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Abstract 

The bifunctional photocatalytic-adsorbent AgZnO/polyoxometalates (AgZnO/POMs) nanocomposites were syn-
thesized by combining AgZnO hybrid nanoparticles and polyoxometalates [Cu(L)2(H2O)]H2[Cu(L)2(P2Mo5O23)]⋅4H2O 
(HL = C6H6N2O) into nanostructures via a sonochemical method. Transmission electron microscopy (TEM) indicated 
that AgZnO/POMs nanocomposites were uniform with narrow particle size distribution and without agglomeration. 
X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the nanostructure 
and composition of AgZnO/POMs nanocomposites. The ultraviolet–visible spectra (UV–Vis) and photoluminescence 
spectra (PL) confirmed excellent optical properties of the AgZnO/POMs nanocomposites. 94.13% ± 0.61 of basic 
magenta (BM) in aqueous solution could be removed using the AgZnO/POMs nanocomposites through adsorption 
and photocatalysis. The kinetic analysis showed that both the adsorption and photocatalysis process conform to 
pseudo-second-order kinetics. In addition, the removal rate of AgZnO/POMs nanocomposites was found to be almost 
unchanged after 5 cycles of use. The bifunctional photocatalytic-adsorbent AgZnO/POMs nanocomposites with high 
stability and cycling performance have broad application prospects in the treatment of refractory organic dye waste-
water containing triphenylmethane.
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Introduction
With the development of industry, a large amount 
of toxic and harmful organic wastewater has caused 
a series of environmental problems, which seriously 
threaten human health [1–4]. Basic magenta (BM) is a 
kind of refractory organic pollutant containing triph-
enylmethane. BM is widely used as a colorant in indus-
tries such as textile and leather and also as a colorant for 
the stain of collagen, tuberculosis and muscle [5, 6]. It is 
urgently needed to be removed from the aqueous solu-
tion for the reason that BM poses a great threat to water 
resources due to its poor biodegradability, toxicity and 

carcinogenicity. According to the literature, the removal 
method of BM in aqueous solution is mainly adsorption 
[7, 8]. However, the application of BM dye adsorbents 
subjects to the disadvantages of low adsorption capacity, 
slow kinetic speed and low recovery potential. It is still a 
challenge to explore a cleaner and more effective method 
to remove BM from aqueous solution.

Polyoxometalates (POMs) are a class of promising 
adsorbents and have been applied in environmental pro-
tection because of their rich compositions and structures, 
high thermal stability, adjustable acidity and reversible 
redox properties [9–13]. As adsorbent, POMs have been 
used to synthesize a variety of materials to remove differ-
ent dyes from aqueous solutions [14–17]. Liu’s research 
group has reported Fe3O4/POMs nanomaterial with good 
adsorption performance for removal of cationic dyes, 
and Fe3O4/Ag/POMs nanomaterial with rapid removal 
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of methylthionine chloride, indicating that more effec-
tive dye removal enhancement performance could be 
obtained by combining POMs and nanoparticles into a 
single entity through nanoengineering [18, 19].

AgZnO hybrid nanoparticles have excellent photo-
catalytic activity and are widely used in the field of pho-
tocatalysis. The addition of Ag improves photocatalytic 
capacity of AgZnO and the charge utilization efficiency 
and photochemical stability of ZnO [20–24]. Photocata-
lytic activity of AgZnO nanoparticles has photocatalytic 
effect on dyes in aqueous solution [25, 26]. In order to 
explore an effective and environmentally friendly method 
for removing BM dye in aqueous solution, in this paper, 
we combined AgZnO hybrid nanoparticles and POMs 
to obtain bifunctional photocatalytic-adsorbent AgZnO/
POMs nanocomposites (Scheme 1). The removal experi-
ments of BM demonstrated that photocatalytic-adsor-
bent AgZnO/POMs nanocomposites possessed both 
adsorption and photocatalytic effects on BM in aqueous 
solution with emerging high removal efficiency. The good 
adsorption, photocatalytic activity and reusability of the 
nanocomposites indicated that the bifunctional photo-
catalytic-adsorbent AgZnO/POMs nanocomposites are 
beneficial to protect the environment.

Methods
The current study was aimed to improve the efficiency 
removal of BM by AgZnO/POMs nanocomposites.

Materials
Silver acetate (Agac, 99%, J&K Scientific), Zinc(II) acety-
lacetonate (Zn(acac)2, 99.9%, J&K Scientific), PEO-PPO-
PEO, n-octyl ether (99%), 1,2-hexadecanediol (90%), 
copper perchlorate (Cu(ClO4)2·6H2O, 98%), sodium 
molybdate dihydrate (Na2MoO4·2H2O, 99%), pyridine-
carboxamide (C6H6N2O, 98%) and NaOH (98%) were 
purchased from Aladdin company (Shanghai, China). 
None of the materials were further purified.

Instruments
The structure and morphology of the photocatalytic 
adsorbent AgZnO/POMs nanocomposites were ana-
lyzed by XRD (X’Pert Pro, Bruker, Germany) and TEM 
(JEM-2100 JEOL Ltd., Japan) including HRTEM. The 
optical properties of photocatalytic adsorbent AgZnO/
POMs nanocomposites were characterized by UV–Vis 
(Hitachi U4100, Japan) and PL spectroscopy (Hitachi 
F7000, Japan). The FTIR spectra of nanocomposites were 
recorded using Avatar 360 FTIR spectrometer (Nicolet 
Company, USA). The XPS were performed on photoelec-
tron spectrometer (Thermo Fisher Scientific ESCALAB 
250XI, United States) Al Kα X-ray used as the excitation 
source.

Synthesis of Photocatalytic‑Adsorbent AgZnO/POMs 
Nanocomposites
The AgZnO and polyoxometalates [Cu(L)2(H2O)2]
H2[Cu(L)2P2Mo5O23]·4H2O (Cu-POMs) samples were 
synthesized using the method reported in the litera-
ture [19, 21]. Firstly, AgZnO hybrid nanoparticles were 
synthesized by nano-microemulsion method, 10  mL of 
octyl ether, Zn(acac)2 (0.0989  g), 1,2-hexadecanediol 
(0.6468 g), Agac (0.0259 g) and PEO-PPO-PEO (0.7874 g) 
were added to a three-necked flask, and the mixture was 
stirred. The mixture was heated to 125 °C, then the tem-
perature was quickly raised to 280  °C, and the experi-
ment was completed. When the temperature was cooled, 
the AgZnO hybrid nanoparticles were taken out and 
washed, obtaining pure AgZnO hybrid nanoparticles. 
Secondly, Cu-POMs was synthesized by hydrothermal 
method, and copper perchlorate (0.093 g), 2-pyridinecar-
boxamide (0.061  g) and 15  mL of deionized water were 
added to a beaker, stirred and mixed. When the tempera-
ture was cooled to room temperature, Na2MoO4·2H2O 
(0.24 g) and deionized water (10 mL) were added to the 
solution and mixed well, and pH was maintained at 3. 
The blue precipitate Cu-POMs was obtained by filtration. 
Thirdly, a mixture of reactants was obtained by adding 
50  mg POMs powders and 5  mg AgZnO hybrid nano-
particles into beaker containing 5  mL water and 5  mL 
ethanol, ultrasonically treated to obtain a uniform liquid. 
This process combines the AgZnO hybrid nanoparticles 
with Cu-POMs to form nanostructures. Finally, the sam-
ples were dried to obtain a bifunctional AgZnO/POMs 
nanocomposite with both photocatalysis and adsorption 
effects.

Dye Removal Experiment
The removal activity was researched by analyzing the 
removal efficiency of BM from aqueous solution. In the 
removal experimental study, a 36-W UV lamp (Philips, 
Netherlands, emitting mainly 365  nm) and a 500-W 
Xenon lamp were used as light source. The dye was dis-
solved in water to prepare 15  mg/L BM aqueous solu-
tion (room temperature condition, pH = 6.3). The 5  mg 
of nanocomposites was added to 40  mL (15  mg/L) BM 
solution for experiments. The solution was magnetically 
stirred at room temperature. At different time intervals, 
about 5  mL solution was removed and centrifuged for 
3 min. The absorption peak intensity of BM at the maxi-
mum wavelength of 545  nm was analyzed by UV–Vis 
spectrophotometer.

Statistical Analysis
Statistical analysis was compiled on the means of 
the results obtained from at least three independent 
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experiments. All data were presented as means ± stand-
ard deviation and statistically compared using one-way 
analysis of variance (ANOVA). A p value less than 0.05 
was considered statistically significant.

Results and Discussion
TEM Analysis of Photocatalytic Adsorbent AgZnO/POMs 
Nanocomposites
The particle size distribution and morphology of pho-
tocatalytic-adsorbent AgZnO/POMs nanocompos-
ites were analyzed by TEM and SEM. In Fig.  1a, the 
AgZnO/POMs nanocomposites are uniform particles 
size without agglomeration. By measuring the TEM 
micrographs of AgZnO/POMs nanocomposites, the 
histogram of particle size distribution was obtained. 
The average particle size of AgZnO/POMs nanocom-
posites was about 19.5  nm, which was consistent with 
the Gaussian distribution. Figure  1b shows the high 
resolution transmission electron microscopy (HRTEM) 
image of AgZnO/POMs. Apparently, the nanocompos-
ites are distributed with highly regular lattices, in which 
the spacing of 1.44 Å corresponds to the Ag (220) plane, 
while the spacing of 2.47  Å is assigned to ZnO (101) 
plane. A spacing of about 1 nm between the blue dotted 
line and the green dotted line may be distributed with 
POMs [27]. Element mapping (Fig.  1c–k) confirmed 
the distribution of P, O, Ag, Cu, Mo, N, C and Zn in 
the AgZnO/POMs nanocomposites and showed that 
AgZnO and POMs existed simultaneously in AgZnO/
POMs nanocomposites. The results confirmed the for-
mation of photocatalytic adsorbent AgZnO/POMs 
nanocomposites.

XRD Analysis of Photocatalytic Adsorbent AgZnO/POMs 
Nanocomposites
The structure of prepared photocatalytic adsorbent 
AgZnO/POMs nanocomposites was analyzed by XRD. In 
Fig.  2c, the diffraction peaks marked by the purple col-
umn diagrams of AgZnO hybrid nanoparticles at 38.2°, 
44.4°, 64.6° and 77.4° correspond to the characteristic 
peaks of Ag (JCPDS No. 04-0783). The peaks marked 
by the blue column diagrams at 31.7°, 34.5°, 36.5°, 47.6°, 
56.7°, 62.8° and 67.7° correspond to ZnO (JCPDS No. 
36-1451) characteristic diffraction peaks. The peaks at 
8.7°–30.7° in Fig.  2b are the diffraction peaks of POMs 
[19]. In the diffraction pattern of photocatalytic adsor-
bent AgZnO/POMs nanocomposites (Fig.  2a), the dif-
fraction peaks of POMs (Fig.  2b) and AgZnO hybrid 
nanoparticles (Fig.  2c) reappear simultaneously. The 
results confirmed the formation of AgZnO/POMs 
nanocomposites.

FTIR Analysis of Photocatalytic Adsorbent AgZnO/POMs 
Nanocomposites
The FTIR spectra of AgZnO/POMs nanocompos-
ites, POMs, and AgZnO hybrid nanoparticles were 
depicted in Fig.  3a–c. As shown in Fig.  3a, the vibra-
tion peak at 3370 cm−1 is caused by the H2O hydrogen 
bond. The vibration peak appearing in the interval of 
1680–1133  cm−1 is attributed to the ligand 2-pyridi-
necarboxamide. The stretching vibration of the P-O 
bond appears in the range of 1120–1008 cm−1 [28, 29]. 
The vibrational peaks at 905  cm−1 and 662  cm−1 are 
attributed to the ν (Mo–Obridging) bond and the ν (Mo–
Oterminal) bond, respectively [29]. The characteristic 
absorption peaks in POMs appear in the map of pho-
tocatalytic-adsorbent AgZnO/POMs nanocomposites. 
In Fig.  3c, the strong absorption at 512  cm−1 clearly 
reflects the vibration of the Zn–O bond, and the cor-
responding peak also appears in Fig. 3b [30]. The above 
characteristic absorption peaks also exist in the FTIR 
spectra of photocatalytic-adsorbent AgZnO/POMs 
nanocomposites (Fig.  3b), confirming that the nano-
composites were synthesized.

XPS Analysis of Photocatalytic Adsorbent AgZnO/POMs 
Nanocomposites
In Fig.  4, the XPS spectrum was calibrated using C1s 
(284.8  eV). The peaks of C, O, N, P, Zn, Mo, Cu and 
Ag can be observed from the full spectrum of XPS 
(Fig.  4a). In Fig.  4b, the AgZnO/POMs nanocom-
posites show two peaks of binding energy at approxi-
mately 1022 eV and 1045 eV, corresponding to the main 
regions of Zn 2p3/2 and Zn 2p1/2 [31]. The first peak is 
attributed to the Zn2+ ion in the anoxic zinc oxide [32]. 
The peaks at 367.2 eV and 373.2 eV (Fig. 4c) correspond 
to Ag 3d5/2 and 3d3/2 states of metal Ag. Compared with 
bulk silver (about 368.2 eV and 374.2 eV, respectively), 
the peaks of the Ag 3d state is significantly transferred 
to the lower value of AgZnO hybrid nanoparticles, 
which is attributed to contact between Ag and ZnO 
[33]. Figure  4d shows peaks at 934.9  eV and 954.7  eV, 
which are in the energy region of Cu 2p3/2 and Cu 2p1/2 
attributed to Cu2+, indicating that Cu is mainly present 
in the form of Cu2+ [34, 35]. Figure 4e shows peaks at 
133.2 and 134.1 eV, corresponding to the P–O peaks of 
P 2p3/2 and P 2p1/2, respectively [36]. In Fig.  4f, shows 
peaks at 235.8 and 232.3 eV, corresponding to the main 
regions of Mo 3d3/2 and Mo 3d5/2, respectively, indi-
cating that the valence of Mo is mainly Mo6+ [37]. The 
analysis shows that AgZnO/POMs nanocomposites 
contain AgZnO and POMs.
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Fig. 1  a TEM micrographs and illustration show particle size histogram of AgZnO/POMs nanocomposites, b HRTEM of single AgZnO/POMs, c STEM 
micrographs and d–k corresponding elemental mappings of AgZnO/POMs nanocomposites
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UV–Vis Analysis of Photocatalytic Adsorbent AgZnO/POMs 
Nanocomposites
UV–Vis absorption spectrum of photocatalytic-
adsorbent AgZnO/POMs nanocomposites in aqueous 
solution is shown in Fig. 5. The AgZnO/POMs nano-
composites have four absorption bands at 209  nm, 
260  nm, 365  nm and 380–420  nm, respectively. The 
absorption band at 365  nm is the characteristic 
absorption band of ZnO [21]. The absorption at 380–
420 nm reveals the hybridization of ZnO with Ag and 
the interfacial electron interaction between Ag and 
ZnO [38]. The absorption bands at 209 nm and 260 nm 
are attributed to POMs because of electron transfer of 
Oterminal → Mo and Obridging → Mo in POMs [19]. The 
results show that the AgZnO/POMs nanocomposites 
have excellent optical properties.

PL Analysis of Photocatalytic Adsorbent AgZnO/POMs 
Nanocomposites
The solid fluorescence emission spectra of photocata-
lytic-adsorbent AgZnO/POMs nanocomposites were 
detected under the excitation wavelength of 241  nm 
(Fig. 6a) and 380 nm (Fig. 6b), respectively. As shown in 
Fig.  6a, AgZnO/POMs nanocomposites have an emis-
sion peak at 393  nm, corresponding to the solid-state 
fluorescence emission peaks at 393  nm of POMs [39]. 
Figure  6b AgZnO/POMs nanocomposites shows three 
emission peaks at 465  nm, 489  nm and 596  nm corre-
sponding to the emission peaks of AgZnO hybrid nano-
particles, respectively. The blue light emission peaks at 
465 nm and 489 nm are usually caused by photo-gener-
ated holes of ZnO and the oxygen vacancies occupied by 
the nanocomposites [40]. The emission at about 596 nm 
is generally thought to be caused by the recombination of 
electrons and valence band holes in the deep defect layer 
of ZnO [41]. The results show that the AgZnO/POMs 
nanocomposites have excellent optical properties.

Removal of BM
The adsorption and photocatalytic activities of AgZnO/
POMs nanocomposites were studied by removing BM 
from aqueous solution. In the BM removal experiment, 
the dosage of AgZnO/POMs and concentration of BM 
are very significant parameter. Through a series of optimi-
zation experiments, the most suitable of AgZnO/POMs 
dosage and BM concentration are 5  mg and 15  mg/L, 
respectively (Additional file  1: Fig. S1). Figure  7a is the 
UV–Vis absorption spectra of BM solution containing 
the AgZnO/POMs nanocomposites at different intervals. 
Figure 7b shows a comparative study for removing BM in 
the presence of (1) POMs, (2) AgZnO and (3) AgZnO/
POMs nanocomposites, in which, the ordinate is C/C0, 
where C is the corresponding concentration of BM at dif-
ferent time intervals and C0 is the original concentration 
of BM. It can be observed in combination with Fig.  7a 
and b that the absorption peak strength of BM gradually 
decreases in 0–30 min, remains unchanged in 30–50 min 
for reaching adsorption equilibrium under stirring in the 
dark, and then after 50 min decreases with the increase 
in UV-light irradiation, indicating the adsorption and 
photocatalysis activities of AgZnO/POMs nanocompos-
ites. For verifying the photocatalytic-adsorption synergis-
tic effect, the removal experiment of BM from aqueous 
solution was investigated using AgZnO/POMs, POMs 
and AgZnO with amount of 5 mg. The removal rate was 
94.13% ± 0.61, 55.27% ± 0.83 and 73.77% ± 1.17, respec-
tively. The removal rate of BM decreased significantly 
using only POMs adsorbent or only AgZnO photocata-
lyst compared with photocatalytic-adsorbent AgZnO/

Fig. 2  XRD patterns of a AgZnO/POMs nanocomposites, b POMs, c 
AgZnO hybrid nanoparticles (the purple and blue column charts are 
the column diagrams of Ag and ZnO labeled cards, respectively)

Fig. 3  FTIR spectra of a POMs, b AgZnO/POMs nanocomposites and 
c AgZnO hybrid nanoparticles
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POMs (Fig.  7b). This is mainly due to the synergistic 
effect of AgZnO and POMs, and the synergistic effect can 
be divided into two aspects: (1) In AgZnO/POMs core–
shell structure, the shell layer (POMs) can adsorb BM 
molecules extremely easily. Adsorbed BM molecules are 
confined around the core (AgZnO), which is beneficial 
for the next photocatalytic degradation; (2) the oxygen-
rich structures of POMs can prevent the recombina-
tion of photogenerated e− and h+ and further improve 

the separation efficiency. Figure 7c shows a comparative 
histogram of the removal of BM by POMs, AgZnO and 
AgZnO/POMs nanocomposites under UV-light and Vis 
irradiation, respectively. No matter under UV or visible 
light irradiation, the photocatalytic-adsorbent AgZnO/
POMs have higher removal efficiency than the adsor-
bent POMs and photocatalyst AgZnO. The removal rate 
of AgZnO/POMs for removing BM is 94.13% ± 0.61, 
which is much higher than that of POMs (55.27% ± 0.83) 
and AgZnO (73.77% ± 1.17) under UV-light irradiation. 
Compared to the recently reported works about removal 
of BM, the AgZnO/POMs demonstrate a better perfor-
mance than the other cases (Additional file 1: Table S1). 
In addition, except for BM, AgZnO/POMs can also effec-
tively remove gentian violet (removal rate: 90.30% ± 0.58) 
and methylene blue (removal rate: 89.00% ± 1.00) from 
aqueous solution (Additional file 1: Fig. S2).

The N2 adsorption–desorption isotherms of AgZnO 
nanoparticles and photocatalytic-adsorbent AgZnO/
POMs nanocomposites were determined using the auto-
matic physical/chemical adsorption apparatus. In Fig. 8, 
both samples showed typical type IV isotherms, indicat-
ing the presence of mesoporous structures [42]. Accord-
ing to the analysis results of relative position and height 
of hysteresis loops (Fig. 8), the specific surface area (BET) 
of AgZnO nanoparticles (Fig.  8a) is 28.682 m2/g and 
the BET of AgZnO/POMs nanocomposites (Fig.  8b) is 
33.535 m2/g. The results indicate that the AgZnO/POMs 

Fig. 4  XPS spectra of AgZnO/POMs nanocomposites a full spectrum, b Zn 2p map, c Ag 3d map, d Cu 2p map, e P 2p map, f Mo 3d map

Fig. 5  UV–Vis absorption spectrum of photocatalytic-adsorbent 
AgZnO/POMs nanocomposites



Page 7 of 12Tian et al. Nanoscale Res Lett          (2021) 16:163 	

Fig. 6  a Solid PL emission spectra of POMs and AgZnO/POMs with excitation wavelength λex = 241 nm, b Solid PL emission spectra of AgZnO and 
AgZnO/POMs with excitation wavelength λex = 380 nm

Fig. 7  a UV–Vis absorption spectra of BM solution containing the AgZnO/POMs nanocomposites, b removal curves of different materials for 
removing BM, curve: (1) POMs, (2) AgZnO, (3) AgZnO/POMs nanocomposites (The experiment was repeated three times), c Histogram of the 
removal of BM by POMs, AgZnO and AgZnO/POMs nanocomposites under UV and Vis irradiation (The experiment was repeated three times)

Fig. 8  a N2 adsorption–desorption isotherm of AgZnO hybrid nanoparticles, b N2 adsorption–desorption isotherm of AgZnO/POMs 
nanocomposite
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nanocomposites obtained by the combination of the two 
have a higher specific surface area, which correspond to 
the enhanced adsorption performance of the composite 
under dark conditions.

The pseudo-first-order and pseudo-second-order 
kinetic models were used to fit the experimental data of 
AgZnO/POMs nanocomposites.

In (1) and (2), q0 is adsorption amount at t = 0, qe is 
equilibrium adsorption amount, qt is adsorption amount 
at time t, k1 and k2 are the pseudo-first-order and pseudo-
second-order kinetic rate constants, respectively.

The kinetic plots of removing BM by AgZnO/POMs 
nanocomposites are shown in Fig.  9, and the results 
are shown in Table 1. The correlation coefficient (R2) of 

(1)ln(qe − qt) = lnqe − k1t

(2)
t

qt
=

1

k2(qe)
2
+

t

qe

pseudo-second-order model (0.9997 and 0.9736) was 
higher than that of pseudo-first-order model (0.3471 
and 0.9380) under dark and UV light, respectively. Fur-
thermore, another parameter called the residual sum of 
squares (SSR) which shows the error value is smaller in 
the pseudo-second-order kinetic model. Therefore, it 
can be indicated that both the adsorption process and 
the photocatalysis process of removing BM by AgZnO/
POMs nanocomposites followed the pseudo-second-
order kinetics. The results demonstrate that the removal 
rate of AgZnO/POMs nanocomposites is mainly due to 

Fig. 9  The kinetic plots for removing BM by AgZnO/POMs nanocomposites, a and b pseudo-first-order kinetics, c and d pseudo-second-order 
kinetics

Table 1  Kinetic correlation coefficients (R2) fitting parameters

Pseudo-first-order Pseudo-second-order

R2 SSR R2 SSR

Dark 0.3471 0.62 0.9997 0.0004

UV light 0.9380 0.21 0.9736 0.20
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the chemical adsorption and electron transfer ability of 
the composites [27, 43].

The removal of BM can be attributed to two factors: 
first, POMs as adsorbent to adsorb BM from aque-
ous solution; second, adsorbed BM molecules can be 
degraded via AgZnO photocatalyst. As shown in Fig. 10, 
when BM molecules are adsorbed and confined around 
the AgZnO via POMs, AgZnO nanoparticles are excited 
by UV light, the photogenerated e− and hole (h+) will 
be produced by ZnO (Ag acts as an electron acceptor). 
In addition, the oxygen-rich structures of POMs are also 
beneficial for preventing the recombination of photogen-
erated e− and h+ and thus further improve the separation 
efficiency. The photogenerated e− can react with chem-
isorbed oxygen molecular to form superoxide radicals 
(˙O2

−). At the same time, the h+ in the valence band 
of ZnO reacts with hydroxyl groups to form hydroxyl 
radicals (˙OH). The h+, ˙OH and ˙O2

− produced in the 
process of photocatalysis are crucial substances for deg-
radation of BM [19, 27, 44]. These created intermediates 
possess highly reactive (namely strong oxidation) and 
have the ability to oxidize the BM dye into CO2, H2O and 
some corresponding simple compounds. As a result, the 
removal rate of AgZnO/POMs nanocomposites is greatly 
improved by the combination of AgZnO and POMs into 
a whole nanoengineering. The photocatalytic-adsorbent 
AgZnO/POMs nanocomposites are expected to be a new 
type of dye remover, which can remove efficiently aro-
matic organic dyes from water pollution, especially for 
BM. In addition, to further prove the generation of free 
radical, reactive oxygen species (ROS) scavenger was uti-
lized to eliminate ROS during the photocatalytic process. 
1, 4-Benzoquinone (BQ) and isopropanol (IPA) are free 
radical scavenger. The BQ and IPA can rapidly scavenge 

O2
− radical and ˙OH radical, respectively [45, 46]. When 

free radical scavenger (BQ and IPA) was added into a 
removal experiment of BM, removal rate of BM sig-
nificantly decreases. For BQ + AgZnO/POMs, removal 
rate of BM from 94.13% ± 0.61 drops to 52.17% ± 0.76. 
For IPA + AgZnO/POMs, removal rate of BM from 
94.13% ± 0.61 drops to 57.70% ± 0.70. Such results imply 
the key active substances (˙OH and ˙O2

−) can be gener-
ated in the process of removing BM from AgZnO/POMs 
nanocomposites (Additional file 1: Fig. S3).

To investigate the reproducibility of the nanocom-
posites for removing BM, we collected and washed the 
AgZnO/POMs nanocomposites. The collected nanocom-
posites were used to remove BM via five repeated experi-
ments under the same reaction conditions. As shown in 
Fig. 11a, the removal rate of BM in AgZnO/POMs nano-
composites decreased by only 7.33% (from 94.13% ± 0.61 
to 86.80% ± 1.58) after five cycles, the slight reduction 
might correspond to the loss of AgZnO/POMs nano-
composites during washing (average recovery rate of 
AgZnO/POMs is 96.3%). Figure 11b shows that the FTIR 
spectrum of the AgZnO/POMs nanocomposites before 
and after BM removal is similar. It could be proved that 
the nanocomposites have good stability and light corro-
sion of resistance (Scheme 1).

Conclusions
In conclusion, the photocatalytic-adsorbent AgZnO/
POMs nanocomposites were synthesized by combin-
ing AgZnO hybrid nanoparticles and POMs. The TEM 
and HRTEM showed that AgZnO/POMs nanocompos-
ites were uniform with narrow particle size distribution 
and without agglomeration. The bifunctional photocat-
alytic-adsorbent AgZnO/POMs nanocomposites could 

Fig. 10  Schematic illustration of removal of BM by AgZnO/POMs nanocomposites
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effectively remove refractory BM from aqueous solution 
with removal efficiency of 94.13% ± 0.61 by adsorption 
and photocatalysis. The adsorption process and the pho-
tocatalytic process of AgZnO/POMs nanocomposites for 
removing BM followed the pseudo-second-order kinet-
ics. The removal efficiency of AgZnO/POMs nanocom-
posites was found to be almost unchanged after 5 cycles 
of use, demonstrating that the nanocomposites have 
well stability in BM in aqueous solution. The FTIR spec-
tra of AgZnO/POMs nanocomposites before and after 
BM removal are almost no change, further indicating 
the stability of nanocomposites. The bifunctional pho-
tocatalytic-adsorbent AgZnO/POMs nanocomposites 
have potential applications in the treatment of refractory 
organic dye wastewater containing triphenylmethane.
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