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Environment Responsive Metal–Organic 
Frameworks as Drug Delivery System for Tumor 
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Abstract 

Nanoparticles as drug delivery systems can alter the drugs’ hydrophilicity to affect drug uptake and efflux in tissues. 
They prevent drugs from non-specifically binding with bio-macromolecules and enhance drug accumulation at the 
lesion sites, improving therapy effects and reducing unnecessary side effects. Metal–organic frameworks (MOFs), the 
typical nanoparticles, a class of crystalline porous materials via self-assembled organic linkers and metal ions, exhibit 
excellent biodegradability, pore shape and sizes, and finely tunable chemical composition. MOFs have a rigid molecu-
lar structure, and tunable pore size can improve the encapsulation drug’s stability under harsh conditions. Besides, 
the surface of MOFs can be modified with small-molecule ligands and biomolecule, and binding with the biomarkers 
which is overexpressed on the surface of cancer cells. MOFs formulations for therapeutic have been developed to 
effectively respond to the unique tumor microenvironment (TEM), such as high  H2O2 levels, hypoxia, and high con-
centration glutathione (GSH). Thus, MOFs as a drug delivery system should avoid drugs leaking during blood circula-
tion and releasing at the lesion sites via a controlling manner. In this article, we will summary environment responsive 
MOFs as drug delivery systems for tumor therapy under different stimuli.

Keywords: Nanoparticles, Metal–organic frameworks, Unique tumor microenvironment

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Introduction
Tumor is a multifactorial disease with high mortality 
and recurrence rates that threaten human health [1]. In 
clinics, chemotherapeutic drugs and surgery applied for 
tumor therapy have achieved tumor inhibition but often 
with serious side effects, which promoted us to develop 
superior therapeutic methods [2, 3]. Over the past dec-
ades, nanocarriers have been developed for tumor imag-
ing, theranostics and therapy [4].

In all kinds of nanocarriers, metal–organic frame-
works (MOFs) have attracted increasing attention, as 
they can be stimulated by different environment [5, 6]. 
MOFs, as a class of high crystalline inorganic–organic 

porous materials, consist of metal ions or clusters linked 
by organic bridging ligands and have attracted tremen-
dous attention in recent years in different fields [7]. Ear-
lier than the 1990s, MOFs has been widely applied in gas 
storage, separation catalysis, energy conversion, lumines-
cence and chemical sensing, and biomedical field, due 
to their finely tunable chemical composition, pore shape 
and size, morphology, large surface area and excellent 
biodegradability [8, 9].

MOFs have organic active sites and accessible, open-
ing porous architectures, chemical stability, and sufficient 
thermal effects [10]. Thus various functional groups can 
integrate into MOFs via three strategies: encapsulation, 
grafting, and infiltration, which can improve their bio-
compatibility, solubility and interactivity with a target 
molecules [11]. In particular, the encapsulation approach 
through coprecipitation and biomimetic mineraliza-
tion method is the rapid and convenient approach using 
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the organic ligands and metal ions to achieve one-step 
embedding of drugs into MOFs [12, 13]. Inspired from 
these excellent merits, various methods have been made 
to identify its feasibility and effectiveness of utilize. How-
ever, MOFs can easily grow at different substrates to form 
multifunctional complexes [14].Thus, some therapeutic 
agents can directly incorporate into MOFs via synthesis 
progress, which can circumvent crystal growth problems 
when applying pre-functionalized ligands [15, 16]. Such 
a strategy provides a high atomic economy and leads to 
extremely satisfactory drug payloads [14].

Although MOFs as drugs delivery system for tumor 
therapy has unparalleled advantages, their application 
has been restricted by many intractable drawbacks. For 
example, MOFs are a complicated synthetic progress, 
eliminated by the body’s immune system, and has a short 
half-life in the blood [17–19]. In this article, we will 
summarize some basic environment stimuli-responsive 
MOFs to enhance tumor therapy and review the current 
state of the tumor theranostics.

pH/ATP Responsive
Zeolitic imidazolate frameworks (ZIFs), as the specific 
subclass of MOFs, have tunable pore size, ultra-large sur-
face area, and facile synthesis progress. ZIFs are synthe-
sized via biomimetic mineralization and coprecipitation 
used as the ideal drug carrier for tumor theranostics [20]. 
Moreover, ZIFs nanoparticles can achieve endosome 
escape, ascribed to the protonation of the imidazole-
2-carboxaldehyde (2-ICA) in the acidic endosome that 
drives the "proton sponge" effect [21].

Gene therapy has attracted great attention both in 
basic and clinical research for tumor therapy in the past 
decades [22]. However, naked nucleic acids are easily 

degraded by the blood serum nuclease. They are too large 
and fragile to pass through cell membrane resulting 
in unsatisfactory therapy outcomes [23, 24]. Zeolitic 
organic framework-8 (ZIF-8) is fabrication via the 
one-pot method by low toxicity metal ions  (Zn2+) and 
2-methylimidazole (2-Mim) under mild conditions. It 
has excellent encapsulation capability and protects genes 
against enzyme degradation [25]. Li and his co-workers 
provided a one-step approach to load large plasmid DNA 
(pDNA) molecules into ZIF-8 and ZIF-8 polymer sys-
tems through biomimetic mineralization and coprecipi-
tation approach (Fig.  1A shown) [26]. ZIF-8 and ZIF-8 
polymer systems exhibit excellent encapsulate capability, 
well distribution of loading pDNA against the enzymatic 
degradation, and better pH-responsive release. Impor-
tantly, higher molecule weight (MW) cationic polymer 
(PEI) functionalization MOFs-polymer system enhances 
the electrostatic interaction with pDNA, improving cel-
lular uptake and endo-/lysosomal escape resulting in 
remarkable gene expression [27]. Thus, these ZIF-8 and 
ZIF-8 polymer-based nanocarriers for gene therapy offer 
an economical, convenient and rapid approach to encap-
sulate gene molecules for effective intracellular transpor-
tation and expression.

The concentration of ATP is lower than 0.4 mM in the 
extracellular. However, the concentration is upregulated 
in the cytosol or diseased cells (1–10  mM) [28]. Thus, 
the ATP-responsive drug delivery system will open a new 
window for advanced drug delivery for targeting disease 
therapy. Figure  1B shown, Yang et  al. reported ATP-
responsive zeolitic imidazole framework-90 (ZIF-90) as 
an ideal nanocarrier for cytosolic protein delivery, which 
was simply prepared via mixing  Zn2+ and imidazole-
2-carboxaldehyde (2-ICA) at the protein solution [29]. 

Fig. 1 A Schematic representation for synthesis of pEGFP-C1@ZIF-8 nanostructures and pEGFP-C1@ZIF-8-polymer nanostructures via biomimetic 
mineralization and coprecipitation method, respectively, and their cellular delivery and expression process [26].  Copyright 2019 American Chemical 
Society. B Schematic illustration of the self-assembly of ZIF-90/protein nanoparticle and ATP-triggered protein release from ZIF-90 nanoparticle 
inside cells [29]. Copyright 2019 American Chemical Society



Page 3 of 8Yan et al. Nanoscale Res Lett          (2021) 16:140  

At the tumor sites, as-prepared ZIF-90/protein MOFs 
will gradually degrade to release preload protein due 
to the competitive coordination between the  Zn2+ and 
ATP that disassembles ZIF-90 and the releasing protein 
can effectively inhibit cancer cells growth. Thus, we can 
speculate that ZIP-90 MOFs can encapsulate molecular 
weighted protein regardless of molecular weight and pro-
tein size. This includes superoxide dismutase and bovine 
serum albumin with minimal effects on protein function 
for tumor therapy.

Due to the abnormal TME, this ATP-responsive pro-
tein delivery system illustrated in this section not only 
expands the chemistry of MOFs in biomedical applica-
tions, but also opens up a new window for protein deliv-
ery and genome editing techique for targeting disease 
therapy.

Light Responsive
As a "green" approach, photothermal therapy has minimal 
toxicity to surrounding tissues, widely applied in tumor 
therapy [30, 31]. High temperatures can induce severe 
irreversible damage to tissues when the temperature 
sustains over 44 °C. It is enough to cause cell membrane 
damage, mitochondrial dysfunction, and disruption RNA 
synthesis to induce cell death [32]. Unlike normal tissues 
that can dissipate heat and keep the temperature con-
stant by blood circulation via neuromodulation, locking 
of autonomous regulatory function made tumor tissues a 
heat reservoir. This provides a huge advantage for subse-
quence photothermal therapy [33].

Based on these merits mentioned above and poor heat-
dissipating ability, photo-based therapy may be suit-
able for tumor therapy. Photodynamic therapy (PDT) is 
the typical approach of photothermal therapy, which is 
constituted by three basic elements (near-infrared light 

irradiation, plenty of oxygen, and photosensitizers) [34]. 
Near-infrared light irradiation (NIR light) as external 
stimulus exhibits high spatial and temporal control of 
local heating with minimal adverse side effects [35, 36]. 
PSs utilized surrounding oxygen to generate poisonous 
reactive oxygen species (ROS) to destroy cancer cells 
under laser irradiation [37, 38]. As shown in Fig. 2A, Park 
et  al. designed Zr(IV)-based porphyrinic metal–organic 
framework (Zr-MOF) that can generate ROS under 
NIR light [39]. Up injection into the body, Zr-MOF can 
accumulate at the tumor tissues via the enhanced per-
meability and retention (EPR) effects. However, the tar-
geting ability was not satisfactory, which could increase 
unnecessary side effects [40]. Thus, Zr-MOF was further 
modified with folic acid, improving Zr-MOF targeting 
ability during blood circulation time and enhancing PDT 
efficacy.

With the assistance of contrast agents, this can pro-
vide precise therapy navigation and determine the suit-
able therapeutic time [41. As shown in Fig.  2B, Zhang 
and his co-workers developed Mn-porphyrin MOFs 
via self-assembling of Mn-tetrakis (4- carboxyphenyl) 
porphyrin and  Zr4+ ions, which endow Mn-porphyrin 
MOFs with the magnetic resonance imaging (MRI) and 
photothermal conversion capacity without increasing 
tedious synthesis progress [42]. These novel MOFs can 
further conjugate with the type heat unstable NO donor 
s-nitrosothiol (SNO) [43]. Therefore, this MOFs platform 
can achieve the photothermal and MRI-guided NO syn-
ergistic treatment. MOFs-SNO can efficiently accumu-
late at the tumor areas through intravenous injection, 
and realize high photothermal conversion ability for PTT 
and control NO release for NO synergistic therapy with 
less photo-damage. Thus, theranostic agents integrated 
into the MOFs are a feasible approach for enhancing the 

Fig. 2 A Illustration of PCN-224 structure. 6-connected  Zr6 cluster  (Zr6O4(OH)4(H2O)6(OH)6(COO)6), tetratopic linker (tetrakis (4-carboxyphenyl)
porphyrin  (H2TCPP)), and 3D nanoporous framework of PCN-224. (b) A cubic unit of PCN-224 and schematic illustration of spherical PCN-224 
nanoparticles on the basis of construction of cubic units, yielding different sizes [39].  Copyright 2018 American Chemical Society. B Scheme for the 
synthesis of the NMOF–SNO nanocomposite and the NIR light-triggered NO release and PTT [42]. Copyright 2018 American Chemical Society
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diagnosis and provide precise therapy navigation and 
determine the suitable therapeutic time.

Due to free porphyrin has optical properties, when 
porphyrin integrated into the MOFs, the obtained por-
phyrin MOFs has fluorescence imaging and PDT, which 
will opens new opportunities for next-generation tumor 
theranostics.

H2O2 Responsive
High levels of  H2O2, hypoxia, low pH value, and high 
concentration glutathione (GSH) are common feature in 
the tumor microenvironment (TME) [44–46]. Therefore, 
ameliorating or changing unique TME can inhibit tumor 
growth and enhance therapeutic effects [47, 48]. Many 
literatures have reported that  MnO2 has nanoenzyme 
activity can decompose into  Mn2+ and release amount 
 O2 under the circumstances of  H2O2, which can increase 
oxygen concentration inside the solid tumors and genera-
tion abound reactive oxygen species (ROS) under laser 
irradiation [49, 50]. ROS, as the intracellular chemical 
substrate, can modulate cell signal and play an impor-
tant role in the cell cycle [51]. Important, cancer cells 
are more sensitive to high levels of ROS and susceptible 
to apoptosis [52]. As Fig. 3 shows, Sun et al. constructed 
bovine serum albumin-MnO2/chlorin e6@ZIF-8 (BSA-
MnO2/Ce6@ZIF-8) nanosystem exhibits pH/H2O2 con-
trollability for  O2 production capacity, which offered a 
safe and efficient PDT therapy administration progress 
[53]. Photosensitizer chlorin e6 (Ce6) loading into the 
ZIF-8 can resolve the low dissolubility problem in the 
aqueous environment and generate ROS to induce can-
cer cells apoptotic and necrotic under 650 nm laser irra-
diation. Bovine serum albumin (BSA)-MnO2 decorated 
into the surface of Ce6@ZIF-8, the obtained BSA-MnO2/
Ce6@ZIF-8 has excellent dispersibility, low toxicity, 
sufficient oxygen generation ability, and minimal side 
effects in  vitro/in vivo. This well-prepared BSA-MnO2/
Ce6@ZIF-8 nanosystem possesses a pH/H2O2-sensitive 
capacity and follows the MRI-guided PDT, which holds 
enormous potential for more accurate diagnosis and 
improvements to the antitumor effects.

GSH Responsive
PDT has achieved a distinct advantage in tumor ther-
apy; a high concentration of glutathione (GSH) in can-
cer cells (2–10 mM) not only resists PDT, radiotherapy, 
and chemotherapy, but also serves as an antioxidant to 
scavenge cellular ROS and severely compromises the 
PDT application [54, 55]. More specifically, it has been 
reported that excessive ROS can cause inflammation to 
tumor tissues and serious phototoxicity to normal tissues 
[56, 57]. Thus, it is urgent to develop an intelligent MOFs 
system, which can simultaneously achieve PSs-mediated 

ROS generation and reduce the negative effects of intra-
cellular GSH on the cytotoxicity of ROS at the tumor 
areas.

In order to meet these requirements, Wan et  al. pro-
vided a GSH-unlocked Mn (III)-sealed MOFs nanosys-
tem to undergo a reductive disintegration by high-level 
GSH in tumor sites. This can control GSH depletion and 
ROS generation exhibited comprehensive tumor inhibi-
tion by improving the therapeutic effects of PDT (Fig. 4A 
shown) [58]. However, the major challenge of MOFs in 
medical applications are their unfavorable biocompat-
ibility and short blood half-life. Thus many strategies to 
optimize MOFs in  vivo application have attracted sig-
nificant attention [59]. Inspiring from circulating blood 
cells, biomimetic cloaking with the plasma membrane is 
a powerful approach to coordinate the fate of inorganic 
nanomaterials in vivo [60–62]. As shown in Fig. 4B, Min 
and his co-colleagues illustrated multifunctional biomi-
metic MOFs nanoparticles with 4T1 breast cancer cell 
membrane camouflage for synergic anticancer therapy 
of PDT and antiangiogenesis [55]. Such design can keep 
the surface proteins inherited from the donor cells and 
endow 4T1 cells decorated  MnO2 coated porphyrinic Zr-
MOF loaded vascular endothelial growth factor recep-
tor 2 MOFs (aMMTm) additional biological function to 
escape macrophage recognition and target tumor tissue 
via homotypic affinity in vivo. More importantly,  MnO2 
decorated into the surface of MOFs to neutralize high 

Fig. 3 Schematic illustration for the Formation of a BSA-MnO2/Ce6@
ZIF-8 Nanoplatform and Schematic Illustration Showing the TME 
Responsiveness and Generation of ROS Irradiation upon 650 nm 
NIR Laser for MRI-Guided Photodynamic Cancer Treatment [53].  
Copyright 2019 American Chemical Society
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intratumoral levels of GSH and  H2O2 to ameliorate the 
unique tumor microenvironment, which can boost the 
PDT outcomes. When the  MnO2 shell was gradually 
degraded, the released  Mn2+ can act as an MRI contrast 
agent and apatinib neutralized the PDT-induced revascu-
larization and prevented tumor progress. We believe that 
this multifunctional drug delivery system has enormous 
potential capacity in mechanism-based customization of 
antitumor therapy.

The as-fabricated biomimetic nanosystem for dual 
imaging-guided synergistic tumor therapy was a simple 
theranostic system, which would pave a new avenue for 
tumor diagnosis and therapy.

Hydrogen Sulfide  (H2S) Responsive
Endogenous hydrogen sulfide  (H2S), as the third gas-
otransmitter, is generated from the enzyme system of 
cystathionine β-synthase via the catalysis process [63, 
64]. Cu-based MOFs have a strong binding ability of  Cu2+ 
with  S2−, and their inherent activity of  Cu2+ possessed 
higher catalytic activity in acid [65]. In recent years, Cu-
MOFs have been exploited to detect the toxic  H2S gas in 
the serum or solution [66]. Thus,  H2S can be recognized 
as a specific "target signal" for ovarian and colon tumor 
diagnosis and therapy [67]. As shown in Fig.  5, Li and 
his co-workers provided endogenous  H2S-activated Cu-
MOF is in the "OFF" state and no obvious adsorption at 
the NIR region. However, when Cu-MOFs entered into 
the colon tumor tissues where  H2S was overexpressed, 
Cu-MOFs can change into the “ON” state by reacting 

with high levels of  H2S concentration to generate pho-
toactive copper sulfide with stronger NIR absorption, 
which promoted photothermal therapy (PTT) [68]. 
Cu-MOFs has the mimicking-peroxidase activity and 
reacted with overexpressed  H2O2 to produce toxical 
hydroxyl radical for hemodynamic therapy after endo-
cytosed by the cancer cells [69]. Thus,  H2S-triggering 
‘turn-on’ strategy exhibits excellent antitumor outcomes 
and avoid unnecessary side effects in tumor therapy. This 
 H2S-triggered nanocarrier can significant inhibit colon 
cancer cells grown in vivo, and this biomarker triggered 
therapeutic agents show enormous potential for tumor 
diagnosis and therapeutic.

Perspectives
MOFs as drug delivery systems for tumor therapy, show 
unparalleled advantages due to their intrinsic features, 
including structural tenability, high porosity, multifunc-
tionality, and biocompatibility. Although MOFs have 
achieved impressive progress in the biomedical field, sev-
eral key problems need to be addressed before MOFs can 
be permitted to clinical translation stages. These include 
complexed synthesis, early clearance by body immune 
system, system toxicity, unsatisfactory pharmacokinet-
ics and biodistribution, off-target accumulation, and 
untimely drug release ability.

In order to solve these multileveled problems, biomi-
metic cloaking with the plasma membrane is a power-
ful strategy to tune the fate of MOFs in vivo. All kinds of 
cell membranes have been widely applied to camouflage 

Fig. 4 Schematic illustration of an endocytosis Mn(III)-sealed MOF nanosystem for MRI and OI-guided PDT by controlled ROS generation and GSH 
depletion after being unlocked by overexpressed GSH in tumor cells [58].  Copyright 2019 American Chemical Society. B Schematic illustration of 
aMMTm preparation and proposed combination therapy of PDT and antiangiogenesis[55]. Copyright 2019 WILEY–VCH Verlag GmbH & Co. KGaA, 
Weinheim
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MOFs. This biomimetic approach can make up MOFs 
with the biointerface of cell membranes, which can 
keep the surface proteins inherited from the donor cell, 
reduce their elimination from the body immune system 
to prolong their half-life in the blood, and enhance MOFs 
accumulated at the tumor tissues via permeability and 
retention effects. Based on these merits, cell membrane 
and MOFs combined biomimetic platforms to maximize 
the therapeutic agents to tumor tissues and effectively 
achieve tumor therapy.

Especially, the distorted cancer blood vessels and can-
cer cells’ rapid proliferation would cause low oxygen 
concentration and acidification in the tumor microenvi-
ronment (TME). Hypoxia, low pH, and high GSH con-
centration are the common features in the TEM, which 
promote cancer metastasis and angiogenesis and lead 
to therapeutic resistance and compromise therapy out-
comes. Developing environment responsive and intel-
ligent MOFs triggering by tumor microenvironment is a 
feasible approach for the substantial elevation in precise 
diagnosis, and reduction in unnecessary side effects in 
tumor therapy.

Conclusion
In this article, we summarized various kinds of MOFs 
based on their unique mechanisms and structures. Com-
plex design, high operating costs, and lengthy preparation 
steps, are obstacles MOFs encounter in real application 
to the clinical field. Ultimately, targeting delivery, low to 
none toxicity, and outstanding therapeutic effects are the 
critical factors for successful translating MOFs to clinical 
application.
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