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Abstract 

Threshold switching in chalcogenides has attracted considerable attention because of their potential application to 
high-density and three-dimensional stackable cross-point array structures. However, despite their excellent thresh-
old switching characteristics, the selectivity and endurance characteristics of such selectors should be improved 
for practical application. In this study, the effect of Ag on the threshold switching behavior of a  Ga2Te3 selector was 
investigated in terms of selectivity and endurance. The Ag-Ga2Te3 selector exhibited a high selectivity of  108 with 
low off-state current of < 100 fA, steep turn-on slope of 0.19 mV/dec, and high endurance of  109 cycles. The transient 
response was verified to depend on the pulse input voltage and measurement temperature. Considering its excellent 
threshold switching characteristics, the Ag-Ga2Te3 selector is a promising candidate for applications in cross-point 
array structures.
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Introduction
Resistive random-access memory has been investigated 
as a promising candidate for next-generation nonvola-
tile memory, owing to its simple operation, low power 
consumption, three-dimensional (3D) stackable poten-
tial, scalability, and simple structure [1–4]. However, the 
sneak current passing through adjacent cells must be 
reduced to avoid the potential operation failure that can 
occur in 3D cross-point array (CPA) structures with high 
cell density [5, 6]. Two-terminal selector devices with low 
off-state currents and high on/off ratios are favored to 
address such sneak current issues [7, 8].

Various types of selector devices with threshold switch-
ing (TS) characteristics have been proposed previously, 
including Ovonic threshold switch (OTS) [9], metal−
insulator transition (MIT) [10], field-assisted super-
linear threshold switch (FAST) [11], electrochemical 

metallization (ECM) [12], and mixed-ionic-electronic 
conduction (MIEC) [13]. However, the selectivity and 
leakage current of OTS and MIT selectors should be 
improved for practical applications [9, 10]; the nature 
of materials used for FAST selectors is not known [11]. 
Meanwhile, ECM and MIEC devices with Ag or Cu have 
attracted considerable attention because of their desir-
able TS characteristics, including their low leakage cur-
rent, high on/off ratio, steep turn-on slope, and large 
hysteresis between the threshold voltage (VTH) and hold 
voltage (VHold) [14–16]. In a one-selector-one resistor 
(1S1R) structure, the voltage window for the read opera-
tion is determined by the set voltage (VSet) of the memory 
and VTH of the selector. Because VSet varies according to 
the materials used for the memory device, the modula-
tion of VTH is required to facilitate the operation of a 
1S1R device [17]. Moreover, the large difference between 
VTH and VHold can alleviate the operational complexity of 
a CPA structure and relax the stringent voltage-matching 
requirements [18, 19].
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The switching mechanism of such selector devices 
using an active metal, such as Ag or Cu, is based on the 
formation and dissolution of the metallic conduction 
channel. Therefore, the matrix of the electrolyte material 
significantly affects the migration of the active metal and 
switching speed of the selector. The switching speed of a 
selector based on an oxide-based electrolyte is generally 
slower than the order of microseconds [20–22], which 
is relatively slow when compared with that of previously 
reported OTS [23] or MIT selector devices [24]. Mean-
while, defects in chalcogenide films, such as nonbonded 
Te (NBT), can lower the activation energy for the migra-
tion of active metal ions; therefore, chalcogenide mate-
rials are preferable for the fast migration of active metal 
ions [18]. However, because of their randomly formed 
metallic conduction channel, these materials have disad-
vantages in terms of their switching endurance charac-
teristic, which is a crucial factor for selectors [14, 18, 25]. 
The endurance of an ECM device can be improved from 
 103 to  106 cycles using an intermediate buffer layer [26]. 
However, further endurance improvement is required for 
practical applications of such devices in CPA structures 
[5].

In this study, a highly defective amorphous  Ga2Te3 
was used as a switching layer by inserting an Ag layer to 
investigate the TS characteristics in terms of a low leak-
age current (off-state current), high selectivity, modula-
tion of VTH and VHold, and high endurance. Amorphous 
 Ga2Te3 is advantageous as an electrolyte material because 
there are several NBTs that lower the activation energy of 
Ag migration and Ga vacancy, which acts as a migration 
site for Ag in amorphous  Ga2Te3 films [27–29].

Methods
Selector devices of TiN/Ag/Ga2Te3/TiN stacks were fab-
ricated with a via-hole structure to investigate their TS 
characteristics, as depicted in Figure 1a. First, TiN plugs 

with a size of 0.42  μm × 0.42  μm were formed as the 
bottom electrodes (BEs).  Ga2Te3 thin films with thick-
nesses of 40 nm were deposited through RF magnetron 
co-sputtering using  Ga2Te and Te targets. Subsequently, 
an Ag film with a thickness of 10 nm was deposited on 
 Ga2Te3 films through DC magnetron sputtering. Finally, a 
TiN top electrode (TE) was formed using DC magnetron 
sputtering and a lift-off method.

The electrical properties were investigated using a Key-
sight B1500A analyzer at 298 K. DC switching tests were 
conducted with a compliance current (Icomp) to avoid 
the hard breakdown of TS devices. In addition, AC I−V 
measurements were conducted with an external load 
resistance of 1 MΩ to prevent the breakdown of devices. 
The microstructure of the device was investigated using 
transmission electron microscopy (TEM; JEOL FEM-
F200), as shown in Fig. 1b. The cross-sectional TEM sam-
ples of devices were prepared using a focused ion beam 
system. The atomic distribution of Ag in the  Ga2Te3 film 
was investigated using TEM-energy dispersive spectros-
copy (EDS) measurements.

Results and Discussion
Figure 2a shows a cross-sectional TEM image of the pris-
tine TiN/Ag-Ga2Te3/TiN stack of a selector device. The 
Ag interlayer with a thickness of 10 nm was not observed 
on top of the  Ga2Te3 thin film. Figure  2b presents the 
EDS mapping of the Ga, Te, Ag, and Ti elements for the 
red rectangular region marked in Fig. 2a. The EDS map-
ping images show that Ag is uniformly distributed in the 
 Ga2Te3 film even though a co-sputtering process of Ag 
was not applied. The homogeneous Ag-Ga2Te3 film may 
have been formed probably because of the diffusion of Ag 
during the stack formation. Such fast homogenization of 
Ag was also reported for the GeTe films [30–32]. Ag may 
diffuse into the  Ga2Te3 thin film owing to defects such 

Fig. 1 a Schematic of the Ag/Ga2Te3 selector devices. b Cross-sectional TEM image of the TiN/Ag-Ga2Te3/TiN selector device
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as NBT and Ga vacancies in the  Ga2Te3 thin films [18, 
27–29].

Figure 3a shows the current−voltage (I−V) character-
istics of the Ag-Ga2Te3 devices with a bottom electrode 
area of 0.42  µm × 0.42  µm for 100 consecutive cycles 
of DC sweeps. The device showed TS characteristics 
without a forming process. When the voltage on TE 
swept from 0 to 1.5 V, the conduction current increased 
abruptly at the VTH ≈ 0.87 V to Icomp that was set to 1 µA, 
which indicated that the device switched from a high-
resistance state (HRS) to a low-resistance state (LRS). 
The device relaxed back to the HRS at VHold ≈ 0.12  V 
when the voltage was reduced from 1.5 to 0  V, demon-
strating a considerable difference between VTH and VHold. 
The off-state current at VTH was measured to be less than 
100  fA, which corresponds to one of the lowest values 
when compared to previously reported chalcogenide-
based selectors using active metals such as Ag or Cu [14, 
18, 25, 30, 33]. The selectivity, which is defined as the 
ratio of the on-state current to the off-state current, was 
approximately  108. As shown in Fig. 3b, the I−V curves 
showed stable TS characteristics for various Icomp val-
ues ranging from 10 nA to 10 µA, indicating its flexibil-
ity in the operation current. The forming-free TS with a 
large difference between VTH and VHold of the Ag-Ga2Te3 

selector devices are distinctly favorable over the TS char-
acteristics of the  Ga2Te3-only OTS selector devices [34]. 
Because the forming process is considered as a poten-
tial obstacle for real device applications, the forming-
free characteristics of the Ag-Ga2Te3 device are more 
favorable than selector device, which requires a forming 
process [35]. Further, the TS characteristic with a large 
hysteresis of the Ag-Ga2Te3 selector device may lower 
the operational complexity of the CPA structure and ease 
the stringent voltage-matching requirements [18, 19]. 
Additionally, the Ag-Ga2Te3 selector shows a steep turn-
on slope of 0.19 mV/dec with a scan rate of 1.5 mV per 
measurement step, as shown in Fig.  3c. The Ag-Ga2Te3 
selector device demonstrated excellent characteristics 
including its high selectivity  (108), low off-state current 
(<100 fA), steep turn-on slope (0.19 mV/dec), and form-
ing-free characteristics.

As variation in device performance is a crucial factor 
for the application of a selector to a CPA structure, the 
distributions of VTH, VHold, resistance of the high-resist-
ance state (RHRS), and resistance of the low-resistance 
state (RLRS) were investigated for 25 random devices. Fig-
ure 4a shows that the distribution of the threshold volt-
age ranged from 0.75 to 1.08  V, while the hold voltage 
distribution ranged from 0.06 to 0.375 V. In addition, the 

Fig. 2 a Cross-sectional TEM image of the TiN/Ag-Ga2Te3/TiN device structure. b TEM–EDS mapping images of Ga, Te, Ag, and Ti for the red 
rectangular region marked in a 

Fig. 3 a I–V characteristics of the Ag-Ga2Te3 selector device for DC voltage sweep results during 100 consecutive cycles. The Ag-Ga2Te3 selector 
device shows significantly low leakage current (< 100 fA) with an on/off ratio of  108. b TS characteristics of the Ag-Ga2Te3-based selector device at 
various Icomp values from 10 nA to 10 μA. c Close-up view of the I–V curve at TS that shows a turn-on slope of 0.19 mV/dec
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resistance distribution at the HRS ranged from  1011 to 
 1014 Ω, while the resistance at the LRS was approximately 
 106 Ω, as shown in Fig. 4b. Owing to the metal conduc-
tion channel formation, selector devices using active 
metals such as Ag or Cu exhibit relatively wide variation 
characteristics [36, 37]. Accordingly, studies on improv-
ing the reliability of these characteristics via doping or 
buffer layer insertion have been reported [37, 38].

To investigate the transient response of the Ag-Ga2Te3 
selector, the current was measured using a waveform gen-
erator fast measurement unit (WGFMU) during a voltage 
pulse with a height of 3 V, rising−falling time of 100 ns, 
and duration of 1.5 μs with an external load resistance of 
1 MΩ, as shown in Figure 5a. The conduction current of 
the Ag-Ga2Te3 selector device reached its peak value after 
406 ns from the point at which the voltage reached its 
maximum of 3 V. Furthermore, the device was switched 
to the off-state within 605 ns after the applied voltage 
was removed. Hence, the switching-on time and switch-
ing-off time of the Ag-Ga2Te3 selector were estimated to 
be approximately 400 ns and 600 ns, respectively. The 
slow switching of the Ag-Ga2Te3 selector can be attrib-
uted to the migration and redox reactions of Ag for the 
formation of the conduction channel. In addition, the 
influence of the applied voltage and measurement tem-
perature on the switching time was investigated with an 
input voltage of 1.5−5 V and at a measurement tempera-
ture of 298−375 K. The switching-on time was decreased 
from 1 μs to 294 ns, whereas the switching-off time was 
increased from 400 ns to 849 ns as the pulse voltage was 
increased from 1.5 to 3.5  V, as shown in Fig.  5b. The 
dependence of the switching speed on the applied volt-
age is comparable with the previously reported results of 
Ag layer on  HfO2 and  TiO2 [39]. Moreover, Fig. 5c shows 
that the switching-on and switching-off times decreased 
with increasing measurement temperature. According 

to the Arrhenius plot of switching speed against meas-
urement temperature shown in Fig.  5d, the exponential 
dependence of switching speed on measurement temper-
ature can be attributed to thermally facilitated processes, 
such as the diffusion of Ag atoms in the electrolyte film 
matrix [40]. The activation energies for switching-on and 
switching-off were estimated to be 0.50 eV and 0.40 eV, 
respectively, which are comparable with those presented 
in a previous report on a Ag filament-based device [41]. 
It was reported that the Ag conductive channels were 
formed under electrical bias in  HfO2,  SiO2, and  TiO2 [15, 
42, 43]. However, in this study, Ag was observed to be 
uniformly distributed in pristine  Ga2Te3 films. Although 
the mechanism for TS in  Ga2Te3 films with uniform 
distribution of Ag is not clearly understood, Ag may be 
related to the formation of conductive channels in  Ga2Te3 
films under electrical bias. Therefore, the dependence of 
switching speed on the input voltage and measurement 
temperature of the Ag-Ga2Te3 selector device can be 
attributed to the formation of the conductive channels.

The AC endurance characteristic was investigated 
under the same voltage pulse condition as that of the 
switching speed test. The reading voltages for the HRS 
and LRS were 0.5 and 3  V, respectively. The measured 
resistances of the HRS and LRS were plotted for 450 
points per decade, as shown in Fig.  6. The Ag-Ga2Te3 
selector device exhibited stable endurance characteris-
tics up to  109 cycles maintaining a selectivity of  108, thus 
demonstrating excellent switching endurance character-
istics when compared with those of other selectors that 
utilized chalcogenide and active metals [18, 25, 30].

Conclusions
In this study, we demonstrated the stable TS character-
istics of a selector device fabricated using Ag with high 
ion mobility and highly defective amorphous  Ga2Te3 as 

Fig. 4 a Device-to-device variations of VTH and VHold for 25 devices. b Device-to-device variations of RHRS and RLRS for 25 devices
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a switching layer. TEM analyses of the TiN/Ag-Ga2Te3/
TiN structure showed that the embedded Ag interlayer 
was completely diffused into the  Ga2Te3 film to produce 

uniform Ag distribution in the  Ga2Te3 layer. This may 
be because of the highly defective structure of amor-
phous  Ga2Te3 during subsequent TE TiN deposition. The 
Ag-Ga2Te3 selector device exhibited forming-free TS, a 
large hysteresis (1 V), high selectivity  (108), low off-state 
current (<100  fA), steep turn-on slope (0.19  mV/dec), 
and excellent endurance characteristics  (109 cycles). In 
addition, AC I−V measurements showed the switching 
speed to be in the order of hundreds of nanoseconds. 
The dependence of switching speed on pulse voltage 
may be the combined effect of Ag migration and redox 
reaction. Moreover, the Arrhenius behavior of switching 
speed based on the measurement temperature suggested 
that the TS is related to a thermally facilitated process. In 
conclusion, the Ag-Ga2Te3 device with the excellent TS 
and endurance characteristics is a promising candidate 
for selector in the CPA memory applications.

Abbreviations
3D: 3-Dimensional; CPA: Cross-point array; TS: Threshold switching; OTS: 
Ovonic threshold switch; MIT: Metal–insulator transition; FAST: Field-assisted 

Fig. 5 a AC I–V measurement of the Ag-Ga2Te3 selector device (measurement conditions: rising time = 100 ns, duration = 1.5 μs, falling 
time = 100 ns, and input voltage = 3 V). b Switching speed dependence on applied pulse voltage. c Switching speed dependence on measurement 
temperature. d Arrhenius plot of switching speed against measurement temperature

Fig. 6 AC endurance characteristic of the Ag-Ga2Te3 selector device 
up to  109 cycles (0.5 V and 3 V reading voltages for RHRS and RLRS, 
respectively)
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