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Abstract

Agricultural production

Previous decades have witnessed a lot of challenges that have provoked a dire need of ensuring global food security.
The process of augmenting food production has made the agricultural ecosystems to face a lot of challenges like
the persistence of residual particles of different pesticides, accretion of heavy metals, and contamination with toxic
elemental particles which have negatively influenced the agricultural environment. The entry of such toxic elements
into the human body via agricultural products engenders numerous health effects such as nerve and bone marrow
disorders, metabolic disorders, infertility, disruption of biological functions at the cellular level, and respiratory and
immunological diseases. The exigency for monitoring the agroecosystems can be appreciated by contemplating the
reported 220,000 annual deaths due to toxic effects of residual pesticidal particles. The present practices employed
for monitoring agroecosystems rely on techniques like gas chromatography, high-performance liquid chromatogra-
phy, mass spectroscopy, etc. which have multiple constraints, being expensive, tedious with cumbersome protocol,
demanding sophisticated appliances along with skilled personnel. The past couple of decades have witnessed a great
expansion of the science of nanotechnology and this development has largely facilitated the development of mod-
est, quick, and economically viable bio and nanosensors for detecting different entities contaminating the natural
agroecosystems with an advantage of being innocuous to human health. The growth of nanotechnology has offered
rapid development of bio and nanosensors for the detection of several composites which range from several metal
ions, proteins, pesticides, to the detection of complete microorganisms. Therefore, the present review focuses on dif-
ferent bio and nanosensors employed for monitoring agricultural ecosystems and also trying to highlight the factor
affecting their implementation from proof-of-concept to the commercialization stage.
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Introduction

The past several decades have witnessed a lot of chal-
lenges like perpetual demographic strain, unceasingly
fluctuating climatic conditions, as well as the heightened
sweepstakes for the resources, all of which have posed
an egregious threat and thus provoked a dire need for
guaranteeing global food security. The existing agricul-
tural practices for fulfilling the food requirements include
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uncontrolled use of resources, sophisticated machinery
as well as increasing and indiscriminate use of agrochem-
icals. These practices have led to significant deterioration
of the soil, air, and water resources, thereby have expres-
sively upturned the levels of pollution in the agricul-
tural environments, which in turn has strongly affected
human/animal health. The extent of health effects of
pesticide use can be estimated from the information that
26 million people become victims of pesticide poisoning
annually on a global basis which results in about 220,000
annual deaths [1]. Furthermore, due to their persistent
nature, the residues of pesticides stay in the environment
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for a prolonged time period thereby contaminate the
soil and thus raise concerns about the functioning of the
soil, biodiversity, and food safety [2]. Moreover, there are
many reports already available about the entry of pesti-
cide residues in the food chain followed by their accu-
mulation in the body of consumers which further results
in severe health issues. The pesticides are also known to
be cytotoxic and carcinogenic by nature [3—6]. They can
also induce various nerve and bone marrow disorders,
infertility, as well as respiratory and immunological dis-
eases [7—10]. Therefore, the monitoring of pesticide resi-
dues in the environment becomes an imperative concern.
Moreover, monitoring such residual pesticides regularly
will also provide information about whether their occur-
rence is within or beyond the acceptable limits [11].
Another important challenge that is faced by the agro-
ecosystems is the persistence of lethal heavy metals com-
prising cadmium, mercury, copper, zinc, nickel, lead, and
chromium as they are held responsible for prolonged and
significant damage to various biotic systems by disrupt-
ing biological actions at the cellular level [12, 13], for
instance, via disruption of photosynthesis, disruption of
mineral absorption, interruption of electron transport
chain, induction of lipid peroxidation, disturbance in the
metabolism of essential elements, induction of oxidative
stress and by damaging the plant organs like root, leaves,
and other cellular components [14—16]. Definitely, their
natural occurrence in the earth’s crust is an undeniable
fact but the uncontrolled anthropogenic activities have
disturbed the geochemical cycling and biochemical bal-
ance of these elements to a remarkable extent. This has
resulted in an increased prevalence of such metals in
different plant parts. Together, all the risks posed by the
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presence and prevalence of heavy metals in various eco-
systems emphasize the need to develop systems for sens-
ing them even at low concentrations in environmental
samples [17].

At present, various methods available for monitor-
ing agroecosystems include gas chromatography, high-
performance liquid chromatography, mass spectroscopy,
and more (Fig. 1). All these techniques can easily detect
and quantify contaminants in the environment as well
as agricultural samples. On the contrary, the sensitivity,
specificity, and reproducibility of such measurements are
incontrovertible but the deployment of these methods
is predominantly restricted by their time consumption,
high cost, and requirement of sophisticated appliances
along with skilled personnel [8]. Therefore, there is an
impenetrable need for modest, quick, and economi-
cally viable methods for monitoring such agricultural
contaminants [18-20]. Nanosensors are nanoscale ele-
ment devices that are engineered to identify a particu-
lar molecule, biological component, or environmental
circumstances. These sensors are highly specific, handy,
cost-effective, and detect at a level much lower as com-
pared to their macroscale analogs. A typical nanosensor
device operation contains three basic components:

1. Sample preparation: It could be a homogenous or
complex suspension of gas, liquid or solid-state. Sam-
ple preparation of agroecosystem is very challenging
due to impurities and interferences. The sample con-
tains specific molecules, functional groups of mole-
cules or organisms, that the sensors can target. These
targeted molecules/organisms known as the analyte
and could be molecules (dyes/colors, toxicants, pes-
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ticides, hormones, antibiotics, vitamins, etc.), bio-
molecules (enzymes, DNA/RNA, allergens, etc.),
ions (metals, halogens, surfactants, etc.), gas/vapor
(oxygen, carbon dioxide, volatile compounds, water
vapors, etc.), organisms (bacteria, fungi, viruses)
and environment (humidity, temperature, light, pH,
weather, etc.)

2. Recognition: Certain molecules/elements recognize
the analytes within the sample. These recognition
molecules are antibody, aptamer, chemical legends
enzymes, etc., and having high affinity, specificity,
selective characteristics to their analytes to quantify
them to acceptance levels.

3. Signal transduction: Certain signal transduction
methods have categorized these modest devices
into different types such as optical, electrochemical,
piezoelectric, pyroelectric, electronic, and gravimet-
ric biosensors. They convert recognition events into
computable signals that are further processed to pro-
duce the data (Fig. 2).

The nano-technological interventions position the
stimulus to transfigure the diverse zones of diagnostics
like health, medication, food, environment, as well as the
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agriculture sector, thereby, transitioning the speculative
characteristics into the practical output [21-28]. Nano-
technology plays a significant role in the advancement
of numerous diagnostic methodologies by rendering
mankind with contemporary tools comprising of sensors
established on bio-techniques, nano-based medical facili-
ties, along with bio-photonics which simplifies the detec-
tion of pesticides, drug residues, food-borne pathogenic
microorganisms, toxin contaminants, and heavy metal
ions [24, 29]. Fortunately, the arena of nanotechnology
comprises an understanding coupled with governing
material at the atomic or molecular scale where matter
unveils distinctive attributes and performances when
equated to the bulk form of similar matter [30]. Currently,
among all the approaches, a biosensor is a modest and
compacted investigative device that has the capability of
producing definite systematic data either in a quantitative
way or in a semi-quantitative form by employing a recog-
nition component of biological origin which is joined to
a signal transformation unit [31-33]. The type of employ-
ment of the signal transduction method has categorized
these modest devices into different types such as optical,
electrochemical, piezoelectric, pyroelectric, electronic,
and gravimetric biosensors [34]. The recent advances
in nanotechnology have opened various new ways for
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designing biosensors [29, 35]. The hybridization of nano-
materials with different biosensing daises (nano-bio sen-
sors) offers a great deal of conjoining and multipurpose
approaches for enhanced sensitivity for detection [36]
and thereby improves the capability in the monitoring
of even a single molecule [32, 37, 38]. The nanoscale has
been defined approximately as 1-100 nm, which is also
equivalent to a billionth part of a meter. It can be easily
understood by comparing it with the dimensions of an
average bacterial cell which is around 1000 nm in diam-
eter [39]. The nanomaterial that is employed in sensing
is called a nanosensor which is constructed at the atomic
scale for data collection. The nanomaterial is further reas-
signed into information which can be analyzed for sev-
eral applications, for instance, to keep an eye on various
physical and chemical portents in areas hard to approach,
detect different chemicals of biological origin in various
cellular organelles, and determine particles of nanoscale
in the environment and the industry [40, 41]. The pres-
ence of even a single virus particle and substances pre-
sent in very low concentrations can be detected using
nanosensors. A nanosensor is comprised of a bio-sensi-
tive layer that is attached covalently to another element
called a transducer. The physiochemical change produced
due to the interactions of the target analyte with the bio-
receptor is converted into an electrical signal [40].

In recent years, a great deal of superior visual rec-
ognition bio and nanosensors have been employed for
the detection of several composites from a vast array of
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samples. The range of composites covers several metal
ions, proteins, pesticides, antibiotics to the detection of
complete microorganisms, and nucleic acid amplifica-
tion and sequencing [19, 33, 42, 43]. Apart from moni-
toring the agricultural-controlling process and residues,
other potential applications of nanotechnology have
also been surfaced in the last two decades [44—47]. The
imperative benefits for engaging nanotechnology in the
improvement of the agriculture sector include nano-
materials-assisted delivery of growth promoters [44, 48,
49], nutrition (especially micronutrients) [49, 50] as well
as genetic modifications in plants [51, 52]. Addition-
ally, various pesticides in form of nanofungicides, nano-
bacteriocides as well as nanoinsecticides have been also
found to be employed [50, 53-55]. Furthermore, other
benefits of nanotechnology include nanomaterials-based
remediation [56], nanoherbicides [57] as well as uses in
bioprocessing [58], aquaculture [59], post-harvest tech-
nology [60], veterinary care [61], fisheries [62], and seed-
technology [63]. All these applications together show
various advantages like reduced pollution (mainly soil
and water), reduction in related costs of environmental
protection, and enhanced nutrient use efficiency [45, 46,
50, 56, 64—68] (Fig. 3). Given the above-mentioned facts,
the present review targets the employment of different
kinds of nanosensors in different agroecosystems for
revealing different components along with the detec-
tion of some foreign components intruding the natural
agroecosystems.
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Nanosensors for Pesticide Detection

Pesticides find broad applications in agricultural sys-
tems for the avoidance, regulation, or abolition of pests,
insects, weeds, and fungi to increase the productivity of
agroecosystems [69]. The use of pesticides is on a per-
petual increase and they might secure almost one-third
share of the global agricultural products [70]. However,
the indiscriminate usage of pesticides at field conditions
has contaminated the groundwater and marked their
accumulation in the food resources, thereby has also seri-
ously affected non-target species like human beings and
animals (Fig. 4). The exposure of humans to pesticides
can affect health in diverse ways and the attendant health
effects produced can range from mutagenicity, neurotox-
icity, carcinogenicity to genotoxicity [71, 72]. Some pesti-
cides like organophosphates accrue in the animal bodies
even with their application in a small concentration and
exposure to higher concentrations leads to the inhibition
of enzymes like acetylcholinesterase that impart severe
health risks to humans [73]. Therefore, to ensure food
safety, the development of superior methods of detecting
pesticide residues is very important.

Although various approaches are being used from a
very long time for the detection of pesticide residues like
high-performance liquid chromatography, colorimetric
assays, enzyme-linked immune sorbent assay, liquid/gas
chromatography-mass spectrometry, electrophoresis,
and fluorimetric assay procedures [8, 74—79]. Neverthe-
less, the majority of these techniques are single-signal
assays that require costly apparatus, professional opera-
tors, and complex pretreatment of the samples whereas
some are even prone to variations in the environmen-
tal conditions [80, 81]. Therefore, such detection meas-
ures are not suitable for the on-site detection of residual
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pesticides. Additionally, they are also not found to be
appropriate for real-time detection which constraints
their use in emergency cases [82]. Consequently, detec-
tion methods employing multiple signals enhance the
reliability and convenience of the analysis. For instance,
methods targeting a combination of a multi-signal fluori-
metric method with colorimetric assays are capable of
circumventing the influence of background in multifac-
eted structures and complement naked-eye sensing in
different practical solicitations [83]. Therefore, concen-
trating more effort in evaluating different approaches for
the detection of pesticides in a speedy, simplistic, selec-
tive, delicate, precise, and comprehensible means has led
to the development of optical sensors for detecting pesti-
cide residues [80].

Numerous optical strategies have already been rec-
ognized for pesticide detection which exploited recog-
nition elements like enzymes, antibodies, molecularly
imprinted polymers, aptamers, and host—guest recog-
nizers. Such approaches can staunchly recognize and
detect the particular pesticidal particle [81, 84—88]. Fur-
thermore, the coupling of recognition components with
the nanomaterials results in greater levels of sensitivity
and tremendous specificity for instantaneous deploy-
ment, which is a principal requirement for expeditious
and efficacious pesticide detection [82]. So the quest for
a prompt, sensitive, specific, precise, and easy to operate
method for detecting residual pesticides has resulted in
the deployment of nanosensors as a pre-eminent substi-
tute to conventional methods due to their cost effective-
ness, compactness, ease of transportation, extraordinary
sensitivity, and a lesser time of detection [89] (Fig. 1).

In general, an optical sensor is composed of a recog-
nition element that is specific for the particular residual
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pesticidal particle and can network with the other con-
stituent, the transducer, which is employed to produce
the signal for the binding of a particular pesticide resi-
due to the sensor. The recognition components which
are comprised of enzymes, antibodies, molecularly-
imprinted polymers, aptamers, and host—guest recog-
nizers, are gripping the consideration of the scientific
community for improving the diagnostic performance
of any sensor. The prevailing entrenched optical probes
could be categorized into four types based on signal out-
put formats. These are fluorescence (FL), colorimetric
(CL), surface-enhanced Raman scattering (SERS), and
surface plasmon resonance (SPR) optical sensors [90].

Another kind of nanosensors widely known are immu-
nochromatographic strip (ICTS) nanosensors that are
broadly accredited in point-of-care analytical devices
[91]. The immunochromatographic assays have also
been reported for their involvement in monitoring agro-
ecosystems owing to their point-of-care testing behavior.
For instance, a visible colorimetric readout strategy was
adopted in the reported immunochromatographic assay
for the detection of GM crops, which only provided a
yes/no response and often suffered from insufficient sen-
sitivity [92-94]. Similarly, the gold nanoparticle-based
ICTS sensors have also been reported to possess low
detection sensitivity, owing to the production of rela-
tively weaker color density, which limits their application
[95, 96]. However, their sensitivity can be improved by
several proposed amplification strategies like augment-
ing detection signal intensity, enhancing the affinity of
the reagent, optimizing the labeling techniques, and
amending the shapes of strip devices [96]. Therefore, the
improved ICTS nanosensors can also prove to be an eco-
nomically viable tool for pesticide residue detection in
agroecosystems.

The amalgamation of nanotechnology with different
electrochemical approaches compromises a superior
operational surface area to the sensor along with a decent
check on the electrode micro-environment. Nanoparti-
cles owe divergent and numerous properties thereby pos-
sess the potential to play multiple purposes in the sensing
structures grounded on electrochemical phenomena,
for instance, catalyzing the electrochemical reactions,
enhancing the transfer of electrons, tagging, and per-
forming as a reactant [97]. Therefore, electrochemical
nanosensors appear to be an effective tool meant for
pesticide detection. Recently, electrochemical biosen-
sors that were primarily grounded on the enzyme cho-
linesterase appeared as propitious devices meant for
detecting residual pesticidal particles especially belong-
ing to the class carbamates and organophosphates
attributable to their great perceptiveness, choosiness,
and painless methods of creation [98, 99]. Nevertheless,
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enzyme-based biosensors undergo quite a lot of restric-
tions comprising high price, diminished activity of the
enzyme, and truncated reproducibility [100]. Moreover,
enzymes seem to be inherently unstable and are also sub-
ject to denaturation in hostile environmental conditions
which restricts the lifetime of biosensors thereby limiting
their practical applications [101]. Additionally, a mani-
festation of several impurities such as the occurrence of
different heavy metals in the samples of biological origin
can also disturb the selectivity as well as the sensitivity of
the enzyme during the detection that may produce false-
positive results [102]. Therefore, it provokes the need for
non-enzymatic electrochemical biosensors. Nanoma-
terials appear to be promising contestants to formulate
non-enzymatic electrochemical sensors [103]. Various
categories of nanomaterials comprising nanoparticles
(e.g., CuO, CuO-TiO,, and ZrO,, NiO), nanocomposites
(such as molybdenum nanocomposite), and nanotubes
(e.g., peptide and carbon nanotubes) are widely found to
be engaged in electrochemically determining the residual
pesticidal particles [104—106]. The explicit and profound
investigation of the residual pesticidal particles by such
nanomaterials is attributable to their extremely small
size, greater surface area, and the possession of inimita-
ble electrical as well as chemical properties [70].

The sensitivity, as well as selectivity of various nanosen-
sors for definite pesticides, has been reported in various
studies (Table 1), for instance, the two different optical
sensors grounded on silver nanodendrites and upcon-
verting nanoparticles were found to detect the pesticides
dimethoate and metribuzin at the levels of 0.002 ppm
and 6.8 x 10°8 M, respectively [107, 108]. Similarly, the
electrochemical nanosensor grounded using CuO nano-
particles decorated with 3D graphene nanocomposite
detected malathion at the level of 0.01 nM [109] whereas
the electrochemical aptasensor fabricated through chi-
tosan-iron oxide nanocomposite detected malathion at a
surprising sensitivity of 0.001 ng/mL [110].

Nanosensors for Detection of Heavy Metals

The existence of diverse heavy metal ions like Pb**, Hg>™,
Ag*t, Cd®*, and Cu*" from different resources has a pre-
carious influence on human beings as well as their sur-
roundings. The accretion of heavy metals in different
environments is supported by the uninterrupted boost
in the agricultural and industrial accomplishments along
with the inadequate discharge of heavy metal ions from
wastewaters and domestic emissions [111]. Therefore,
to assure the security of the environment along with
the health analysis, the ferreting out of the trace heavy
metal ions through proficient practices is extremely
desired. The apprehension of heavy metals can be accom-
plished by exploring several analytical systems [112], for
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instance, X-ray fluorescence spectrometry (XRF), atomic
absorption spectrometry (AAS), atomic emission spec-
trometry (AES), and inductively coupled plasma mass
spectrometry (ICP-MS) but their application suffers a lot
of limitations like lavishness of devices, time-consuming
methods, and labor intensiveness. Therefore, to guide
these restrictions, numerous types of optical, electro-
chemical, and colorimetric stratagems have been com-
prehensively scrutinized (Table 2) to contrive modest and
lucrative daises for apprehending delicate, hasty, and dis-
cerning exploration of heavy metal ions [113, 114].

Optical chemical sensors that are frequently targeted
for heavy metal detection fit into a cluster of chemical
sensors that primarily employ electromagnetic radiation
for engendering a diagnostic signal in an element known
as the transduction element. The interactions between
the sample and the radiation change a specific optical
consideration that can be interrelated to the concentra-
tion of an analyte [115, 116]. For instance, the optical
nanosensor synthesized using nanohybrid CdSe quan-
tum dots for the detection of cadmium restored its green
photoluminescence on the sensation of cadmium metal
[117]. The optical chemical sensors work on the principle
of seemed variations in the optical possessions (emission,
absorption, transmission, lifetime, etc.) which appear as
a result of binding of the arrested indicator (organic dye)
with the analyte [118]. The approach of enticing gra-
phene-based nanotechnology embarks as an attributable
tool that incapacitates such challenges and bequeaths the
sensing platform with enhanced performance. The opti-
cal techniques predominantly grounded on nanomate-
rials of graphene-origin have been advanced in recent
times as one of the rousing practices for detecting heavy
metal ions owing to the probable eminences of their
meek construction and sentient appreciation of some dis-
tinctive metal ions [116].

The noble nanoparticles like Ag, Au, Pd are endowed
with a unique trait of mimicking peroxidase activity, and
their congregation with graphene boosts their sturdi-
ness along with superior catalytic performance. There
is a diverse magnitude of sensors concerned with the
detection of numerous heavy metal ions based on this
feature. The hybridization of graphene oxide with sil-
ver nanoparticles resulted in nanohybrids mimicking
the peroxidase enzyme activity and they were further
found to be able to discriminate amid double-stranded
and single-stranded DNA molecules. Therefore, mak-
ing the calorimetric detection of Pb*" and Hg”*" suitable
based on the metal ion-provoked change in the DNA
conformation because the conformation was altered
into either a quadruplex arrangement or a hairpin-like
assembly in their occurrence [119, 120]. Moreover, such
colorimetric approaches are advantageous due to their
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simple operation, economically feasible, transportable
instrumentation, and easy-to-use applications. The che-
mosensors for detecting heavy metals are found to be
troublesome for the elimination of the objective species
as they would result in secondary pollution. Therefore,
the integration of fluorescent and magnetic functionality
together in a sole nanocomposite particle seems to be a
capable substitute [121]. Nevertheless, the manifestation
of the magnetic nanoparticles strongly quenches the pho-
toluminescence of the fluorescent moiety, thus ascend a
staid challenge towards the development of such kinds of
nanocomposites. Therefore, to steer this concern, numer-
ous interactions happening at the molecular level, such
as hydrophobic and electrostatic interactions, hydrogen
bonding, and covalent bonding are often targeted for
nanocomposite synthesis. For instance, the quantum dots
placed on the shallow of polymer-layered Fe,O, globules
by employing the approaches of thiol chemistry. The gold
nanoparticles arrested on the surface of several materi-
als including Fe,O; nanoparticles, and the silica micro-
spheres employing electrostatic connections have also
been synthesized [122, 123].

The approach of synthesizing multimodal nanosensors
using principles of nano-chemistry is rather more appeal-
ing as it not only efficiently detects but also removes the
heavy metal ions in the aqueous media. The multimodal
nanosensor synthesized by Satapathi et al. [124] through
multistep production practice, entailed a thin silica shell
that encapsulated the magnetic (Fe,O;) nanoparticles,
an immovable spacer arm, and a fluorescent quantum
dot meant for the coinciding recognition as well as the
elimination of the spotted mercury ion. The exceptional
sensitivity of this nanosensor can be marked by its capa-
bility of detecting Hg*" at the nanomolar level with a
limit of detection of just 1 nm. The eco-friendly aspect of
nanosensor can be advocated by the unique attribute of
removing the detected analyte by using an external bar
magnet thereby leaving no leftover as a pollutant. Sev-
eral compounds are used for stabilizing nanosensors,
such as polysaccharides citrates, different polymers, and
proteins to improve the attributes of the nanosensors
[125]. The silver nanoparticles stabilized with epicat-
echin can be used for discerning detection of Pb**, that
too, in the occurrence of different snooping metal ions.
The low limit of detection, easy synthesis, admirable dis-
cernment, and economical production, make ECAgNPs,
a potent sensor destined for repetitive checking of Pb*"
intensities in the ecological models [126]. The employ-
ment of quantum dots offers remarkable advantages in
terms of their photophysical as well as chemical attrib-
utes, thereby, making fluorescent quantum dots-based
sensors an efficient tool for sensing numerous metal
ions [127, 128]. However, the major disadvantage with
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the employment of quantum dots is their separation and
recovery in practical applications which happens to be
an immoderate, laborious, and tedious task. Neverthe-
less, the introduction of magnetic nanomaterials (Fe;O,)
into the quantum dot-based fluorescence sensors solves
this problem and offers several additional advantages
owing to their high specific surface area, special mag-
netic properties, magnetic operability, and low toxicity.
Yang et al. [128] established multifunctional magnetic-
fluorescent nanoparticles grounded on the carboxym-
ethyl chitosan amalgamated with fluorescent quantum
dots and magnetic nanomaterials which could detect and
separate Hg*" simultaneously along with a sensing level
of 9.1 x 1078 mol/L. Thus, the unpretentious and sophis-
ticated methodology of nanotechnology offers a direction
concerning field-based heavy metal sensory devices in
the future which now appears to be a difficult task along
with various limitations.

Nanosensors for Detecting Plant Pathogens

The ascertainment, recognition, and assessment of path-
ogens are vital for scientific elucidation, ecological sur-
veillance, and governing food security. It is imperative for
investigative outfits that the delicate element of biologi-
cal origin, which is a constituent of biological provenance
or biomimetic constituent, interacts with the analyte in
the examination. There are numerous profound, trust-
worthy, and swift recognition components, for instance,
lectin, phage, aptamers, antibody, bacterial imprint, or
cell receptor, which have been described for exposure
of bacteria [129]. The most widely used biosensing com-
ponents for analyzing pathogens are bacterial receptors,
antibodies, and lectins. These constituents find wide
applications as biosensing components to scrutinize
pathogens owing to their adaptability of amalgamation
into biosensors [130, 131]. Aptamers, the nucleic acids
having only a single strand, are economically feasible and
chemically steady, as compared to the recognition ele-
ments which are based on the antibodies for detecting
bacteria [132]. However, they also pose various disadvan-
tages like batch-to-batch variations, sturdiness in com-
plex materials and they are also comparatively complex
to prepare. The approach pointing to ‘chemical nose’ is a
recently established equipment for detecting pathogens.
It appoints multifarious discriminatory receptors that
generate a unique response configuration for every objec-
tive, thus permitting their ordering. It functions in a fash-
ion analogous to the working of our intellect of smelling
something [133]. This technique involves the training of
sensors with competent bacterial samples to establish a
reference database. The identification of bacterial patho-
gens is done by equating them with the reference cata-
log [134]. Usually, nanoparticle-centered “chemical nose”
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biosensors necessitate the amendment of the surface of
the nanoparticle with several ligands where an individual
ligand is liable for a distinctive communication with the
objective [133]. The variance in the size, as well as the
external make-up of the nanoparticles, is selected in a
way that every single set of particles can retort to differ-
ent classes of bacteria in an inimitable way thereby offers
supplementary features to the absorption spectrum.

The addition of nanoparticles to the bacteria leads to
the development of aggregates encompassing the bac-
teria as a result of electrostatic interfaces amid the ani-
onic sections of the bacterial cell walls and cationic
cetyltrimethylammonium bromide (CTBr). This process
of aggregation promotes a change of color induced by a
swing in localized surface plasmon resonance. The color
variation is further denoted by procuring an absorp-
tion spectrum in the existence of several bacteria [135,
136]. The components of the bacterial cell wall which are
responsible for this kind of aggregation are teichoic acids
in Gram-positive and lipopolysaccharides and phospho-
lipids in Gram-negative bacteria [137]. These aggregation
patterns are unique and are motivated by the occurrence
of extracellular polymeric substances on the bacterial
surface. These varying aggregation patterns are account-
able for offering discernable colorimetric responses.
Therefore the “chemical nose” established on nanopar-
ticles could be accomplished to sense blends of varying
bacterial species. During infections the “chemical nose”
is potent enough to differentiate amid polymicrobial and
monomicrobial cases, which facilitates superior effec-
tiveness along with prompting antimicrobial therapy,
precluding the requirement of extensive and prolonged
testing of the sample [133]. The multichannel nanosen-
sors are highly sensitive and can detect bacterial species
even strains present in biofilms within minutes. Li et al.
[138] established a multichannel sensor based on gold
nanoparticles (AuNPs) and used it to spot and recognize
biofilms based on their physicochemical attributes. The
sensitivity of the nanosensor can be well advocated by
its ability to discriminate amongst six biofilms. Another
sensor which was designed based on hydrophobically
employed gold nanoparticles by Phillips et al. [139] rap-
idly recognized three different strains of E. coli. The con-
jugated polymers bearing negative charge in the sensor
systems were eventually replaced by the pathogenic cells
which differentially restored the polymer fluorescence.

Nanotechnology offers novel prospects for redefining
the constraints of human discernment. In the course of
evolution, the olfactory system of human beings has got
the unique ability to detect volatile organic compounds
present at tremendously low concentrations in differ-
ent complex environments [140]. The great sensitiv-
ity and flexibility of human beings to differentiate more
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than a trillion olfactory stimuli marks olfaction as an
encouraging dais for different biotechnological applica-
tions [141, 142]. Various effective sensors that primar-
ily function based on olfaction have been proposed for
unveiling bacteria. The system of such nanosensors is
mainly encompassed of three different constituents: 1)
surface-functionalized nanoparticles, 2) pro-smell frag-
ments, and 3) enzymes that slice the pro-fragrances for
generating the olfactory output. The fine-tuning of these
three components offer a delicate sensory system, which
allows the rapid detection of bacteria at levels as low as
10?> CFU/ML [143]. The introduction of magnetic nano-
particles also enables the separation, purification, and
recognition of pathogens under complex environments.
The nanomaterial-grounded, ‘enzyme nose’ nanosensor is
also a convenient investigative method meant for detect-
ing toxicologically significant targets present in natu-
ral samples. Sun et al. [134]designed a unique enzyme
nanosensor, which was grounded on the non-covalent
centers, for detecting pathogens. The employment of
magnetic nanoparticles—urease sensors permitted the
profound recognition of bacteria with a precision of
90.7% at the concentration of 10> CFU/LL in a very small
time of 30 min. Similarly, various other different types of
optical, electrochemical, and immunosensors have also
been developed for detecting diverse plant pathogenic
microorganisms (Table 3). For instance, the optic parti-
cle plasmon resonance immunosensor synthesized using
gold nanorods effectively detected Cymbidium mosaic
virus (CymMV) or Odontoglossum ringspot virus at
the concentrations of 48 and 42 pg/mL (Lin et al. 2014)
whereas the Fe;0,/SiO, based immunosensor revealed
the presence of Tomato ringspot virus, Bean pod mottle
virus and Arabis mosaic virus at the concentrations of
10~* mg/mL [144]. Therefore, directing the performance
of approachable nanomaterials at the molecular scale can
be exploited to revise the annotations of humans regard-
ing their environments in a fashion that seems otherwise
unmanageable.

Nanosensors for Detection of Other Entities

Amino acids are very crucial molecules required by
the living systems as they play a pivotal role of build-
ing blocks in the process of protein synthesis [145],
vital character for maintenance of redox environments
in the cell and extenuating destruction from the toxin
and free radicals [146]. The investigative methods for
detecting amino acids have been reported, especially by
chromatography, chemiluminescence, and electrochem-
istry [147]. However, the application of existing tech-
nologies is greatly restricted by the great expenses and
time-consuming steps. Currently, nanomolecular sen-
sors have been established for detecting such molecules
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owing to their chemical steadiness, bio-compatibility,
and easy surface alteration [148, 149]. The employment
of gold nanoparticles for biosensing solicitations has
been reported in different biological environments. The
amine side chain and sulfhydryl (thiol) group of amino
acids may perhaps covalently bind with the gold nano-
particles, thereby inducing an accretion of these nano-
structures which further results in a color alteration from
red to blue on the aggregation of amino thiol molecules
[150, 151]. Chaicham et al. [147] developed an optical
nanosensor grounded on gold nanoparticles that could
detect Cys and Lys at concentrations of 5.88 uM and
16.14 uM, respectively, along with an adequate percent-
age retrieval of 101-106 in actual samples.

Similarly, other metal ions that are required by living
organisms for performing various metabolic functions
can be detected by employing different nanosensors.
A dual-emission fluorescent probe was developed by
Lu et al. [152] for detecting Cu®>" ions by condens-
ing hydrophobic carbon dots in micelles molded by the
auto-assemblage of different amphiphilic polymers. A
vigorous, self-accelerating, and magnetic electrochemi-
luminescence nanosensor which was established on the
multi-functionalized CoFe,O, MNPs was established for
the foremost and later employed for the extremely sen-
sitive as well as discriminating recognition of the target
Cu*" through click reaction in a quasi-homogeneous
system [82]. Gold nanorods are also exploited for sens-
ing Fe (III) ions. Thatai et al. [17] devised highly sensitive
gold nanorods using cetyltrimethylammonium bromide
as illustrative material for detecting ferric ions along with
a surprising sensing level equivalent to 100 ppb. Zinc is
another important element, and it occurs in a divalent
cationic form as Zn>" ions. Zn*" ion has the capabil-
ity of sustaining important activities counting synthesis
of DNA and protein, RNA transcription, cell apopto-
sis, and metalloenzyme regulation [153, 154]. Usually,
fluorescent probes are exploited for detecting the Zn*"
ions in biological systems. The pyridoxal-5'-phosphate
(PLP) conjugated lysozyme cocooned gold nanoclus-
ters (Lyso-AuNCs) can also be exploited for the selective
and turn-on detection of divalent Zn>* ions in the lig-
uid environment. The yellow fluorescence of PLP Lyso-
AuNCs displays noteworthy augmentation at 475 nm in
the occurrence of Zn?* generating bluish-green fluores-
cence which is accredited to the complexation-induced
accretion of nanoclusters. The developed nanoprobe can
detect Zn®* ions in nanomolar concentrations (39.2 nM)
[154]. The dual-emission carbon dots (DCDs) synthe-
sized by Wang et al. [155] can also be exploited for reveal-
ing Zn** ions as well as iron ions (Fe3*) in different pH
environments. The ferric ions could also be detected in
an acidic environment along with an amazing sensation
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level equaling 0.8 pmol/L while Zn®* ions could be
detected in an alkaline environment along with a detec-
tion limit of 1.2 pmol/L.

These days groundwater is used for irrigation and it is
also the solitary seedbed of potable water in numerous
regions, exclusively in the isolated agronomic sections.
The capricious expulsion of numerous contaminants
into the environment has expressively deteriorated the
eminence of groundwater, thus has significantly threat-
ened environmental safety [156, 157]. Although there are
numerous micropollutants, however, the rushing of fluo-
ride in groundwater has stretched out accumulative civic
consideration as a result of the grave fluorosis, severe
abdominal and renal complications persuaded by the
elevated intake of fluoride ion [158]. So, there is a quest
to diagnose and unveil hardness as well as the presence
of fluoride ions in the ground-water which has expected
substantial considerations owing to their significant
parts in the different ecological, biological, and chemi-
cal processes [157]. Although fluorescent probes which
are considered as traditional methods, can be exploited
for detecting F~, however, the employment of quantum
dots, an inorganic nanomaterial, can grab extensive con-
siderations on account of their distinctive optical posses-
sions comprising size-oriented fluorescence, tapered and
coherent emission peak with a wide exciting wavelength,
and outstanding photo solidity [159, 160]. The creation
of a fluorescence resonance energy transmission channel
from the carbon dots and the gold nanoparticles appears
to be a competent solution for detecting numerous ana-
lytes. Therefore, constructing a novel nanosensor via gold
nanoparticles and carbon dots for detecting F~ seems to
be a proficient strategy. The hybrid nanosensor assorted
with calcium ions has been reported to spot fluoride ions
along with a subordinate recognition level parallel to
0.339 ppm [103]. Lu et al. [161] also developed another
novel strategy for detecting fluoride, which was grounded
on dual ligands coated with perovskite quantum dots,
and the recognition level was found to be 3.2 uM.

The agricultural systems also necessitate the diagno-
sis of various other entities for the smooth functioning
and enhanced productivity of the agroecosystems. The
detection of other miscellaneous entities has also been
facilitated by the employment of nanosensors (Table 3),
for instance, the detection of transgenic plants, the pres-
ence of aflatoxins, and even the occurrence of wounds
in plants. The SPR nanosensor developed using gold
nanoparticles detected the Aflatoxin B1 at the concentra-
tion of 1.04 pg mL~! [162] whereas the SERS-barcoded
nanosensor fabricated using the encapsulation of gold
nanoparticles with silica followed by the conjugation of
oligonucleotide strands effectively detected the presence
of Bacillus thuringiensis (Bt) gene-encoded insecticidal
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proteins in rice plants at 0.1 pg/mL, thereby, clearly advo-
cating the transgenic nature of rice plants [163].

Nanosensors for Detection of Nanoparticles
Nanomaterials can also occur naturally, such as humic
acids and clay minerals; extensive human activities can
also lead to the incidental synthesis of various nanoma-
terials in the environment, for instance, diesel oil emana-
tions or by the discharge of welding fumes; or they can
also be explicitly concocted to unveil matchless electri-
cal, optical, chemical or physical features [164]. These
characteristics are exploited in plenty of consumable
merchandise, for instance, medicines, food, cosmetics
and suntan lotions, paints, and electronics, as well as
processes that directly discharge nanomaterials into the
surroundings, such as remediating contaminated envi-
rons [165, 166]. Furthermore, the rapid employment of
metal nanoparticles in various systems has raised many
concerns due to the potential environmental risks posed
by them as they are unavoidably lost in the environment
throughout the processes meant for their fabrication,
conveyance, usage, and dumping [167]. Carbon-based
nanomaterials are quite established against degradation
and as a result, amass in the surroundings [168]. Nano-
particles, attributable to their greater surface area, find it
much easier to bind and adsorb on the cellular surfaces.
They harm the cell in several ways, such as, by hinder-
ing the protein transport pathway on the membrane, by
destroying the permeability of the cell membrane, or
by further inhibiting core components of the cell [169].
Currently, an overwhelming figure of the engineered
nanoparticles engaged for different ecological and indus-
trial solicitations or molded as by-products of different
human deeds are ultimately discharged into soil sys-
tems. The usual nanoparticles employed comprise the
metal engineered nanoparticles (elemental Fe, Au, Ag,
etc.), metal oxides (SiO,, ZnO, FeO,, TiO,, CuO, Al,Os,,
etc.), composite compounds (Co—Zn-Fe oxide), fuller-
enes (grouping Buckminster fullerenes, nanocones, car-
bon nanotubes, etc.), quantum dots frequently encrusted
with a polymer and other organic polymers (Dinesh et al.
2012). Different plant growth-promoting rhizobacteria
(PGPR) like Bacillus subtilis, Pseudomonas aeruginosa, P.
fluorescens, and P. putida, and different bacteria involved
in soil nitrogen transformations are inhibited to varying
degrees on exposure to nanoparticles in aqueous suspen-
sions or pure culture conditions [170]. The nanoparticles
grounded on metals copper and iron are alleged to inter-
act with the peroxides existing in the environs thereby
engender free radicals that are notorious for their high
toxicity to microbes [171]. Therefore, there is a strong
need to monitor the different nanoparticles which find an
ultimate sink in the soils especially of agroecosystems.
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Various techniques can be reconnoitered for sensing
nanoparticles, one among them is the usage of microcav-
ity sensors, which, in the form of whispering gallery reso-
nators have acknowledged extensive consideration. Here,
the particle binding on the exterior of the microcavity
disturbs the optical possessions thereby instigating a res-
onant wavelength swing with magnitude reliant upon the
polarizability of the particle. The measure of the change
facilitates surveillance of the binding actions in real-time
and is also used to evaluate the particle size [172]. Opti-
cal sensing empowered with the extreme sensitivity of
single nanoscale entities is sturdily anticipated for solici-
tations in numerous arenas, for instance, in environmen-
tal checking, other than in homeland security. Split-mode
microcavity Raman lasers are also highly sensitive optical
sensors that can perceive the occurrence of even a single
nanoparticle. The presence of nanoparticles is revealed by
observing the distinct alterations in the beat frequency of
the Raman lasers and the sensing level has been reported
to be 20 nm radius of the nanoparticles [138].

Nanotechnology Implementation

in an Agroecosystem: Proof-of-Concept

to Commercialization

There are hundreds of research articles and studies that
are being published every year on nanosensor’s applica-
tion in agriculture. However, very few nanosensors have
yet been commercialized for the detection of heavy met-
als, pesticides, plant-pathogen, and other substances in
an agroecosystem. Because these academic outputs are
not properly converted/conveyed to commercial or other
regulatory platforms. Certain scientific and non-scien-
tific factors hinder these nanosensors from proof-of-con-
cept to fully commercialized products. These factors are
scale-up and real-use (technical), validation and compli-
ances (regulatory), management priorities and decisions
(political), standardization (legal), cost, demand and IPR
protection (economic), safety and security (environmen-
tal health and safety) along with several ethical issues.
It is necessary to support enthusiastic researchers and
institutions for research and development to develop
such nanosensors for agroecosystem, product validation,
intellectual protection, and their social understanding
and implementation. If we consider these factors strategi-
cally, it will help in nanosensor product betterment and
implementation to agroecosystem. The US-based startup
Razzberry developed portable chemical nanosensors to
trace real-time chemical changes in water, soil, and the
environment. Similarly, Italian startup Nasys invented a
metal oxides-based nanosensor to detect air pollution.
There are some other startups nGagelT and Tracense,
implementing nanosensor technologies to detect biologi-
cal and Hazardous contaminants in agriculture.
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Perspectives and Conclusions

Since times immemorial, agriculture is the main source of
food, income as well as employment for mankind around
the globe. In the present era, due to upsurge of rapid
urbanization and climate inconsistency, precision farm-
ing has been flocking significant attention worldwide. In
agricultural system, this type of farming has the ability to
maximize the crop’s productivity and improve soil quality
along with the minimization of the agrochemicals input
(such as fertilizers, herbicides, pesticides, etc.). Preci-
sion farming is possible through focused monitoring of
environmental variables along with the application of the
directed action. This type of farming system also employs
computers, global satellite positioning systems, sensors,
and remote sensing strategies. As a result, the monitoring
of extremely confined environmental situations becomes
easy. This monitoring even assists in defining the growth
of crop plants by accurately ascertaining the nature and
site of hitches. Eventually, it also employs smart sensors
for providing exact data that grant enriched productivity
by serving farmers to make recovery choices in a detailed
manner. Among all the sensors, smart nanosensors are
very sensitive and judiciously employed devices that have
started proving to be an essential tool for advocating
agricultural sustainability, in future.

It has been noticed that the use of nanosensors and
or biosensors can accelerate agricultural productivity.
These real-time sensors can physically monitor temper-
ature, soil health, soil moisture content and even senses
the soil microbiological/microenvironment and nutrient
status of soils. Interestingly, these sensors have also been
able to detect residual pesticides, heavy metals, monitor
plant pathogens and quantify fertilizers and toxins. These
nanosensors facilitate speedy, quick, reliable, and prior
information that even aid in predicting as well as miti-
gating the crop losses in the agroecosystems. In addition,
the use of nanotechnology-based biosensors also assists
in accomplishing the concept of sustainable agriculture.
It has been observed that the projection of nanosen-
sors and or biosensors as plant diagnostic tools requires
improvements regarding their sensitivity and specificity.
Additionally, there is a need for quick, reliable, cheap,
multiplexed screening to detect a wide range of plant-
based bioproducts. Moreover, the development of broad-
spectrum nanosensors that can detect multiple entities
will also boost in mobilizing technology. It has been
suggested that the biosensor efficiency can be improved
further by developing super “novel nanomaterials” that
will be available in near future. Perhaps in the coming
years, the convergence among nanotechnology, agricul-
ture sciences, rhizosphere engineering, and overall plant
engineering will lead to the path towards accomplish-
ment of all Sustainable Development Goals 2030 without
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incurring any fitness cost on mankind safety, economy,
natural resources, and environment.
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