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Abstract 

Water electrolysis is a sustainable and clean method to produce hydrogen fuel via hydrogen evolution reaction (HER). 
Using stable, effective and low-cost electrocatalysts for HER to substitute expensive noble metals is highly desired. In 
this paper, by using first-principles calculation, we designed a defect and N-, S-, P-doped penta-graphene (PG) as a 
two-dimensional (2D) electrocatalyst for HER, and its stability, electronic properties and catalytic performance were 
investigated. The Gibbs free energy (ΔGH), which is the best descriptor for the HER, is calculated and optimized, the 
calculation results show that the ΔGH can be 0 eV with C2 vacancies and P doping at C1 active sites, which should 
be the optimal performance for a HER catalyst. Moreover, we reveal that the larger charge transfer from PG to H, the 
closer ΔGH is to zero according to the calculation of the electron charge density differences and Bader charges analy-
sis. Ulteriorly, we demonstrated that the HER performance prefers the Volmer–Heyrovsky mechanism in this study.
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Background
Because of the climate change and environmental pollu-
tion caused by fossil fuels usage, exploitation and utili-
zation of clean and renewable energy are the mean way 
after nowadays [1–4]. As a clean, renewable and environ-
mentally friendly energy source, hydrogen  (H2) has been 
attracting considerable attention to fulfill human future 
energy needs [5, 6]. Water electrolysis is a sustainable 
and clean method to produce  H2, and electrocatalysts can 
enhance the efficiency of water splitting observably [7, 8]. 
For hydrogen evolution reaction (HER), platinum-based 
nanomaterials are considered as the best electrocata-
lysts because of a small Tafel slope, a low overpotential, 

a slightly negative Gibbs free energy (ΔGH) and a high 
exchange current density [9, 10], but the scarcity and 
high cost hamper their industrial scale applications [11]. 
Therefore, developing effective, earth-abundant and low-
cost electrocatalysts is essential for HER [12–14].

In fact, a wide range of earth-abundant electrocata-
lysts have been studied and designed for HER [15–17]. 
Among these materials, two-dimensional (2D) nano-
materials provide new opportunities for HER because 
of the compelling structural and electronic properties. 
To date, the transition metal dichalcogenides (TMDs) 
and the graphene-based materials are the biggest and 
most intensively studied groups of 2D electrocata-
lysts for HER [18–23]. The TMDs HER catalysts have 
low overpotential and small Tafel slope, unusual elec-
tronic properties and high air stability, exhibit high 
HER performance, and different methods were taken 
for enhancing their catalytic performance [24, 25]. The 
graphene-based HER catalysts have attracted consider-
able attention and persistent studying because of their 
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distinctive structural merits, such as high electrical 
conductivity, large surface area and good chemical sta-
bility [26, 27]. Many methods were taken for enhanc-
ing the catalytic activity, such as heteroatom doping 
and defection engineering [28, 29]. Meanwhile, the 
intensive research on other new 2D carbon allotropes 
have also been developed, such as graphdiyne [30] and 
penta-graphene (PG) [31]. As a 2D carbon allotrope, 
PG is composed of only carbon pentagons and inher-
its many exceptional properties of 2D materials, such 
as finite electronic band gap, abundant active sites and 
large surface area, so it is anticipated to be a versatile 
material for lots of potential applications like other 
2D graphene-based materials [32–35]. Since there are 
only applications in gas adsorption [36–38],  H2 stor-
age [39, 40], anode materials at present [41, 42], no 
report has ever been found on the application in HER. 
Therefore, research on HER by PG is of great signifi-
cance and cannot only fill such a gap but also broaden 
the scope of graphene-based HER catalysts. However, 
the pristine PG is found to be inert for the HER with 
a relatively large ΔGH, which means that hydrogen 
adsorption is difficult and inhibits the HER. This is 
similar to the problems encountered by pristine gra-
phene (ΔGH = 1.85  eV [43]). Heteroatom doping into 
graphene-based materials could adjust their electronic 
and catalytic properties, which makes them prospective 
catalysts for the practical applications [3]. Therefore, 
we managed to tailor the catalytic activity of PG by het-
eroatom doping [44–46] and defection engineering [47, 
48].

In this paper, by using first-principles calculation, we 
designed and demonstrated a defect and N-, S-, P-doped 
PG and investigated their stability and electronic proper-
ties and evaluated their performance as HER electrocat-
alysts. Our results reveal that the defect and doped PG 
can obviously enhance the catalytic activity toward HER, 
compared with the pristine PG. It is also shown that the 
ΔGH can be 0 eV with C2 vacancies and P doping at C1 
active sites, which should be the optimal performance 
for a HER catalyst, so P-doped PG has the optimal ΔGH 
and activation energy barrier for the rate-determining 
step among the three counterparts, and it exhibits more 
favorable performance. We further show that the cata-
lytic activity arises from the incorporated doping atoms, 
which can provide efficient pathway for charge transport 
during the electrolysis, resulting in the reduction in ΔGH. 
We also demonstrate that the Volmer–Heyrovsky mecha-
nism is more preferred for HER on defect and doped PG. 
We compared our results with that of other researchers 
on graphene, and it can be found that the defection and 
doping engineering are more effective for PG in catalysis 
of HER. Thus, our effort on defect and doped PG makes 

it a high promising electrocatalyst for HER, and our find-
ings provide a deep understanding in designing efficient 
and durable electrocatalysts. This method can be also 
applied to other graphene-based materials.

Computational Methods
Our first-principles calculations were performed using 
the Vienna Ab  initio Simulation Package (VASP) [49]. 
The projected augmented wave (PAW) potentials were 
used to analyze the interactions between core electrons 
and valence electrons [50–52]. The electron exchange–
correlation interactions were described by using the 
Perdew–Burke–Ernzerhof (PBE) functional within the 
generalized gradient approximation (GGA) [53]. The 
DFT-D3 exchange–correlation functional was intro-
duced in structural optimization to take the van der 
Waals interaction into account. The vacuum space along 
the z-direction was set to 20 Å in order to eliminate the 
interactions between PG and its periodic images.

The plane-wave energy cutoff was set to be 500  eV. 
The convergence criterion was set as  10−5 eV for a total 
energy. All the atomic positions and lattice structures 
were fully relaxed with the threshold of a maximum force 
of 0.02 eV Å−1. In order to ensure the accuracy and effi-
ciency of the calculation, a Gamma-centered k-point 
mesh with a Monkhorst–Pack method 5 × 5 × 1 was 
employed for all considered structures after convergence 
test [54]. The amount of the charge transfer between the 
C atoms and H atoms was calculated using Bader code 
[55]. We also calculated H* adsorption energy barriers 
using the climbing image-nudged elastic band (CI-NEB) 
method [56, 57]. The CI-NEB is an efficient method to 
determine the minimum energy path and saddle points 
between a given initial and final position [58–60], and in 
our CI-NEB calculations, the initial and the final struc-
tures were fully optimized.

The adsorption energy (ΔEH) is defined as

where E(*H) and E(*) are the total energy of structures 
with and without hydrogen adsorption, respectively, and 
E(H2) is the total energy of a  H2 molecule.

The Gibbs free energy (ΔGH) is defined as:

where ΔEH is the adsorption energy, ΔEZPE is the differ-
ence in zero-point energy, T is the temperature (298.15 K) 
and ΔSH is the entropy difference of H adsorbed and H in 
the gas phase. We approximated the entropy of hydrogen 
adsorption as �SH ≈

1

2
(S◦

H2
) , where S◦

H2
 is the entropy of 

gas phase  H2 at standard conditions, TΔSH was set to be 
− 0.202 eV after calculation in this study.

�EH = E(∗H)− E(∗)−
1

2
E(H2)

�GH = �EH +�EZPE − T�SH
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Results and Discussion
Structure and Catalytic Activity of Defect and Doped PG
The optimized structure of PG is shown in Fig.  1. For 
convenience of discussion, we hereafter group the sp3− 
and sp2− hybridized C atoms as C1 and C2, respectively. 
The distance between the C1 and C2 is 1.55 Å, and the 
C2–C2 bond length is 1.34  Å, which is consistent with 
the experimental result [31].

At the beginning, we first investigated the sites C1 and 
C2 in the basal plane of pristine PG for HER, the calcu-
lated ΔGH values are 2.43 eV and 2.72 eV, respectively. So 
our calculations show that the pristine PG is found to be 
inert for the HER with a relatively large ΔGH of H, which 
means that hydrogen adsorption is difficult and HER is 
inhibited. Therefore, we managed to use some meth-
ods to tailor the catalytic activity of PG. We researched 
the possible active sites for doping and we also investi-
gated the active sites for C1 and C2 with N, S, P doping, 
respectively. The calculation results show that no obvi-
ous improvement of HER can be obtained if only doping 
engineering was introduced. In the case of the P-doped 
structure, the calculated ΔGH values of C1 and C2 sites 
are 1.24 eV and 1.40 eV, respectively. Ulteriorly, we inves-
tigated the defect PG with C vacancy sites. The calcu-
lation results reveal that C1 vacancy structure cannot 
improve the HER performance but C2 vacancy structure 
can decrease ΔGH obviously, so we use C2 vacancy struc-
ture in this study. The optimized structures with  VC-UP 
and  VC-DOWN C2 vacancies sites are shown in Fig. 2, the 
vacancy defects are built by removing C2 atoms from 
 C2-UP or  C2-DOWN site in a 24-atom supercell. The calcu-
lated ΔGH values are shown in Table 1, where C1 and C2 
are the active sites for hydrogen adsorption.

Though it is confirmed by our calculations that C2 
vacancies are efficient to enhance the HER activity, PG 
with C2 vacancy structure is not yet optimal for a HER 
catalyst. Thus, we further investigated the defect and 
doped PG for HER. We used PG with C2 vacancy as ini-
tial structure, which is shown in Fig.  2 and then inves-
tigated all the different possible active sites with N, S, 
P doping, including C1,  C2-UP and  C2-DOWN sites. As a 
result, we found that better HER performance could be 
achieved with a combination of C2 vacancy and heter-
oatom doping. We investigated all the possible structures, 
and the results showed that there are two structures that 
can achieve better HER performance, one structure is a 
combination of the  C2-UP vacancy and heteroatom dop-
ing in the  C2-DOWN site, and the other is a combination 
of the  C2-DOWN vacancy and heteroatom doping in the 
 C2-UP site. So we focused on these two structures and 
found that they can shift the ΔGH values closer to zero. 
The optimized structures are shown in Fig. 3, and the cal-
culated bond lengths are summarized in Table 2.

We can see that there is slight difference between the 
corresponding bond lengths of N-doped PG and that 

Fig. 1 a Top and b side views of the optimized structure of PG. The 
black dashed rectangle indicate unit cell, the blue dashed circles 
indicate two C vacancy sites, the red dashed circles indicate doping 
sites used in this paper

Fig. 2 The optimized structures of PG with two different C2 vacancy 
sites. a  VC-UP C2 vacancy site, b  VC-DOWN C2 vacancy site

Table 1 Calculated ΔGH values for different possible active sites

Structure Site ΔGH (eV)

Pristine C1 2.43

C2 2.72

N-doped C1 1.48

C2 1.99

S-doped C1 1.53

C2 1.65

P-doped C1 1.24

C2 1.40

VC-UP C1 0.24

C2 0.25

VC-DOWN C1 0.23

C2 0.24
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of pristine PG. Because of the large radius of S and P 
atoms, these two structures undergo much more dis-
tortion, but they can both maintain the structure of PG.

To investigate the stability of PG with C2 vacancy 
and heteroatom doping, we calculated the formation 
energy, which is defined as

where Et is the total energy of the defect and doped 
system, and EV is the energy of C2 vacancy PG, EC is the 
average energy per C atom of the pristine PG, Ed is the 
energy of doping atoms,µH is taken from the total energy 
of the  H2 molecule, respectively. One of our calcula-
tion results about the formation energies of preceding 
two structures with C1 active sites for HER is shown in 
Fig. 4. We can see that negative formation energies indi-
cate energetically favorable and feasible defect and S-, 
P-doped PG. Similarly, Ef values of N-doped structures 
with active sites for HER are all positive. We investigated 
all the possible active sites and got the similar results as 
shown in Fig.  4, so we will investigate only the S- and 
P-doped PG. According to the definition, a more nega-
tive Ef value indicates higher stability of the structure, so 
P-doped PG has excellent stability, as well as good HER 
performance.

Origin of the HER Catalytic Activity
DOS and Band Structures
To achieve an in-depth understanding of the nature of 
C2 vacancy and doping engineering in the HER activity, 
we investigated the total and projected DOS, electronic 
band structure of the defect and S-, P-doped PG. Fig-
ure  5 is one of our calculation results about electronic 
band structures, total and projected DOS of pristine PG, 
 VC-UP,  VC-UPS-doped and  VC-UPP-doped PG.

From the figure, we can see that when C2 vacancy is 
introduced, some new defect states highlighted by red 
curves appear in the forbidden band near the Fermi 
level. Obviously, these new states arise from the C2 
vacancy. Furthermore, when S, P heteroatom doping is 

Ef =

(

Et − EV + EC − Ed −
1

2
µH

)

d1
d3d2

(b)

d3

d2d1

(d)

(e) (f)

(a)

(c)

Fig. 3 The optimized structures for the defect and doped 
PG with the two different C2 vacancy sites, a  VC-UPN-doped, b 
 VC-DOWNN-doped, c  VC-UPS-doped, d  VC-DOWNS-doped, e  VC-UPP-doped, 
f  VC-DOWNP-doped, the blue dashed circles indicate possible active 
sites for hydrogen evolution

Table 2 Calculated bond lengths of C2 vacancy and N-, S-, 
P-doped PG

Structure d1 (Å) d2 (Å) d3 (Å)

VC-UPN-doped 1.50 1.39 1.42

VC-UPS-doped 1.95 1.79 1.73

VC-UPP-doped 1.89 1.81 1.79

VC-DOWNN-doped 1.51 1.39 1.42

VC-DOWNS-doped 1.95 1.80 1.74

VC-DOWNP-doped 1.89 1.81 1.80

Fig. 4 Formation energy of two initial defect and doped PG 
structures with C1 active sites for HER, more negative value indicates 
higher stability of the structure
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introduced, the band gap gets narrower (from 2.22  eV 
[31] to 0.37  eV) and the number of new defect states 
near the Fermi level increases, which can possibly 
improve the H* adsorption strength.

However, we found that the DOS of  VC-UP near the 
Fermi level is much larger than that of pristine PG. In 
addition, the electron density near the Fermi level of C2 
vacancy and S-, P-doped PG is further increased rela-
tive to pristine PG. We also found that the S 3p and P 3p 
orbitals undergo significant hybridization with the C1 
and C2 states, leading to strong interactions between the 
heteroatoms and C, and the formation of S–C and P–C 
bonds. These results demonstrate that combination of 
the C2 vacancy and S, P heteroatoms doping may be a 
better engineering for improving HER activity.

Electron Density Difference and Charge Transfer
Moreover, to study the binding interaction between the 
H atom and PG, we calculated the electron charge den-
sity differences for defect and S-, P-doped PG with dif-
ferent active sites for hydrogen evolution. One of our 
calculation results about the electron charge density dif-
ference and Bader charges analysis for a  C2-DOWN vacancy 
and P-doped PG with H* adsorbed at the different active 
sites for hydrogen adsorption is shown in Fig. 6. The yel-
low and blue colors represent charge accumulation and 
reduction, respectively. It is shown that the electrons 
accumulate around H atoms and reduce around the C 
atoms which are bonded to H atoms, indicating a charge 
transfer from PG to H*. The charge transfer is also con-
firmed by Bader charges analysis. The calculation results 
show that there are 0.18, 0.04, 0.02 and 0.01 electrons 
transferring to H* at C1,  C2-DOWN,  C2-DOWN(n) and  C2-UP 
sites, respectively. We further show that the larger charge 
transfer from PG to H*, the closer ΔGH is to zero, which 
means the optimal performance for a HER catalyst, as 
shown in Fig. 7. It can be seen from Fig. 6 that electrons 
are transferred from PG to H*, resulting in increase in 
the charge density of the bonds, which means that the 
stabilization of the H* species in HER performance may 
originate from the enhanced charge density of P-doped 
C atoms, indicating that P atoms are inherently advanta-
geous in interacting with H atoms than C atoms. We also 

Fig. 5 Electronic band structure, total and projected DOS of the 
defect and doped PG. a Pristine PG, b  VC-UP C2 vacancy site, c 
 VC-UPS-doped and d  VC-UPP-doped, respectively. The structures of c 
and d as shown in Fig. 3. They are calculated by using PBE functional, 
the Fermi level is shifted to 0.00 eV

0.01 

GH = -0.13 eV 

0.02 

GH = 0.087 eV 

0.18 

GH = -0.002 eV 

0.04 

GH = 0.025 eV 

(a) (b)

(c) (d)

Fig. 6 Top views of electron charge density difference and Bader 
charges analysis for a  C2-DOWN vacancy and P-doped PG with H 
adsorbed at the a C1, b  C2-DOWN, c  C2-DOWNn and d  C2-UP sites. The 
isosurface level is 0.004 e/Bohr3. The yellow and blue colors represent 
charge accumulation and reduction, respectively
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noticed that H* is absorbed onto C instead of P, indicat-
ing that the increased charge density can contribute to 
the electrocatalyst on H atom. So our calculations show 
that P doping into the PG can lead to enhanced adsorp-
tion of H* on C atoms. As mentioned above, the DFT cal-
culations also suggested that the P doping into PG could 
much more efficiently enhance the HER activity than that 
of S-doping.

Activity of Defect and Doped PG Toward HER
Gibbs Free Energies of HER
The ΔGH is the vital descriptor of the HER for a variety 
of electrocatalysts, the optimal ΔGH value for a electro-
catalyst is zero, so the H* adsorption and desorption 
can occur spontaneously without activation energy bar-
rier [61, 62]. To evaluate the HER activity of the PG and 
investigate the defection and doping engineering, we cal-
culated the ΔGH of HER. One of our calculation results 
about ΔGH versus reaction coordinate of the HER for PG 
is shown in Fig. 8, where C1 and C2 inside the brackets 
are active sites for hydrogen adsorption.

Our calculations show that the pristine PG is found 
to be inert for the HER with a relatively large Gibbs free 
energy of H* (ΔGH = 2.72  eV(C2), ΔGH = 2.43  eV(C1)). 
When vacancies are introduced, there are two different 
C vacancy sites, C1 vacancy site and C2 vacancy site. 
We calculated the ΔGH on the two sites and found that 
C2 vacancy can notably decrease ΔGH (ΔGH = 0.24 eV), 
which indicates that H* preferentially adsorbs on C2 
vacancy structures. The optimized structures with C2 
vacancy sites  (VC-UP and  VC-DOWN) are shown in Fig.  2. 
Though C2 vacancies show significant improvement 
over the pristine PG, they are still not the optimal for the 
hydrogen adsorption, so doping engineering is explored 
to improve the HER performance. We show our effects 
of C2 vacancies and S, P heteroatom doping on the HER 
activity and optimize the HER performance. The ΔGH 
values are summarized in Table 3, and the active sites for 
hydrogen evolution are shown in Fig. 3.

The calculation results reveal that ΔGH decreases sig-
nificantly, demonstrating that the defection and doping 
engineering are very effective in reducing ΔGH. Remark-
ably, we found that the ΔGH values of active sites C1, 
 C2-UP and  C2-UP(n) for  VC-UP, active sites C1,  C2-DOWN and 
 C2-DOWN(n) for  VC-DOWN are very close to zero, especially 
for two C1 sites, signifying the optimal conditions can 
be achieved, which are significantly superior to pristine 
PG. And we compared our results with previous work 
from other researchers on graphene, for instance, gra-
phene with C vacancy (ΔGH = − 2.108 eV) [28], graphene 
with N-doped (ΔGH = − 0.693 eV) [28], graphene with C 
vacancy and N-doped (ΔGH = − 0.595 eV) [28], graphene 

Fig. 7 Relationship between ΔGH and Bader charges analysis for a 
 VC-UPS-doped,  VC-UPP-doped and b  VC-DOWNS-doped,  VC-DOWNP-doped 
structures. The ΔGH values and active sites are shown in Table 3

Fig. 8 Gibbs free energy versus reaction coordinate of the HER for 
PG, where C1 and C2 inside the brackets are active sites for hydrogen 
adsorption

Table 3 Calculated ΔGH values of C2 vacancies and S-, P-doped 
PG

Structure Site ΔGH (eV)

VC-UPS-doped C1 − 0.007

C2-UP − 0.030

C2-UP(n) − 0.071

C2-DOWN − 0.240

VC-UPP-doped C1 0.005

C2-UP 0.030

C2-UP(n) 0.090

C2-DOWN − 0.130

VC-DOWNS-doped C1 − 0.016

C2-DOWN − 0.030

C2-DOWN(n) 0.060

C2-UP − 0.240

VC-DOWNP-doped C1 − 0.002

C2-DOWN 0.025

C2-DOWN(n) 0.087

C2-UP − 0.130
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with S-doped (ΔGH = − 0.30 eV) [29] and graphene with 
N/S co-doped (ΔGH = − 0.12 eV) [29]. We can find that 
the defection and doping engineering are more effective 
for PG. Thus, our results clearly suggest that the ΔGH of 
PG can be manipulated by applying defection and doping 
engineering to achieve the optimal HER activity.

The Reaction Pathways of Defect and Doped PG
The HER proceeds in a multistep electrochemical pro-
cess, via one of two pathways which are known as the 
Volmer–Tafel and the Volmer–Heyrovsky mechanisms. 
The first step of HER is the H* adsorption on the electro-
catalyst surface (i.e., Volmer reaction), which is described 
by  H+  +  e−  → H*. Then, H* combines with  H+ and an 
electron  (e−) to form a  H2 molecule, known as the Hey-
rovsky step, which is described by H* +  H+  +  e−  →  H2. 
Alternatively,  H2 molecule can be formed via the Tafel 
step, i.e., the combination of two H* on the electrocata-
lyst surface, which is described by 2H* →  H2 [63].

To investigate the defection and doping engineering 
effects on PG and further understand the mechanism of 
superior HER activity, the energy barriers of Tafel and 
Heyrovsky reactions with  C2-UP and  C2-DOWN vacan-
cies, S-, P-doped PG for C1 site were calculated. The 
initial state (IS), the final state (FS) and the transition 
state (TS) are displayed in Fig. 9 with the corresponding 
energy barriers. For the Tafel reaction, the recombina-
tion of 2H* shows energy barriers of 1.51 eV (S-doped), 
1.32 eV (P-doped), respectively. Whereas the release of a 
 H2 molecule in the Heyrovsky reaction involved in a pro-
ton reacting with an adsorbed H* needs to overcome the 
energy barriers of 1.01 eV (S-doped), 0.99 eV (P-doped), 
respectively. The results reveal that the energy barriers 
of Tafel reaction are significantly higher than that of the 
Heyrovsky reaction. So the HER on defect and doped PG 
prefers the Volmer–Heyrovsky mechanism.

Conclusions
We theoretically designed a C vacancy and N-, S-, 
P-doped PG and investigated their stability and unique 
role of electrocatalyst toward HER systematically. We 
find that defection and doping engineering possess 
a superior HER performance over the pristine PG. 
Importantly, the optimal HER activity can be achieved 
with C2 vacancies and S, P heteroatoms doping, which 
indicates that the catalytic properties of the defect and 
doped PG can be tuned easily and effectively. Our cal-
culations reveal that ΔGH decreases significantly with 
C2 vacancies and S, P heteroatom doping, and the opti-
mal conditions can be achieved with P doping at C1 
active sites, for which defection or doping engineering 
alone cannot achieve the optimal conditions. The elec-
tronic structure analysis shows that when C2 vacancy 

and S, P heteroatom doping are introduced, several 
new defection states move closer to the Fermi level, 
leading to the narrower band gap and an improvement 
of the hydrogen adsorption strength. We also find the 
charge transfer from PG to H* by calculating the elec-
tron charge density differences, the larger charge trans-
fer to H*, the closer ΔGH values to zero by using Bader 
charges analysis, which indicates the optimal perfor-
mance for a HER catalyst. And we further demonstrate 

Fig. 9 Schematic pathways for the HER. Energy profiles for the Tafel 
and Heyrovsky reactions with a  C2-UP vacancy and S-doped PG, b 
 C2-DOWN vacancy and S-doped PG, c  C2-UP vacancy and P-doped PG, d 
 C2-DOWN vacancy and P-doped PG. The initial state (IS), the transition 
state (TS) and the final state (FS) are indicated in the diagram with the 
corresponding energy barriers
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the HER on defect and doped PG prefers the Vol-
mer–Heyrovsky mechanism. So our study shows that 
the designed defect and doped PG is highly activated 
toward HER electrocatalyst, the optimal HER activity 
can be achieved, and abundant catalytic activity sites 
are provided. It is expected that the strategies devel-
oped in this paper may be applied for designing 2D 
graphene-based electrocatalysts for low-cost and high-
performance HER applications.
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