiFePO4 nanoparticles attached to carbon nanotube [3, 93]
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materials and their synthesis techniques, often target-
ing scalable production of high quality nanoceramics 
(< 100  nm in diameter), which may offer performance 
improvements. However, there are a number of hurdles, 
which need to be overcome to move away from current 
batch synthesis methods that offer poor reproducibility 
or lack of control over crystallite attributes, particularly 
at larger scale syntheses. Continuous hydrothermal flow 
synthesis (CHFS) processes are a promising route for 
the direct and controlled manufacture of Li-ion battery 
electrode nanoceramics. Such processes use superheated 
water and metal salt mixtures as reagents. In a typical 
CHFS reaction, a feed of supercritical water (above the 
critical point of water (TC = 374 °C and Pc = 22.1 MPa), 
is rapidly mixed in an engineered mixer [1] with a metal 
salt/base aqueous precursor feed (at ambient tempera-
ture and the same pressure), resulting in rapid formation 
of the corresponding nanocrystallite oxide in the water. 
This nucleation dominated reaction occurs as a result of 
the metal salts being supersaturated upon mixing with 
sc-water and also instantly being hydrolysed and dehy-
drated under these exotic reaction conditions. The nas-
cent nanocrystallite metal oxide stream in water is then 
cooled in process and then can be constantly collected 
from the exit of the CHFS process as an aqueous nano-
particle slurry at ambient temperature. The cleaned crys-
tallites (e.g. via dialysis) can be obtained as a wet solid 

and then freeze-dried to retain maximum surface area 
and reduce agglomeration. Compared to batch hydro-
thermal syntheses, CHFS type processes typically pro-
duce very small nanoparticles (< 10  nm) with a narrow 
size distribution [2–4]. Additionally, CHFS processes 
are highly scalable (> 1 kg per hour in the lab of the UCL 
authors [5]) and can be used to make high quality nan-
oparticles at scale, with little or no significant variation 
between those made on the smaller CHFS laboratory 
scale process.

Cyclic voltammetry (CV) measurements at a scan rate 
of 0.05 mV s−1 in the range of 0.05–3 V versus Li/Li+, are 
presented in Fig. 28. A pair of cathodic and anodic peaks 
were observed in the potential range 1.5 and 2.3 V ver-
sus Li/Li+, relating to Li-ion insertion into and extraction 
from the interstitial octahedral site of TiO2 (see equation) 
[81]. Under normal circumstances, a two-phase reac-
tion is expected to occur during lithiation with phase 
equilibrium of the Li-poor Li0.01TiO2 (tetragonal) phase 
and the Li-rich Li0.55TiO2 (orthorhombic) phase [19, 20]. 
The detected specific current peak decreased with higher 
amount of Sn, thereby reducing the amount of pure TiO2. 
The pure TiO2 sample showed virtually no electrochemi-
cal activity in the potential range between 1.3 and 1  V 
versus Li/Li+ during the first cycle. The increasing spe-
cific current during the first cycle between 1 and 0.05 V 
versus Li/Li+, is attributed to solid electrolyte interface 

Fig. 28  Cyclic voltammograms for the 1st and 2nd cycles for the as-prepared Nano-powder in the potential range of 0.05 and 3 V versus Li/Li+ 
for an applied scan rate of 0.05 mV s−1 for a undoped anatase TiO2, b Ti0.94Sn0.06O2, c Ti0.89Sn0.11O2, and d Ti0.85Sn0.15O2. e Specific current versus 
potential of the 2nd cycle for all materials at lower potentials. The specific current was calculated by taking into account the active material mass 
loadings [81]
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(SEI) formation (electrolyte destruction) at lower poten-
tials [13]. There was also likely to be substantive SEI 
formation at the crystallite surfaces of the Sn-doped 
materials compared to the undoped TiO2, as there was 
significant electrochemical activity in the range of 1.3 
to 1 V versus Li/Li+ for the former. However, as the sur-
face area decreases with higher Sn-loading, the initial 
capacity loss due to the SEI formation may be expected 
to decrease. The general trend in fact showed that with 
higher Sn-loading, the initial irreversible capacity loss 
increased (from 363 mAh g−1 for the pure TiO2 and 467 
mAh g−1 for Ti0.85Sn0.15O2).

Conclusion

1.	 This article discusses silicon anodes as a repre-
sentative of alloy anodes. It was observed that the 
only solution to solve the shredding problem is to 
use nanotechnology. In this paper, the importance 
of nanomaterial synthesis was expressed. In sum-
mary, how to use nanomaterials with different mor-
phologies to solve the problem and improve power. 
Although various morphologies were discussed, 
there was no discussion of structural engineering and 
the use of carbon conductive materials, which will 
be discussed in future articles. This was one of the 
methods of establishing electrical bonding for nano-
particles. There are various structures to prevent the 
nanoparticles from breaking, the art of which is to 
create different geometries and the method of their 
preparation.

2.	 This article discusses SEI, which is one of the most 
important topics in most anodes and some high 
voltage cathodes. This article discussed the problem 
of alloy anode fragmentation, while which is due to 
the continuous growth of SEI. It turned out that in 
order to have a proper cycle life, this problem must 
be overcome. According to the given examples, using 
a suitable design at the nanoscale, in addition to pro-
viding free volume change of silicon, this volume 
change does not occur in contact with the electrolyte.

3.	 The carbon coating on the anode can increase the 
conductivity from 13–110 to 2.05 S/cm. Doping can 
enhance performance by increasing the conductivity 
of electrons and even ions and providing more space 
within the network along with Nano sizing, which 
may be appropriate for new projects, which is more 
a Nano-topic in Nano synthesis than how it accom-
panies matter. Synthesize with Nano-dimensional 
doping until there is a discussion about the effect of 
Nano on improving anode performance. This article 
discusses titanium oxide anodes, which is one of the 
most commercially important anodes. It was found 

that nanotechnology greatly improves the perfor-
mance of these anodes. Nano sizing has also been 
shown to affect even the electrochemical and chem-
ical-physical nature (such as charge–discharge curve 
deformation and greater capacity in surface layers).

4.	 In this paper, exchange anodes are introduced and 
their complex operation is described. It was found 
that many problems, such as alloy anodes, can be 
solved by Nano damaging the active material. The 
special effects of Nano were expressed as a change in 
mechanism.
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