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Abstract 

Carbon dots (CDs) have been widely used as antimicrobials due to their active surface, but some CDs suffer instability. 
Therefore, the relative applications such as the antibacterial activity may not be reliable for long-term use. Herein, we 
synthesize CDs with blue fluorescence by a hydrothermal process. Thereafter, polyethylenimine was applied for the 
assembly of CDs into CDs-based frameworks (CDFs). The CDFs exhibited quenched fluorescence but showed more 
stable properties based on the scanning electron microscope and zeta potential investigations. Both CDs and CDFs 
show antibacterial activity toward Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. 
aureus), but CDFs exhibited better antibacterial performance, and S. aureus could be completely inhibited with the 
minimum inhibitory concentration of 30 μg/mL. This reveals CDFs magnify both the stability and antibacterial activity, 
which would be more promising for practical applications.
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Introduction
Bacterial infections show a serious threat to human lives, 
and the development of effective medicines to disinfect 
bacteria is in great demand [1]. Various antibiotics have 
been used for treating bacterial infections, but the over-
use of antibiotics causes other problems such as side 
effects and drug-resistant issues [2]. The nanomaterials 
including antimicrobial polymers [3], metal nanomateri-
als [4], and carbon nanomaterials [5, 6] have been used as 
alternatives to classical antibiotics [7]. Both drug-resist-
ant and toxic problems are relieving [8]. Recently, CDs 
[9, 10] and nanoclusters (NCs) [11] are well applied for 
combating bacterial infections because they are biocom-
patible [12], active [13], and can be easily cleaned by cir-
culations due to the ultra-small sizes [14, 15]. Especially, 

researchers have found that CDs show excellent free radi-
cal scavenging ability, which can be stronger than many 
traditional anti-infection drugs [16–18]. However, some 
ultra-small antimicrobials suffer poor stability due to the 
larger oxidative surface area [19]. It is highly desired to 
develop more effective antibacterial agents for combating 
bacterial infections for long-term use.

To meet the demand for practical applications, the 
antimicrobials should have the following characteristics: 
(a) Excellent stability remains unchanged for a certain 
time in an ambient environment; (b) Excellent biocom-
patibility and low toxicity: (c) high antibacterial activity. 
The larger nanomaterials tend to be more stable, but they 
might have relatively weaker antibacterial activity due 
to the smaller active surface area. Considering both the 
weakness of small and large nanomaterials, we report the 
assembly of the small CDs into large CDFs by simply add-
ing polyethyleneimine (PEI) (Fig. 1). CDs were not fused 
but kept their morphology as building blocks. Therefore, 
the entire CDFs showed larger sizes but demonstrated 
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more excellent stability without losing the active prop-
erties of CDs. Further, we found the CDFs displayed 
enhanced antibacterial activities against both Gram-neg-
ative Escherichia coli (E. coli) and Gram-positive Staphy-
lococcus aureus (S. aureus) compared to CDs, indicating 
their broad-spectrum antibacterial performance, though 
many CDs only eradicated Gram-positive bacteria [20]. 
In addition, the CDFs promoted the proliferation of the 
PC12 cells (a cell line obtained from a pheochromocy-
toma of the rat adrenal medulla), showing great potential 
for nerve recovery applications [21]. This work suggests 
the assembly of small CDs into large CDFs not only 
enhances the stability but also magnifies the antibacterial 
activity.

Materials and Methods
Materials and Instrument
X-ray surface photoelectron spectra (XPS) were recorded 
on an ESCALAB250Xi X-ray surface photoelectron 
spectroscopy (XPS) instrument. The transmission elec-
tron microscope (TEM) was performed by a JEM-2100 
microscope operating at 200  kV. The fluorescence of 
the materials was obtained using the F97 fluorescence 
spectrometer. The FDA/PI staining of the bacterial cells 

was recorded in tapping mode with a Leica DFC450C 
microscope. Fluorescence lifetime was measured on a 
time-correlated single-photon counting (TCSPC) system 
using a Nanolog spectrofluorometer (Horbia JY, Japan). 
Ultraviolet–visible spectroscopy (UV–vis) spectra are 
obtained from the UV-1600 instrument. The bacterial 
imaging was observed by a confocal microscope (Olym-
pus FLUOVIEW FV1000 c). All the reagents were of 
analytical grades. The deionized water was used through 
the experiments. Cell counting kit-8 was obtained from 
Beyotime Biotechnology.

Preparation of CDs and CDFs
L- cysteine (1.0 g) was dissolved in 10.0 mL of deionized 
water and mixed well. Then, the pH of the solution was 
adjusted to 9.0 with 1.0 M NaOH. The solution was trans-
ferred to a hydrothermal reactor and heated at 160 °C for 
24 h. After the solution was cooled to room temperature, 
the resulting solution was subjected to dialysis using 
a dialysis bag (MW 7000 cut off) for one day. The as-
obtained CDs were used for the following characteriza-
tions and experiments. For the preparation of CDFs, 40 
µL of 1% PEI was added to 1  mL of the CDs. The mix-
ture was allowed to stay for 1 h. The product was purified 

Fig. 1 Scheme for the synthesis of CDs and the assembly into CDFs by adding PEI with enhanced antibacterial activity
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by dialysis using the same method as the purification of 
CDs. For HR-TEM characterization, the samples were 
concentrated into a small volume, transferred to a silica 
gel column, and eluted with methanol and dichlorometh-
ane to obtain the further purified products.

Toxicity Evaluation
PC12 cells were seeded in 96-well plates for 12  h and 
then were incubated with CDs and CDFs with different 
concentrations. The number of viable cells was investi-
gated using a Cell Counting Kit-8 assay (CCK-8). 3-(4, 
5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bro-
mide (MTT) (5  mg/mL in PBS) was added at 1/10 cul-
ture volume, and the cells were returned to the incubator. 
After that the supernatants were discarded and 200 μL 
of dimethyl sulfoxide (DMSO) was added to each well. 
The crystals were dissolved by shaking the plates for 
10 min. The absorbance at 490 nm was measured using 
the Microreader (Varioskan LUX Multimode Reader). 
Blank control wells were included for all the absorbance 
measurements.

Antibacterial Experiment
E. coli and S. aureus were incubated in the absence and 
presence of CDs and CDFs at 37 °C with 250 rpm shake. 
Growth of the bacterial cells in Lysogeny broth (LB) 
culture was measured by the Microreader at 600  nm 
wavelength (OD600). LB medium was used as the blank 
control. The OD600 stands for the cell density, and the 
relative cell viability was calculated based on the com-
parison between the cultured bacterial cells in the pres-
ence of the materials to the control group (OD600 of the 
bacterial cells in the absence of the CDs or CDFs). The 
live/dead bacteria are evaluated by the FDA/PI staining 
protocol [22].

Detection of Ros Reactive Oxygen Species (ROS)
Intracellular ROS production was measured in bacterial 
cells before and after the treatment by CDs and CDFs for 
12  h, with a 2′, 7′-dichlorofluorescin diacetate (DCFH-
DA) probe following the instructions. The fluorescence 
was detected at an emission wavelength of 525 nm with 
excitation at 488 nm.

Results and Discussions
Characterization of the Materials
Size Investigations
Figure  2 shows the SEM of the powder for CDFs with 
relatively lower (Fig.   2a0) and higher magnification 
(Fig.  2b0) after exposure to the air for several hours. 
It can be seen that the CDFs were well distributed and 
showed an average size of ca. 25  nm. CDs were sup-
posed to show mono-dispersed small sizes based on the 

TEM and AFM study (Additional file  1: Figure S1), but 
these small particles exhibited aggregation observing by 
SEM after exposure to air for a certain time (Additional 
file  1: Figure S2). On the other hand, CDFs kept their 
morphology though they were exposed to the ambient 
environment. This indicated the as-obtained CDFs are 
more promising for practical applications. CDFs were 
further characterized by TEM (Fig. 2b1). It can be seen 
that CDFs exhibited assembly structures with small CDs 
as the building blocks. The high-resolution transmis-
sion electron microscopy (HR-TEM) (Fig.  2b2) analysis 
revealed that the building block of CDFs exhibited lat-
tice fringes with a d-spacing of 0.21  nm, corresponding 
to the (100) plane lattice of graphite, which was similar to 
the classical CDs [23–25]. Therefore, the assembly CDFs 
do not lose the feature of CDs, which may combine the 
advantages of both the entire large frameworks and the 
interior small building blocks.

Zeta Potential
Zeta-potential investigations were used to measure 
the degree of electrostatic repulsion of CDs and CDFs 
between adjacent charged particles in the dispersed sys-
tem (Fig.  3). It can be seen that the zeta-potential peak 
of CDs was not well featured, which were exposed to the 
ambient environment. Besides, multiple zeta potential 
peaks were obtained with large zeta deviations (Table 1), 
indicating the CDs were quite unstable and unrepeat-
able. On the other hand, the zeta potential peak for CDFs 
focused at a relatively stable range. We also had much 
smaller zeta deviations based on three times measure-
ments, revealing CDFs were more stable and the dis-
persed systems had samples with higher purity.

Fluorescence Properties
The fluorescence emission spectra were used to monitor 
the assembly process of CDs to CDFs (Fig. 4). As the titra-
tion of PEI, the fluorescence emission at 350 nm gradu-
ally quenched (Fig.  4a). But no significant fluorescence 
spectra shift was observed, revealing no aggregation 
occurred. The assembly structure of CDFs changes the 
entire size of CDs, which influences fluorescence. Mean-
while, the nearby CDs marked the fluorescence of each 
other. As well as this, surface chemistry plays an impor-
tant role in fluorescence properties. The nitrogen atoms 
and sulfur atoms on the surface of CDs can generate 
energy traps. The bright fluorescence of CDs attributes to 
the defect surface with many carbonyl and amino groups. 
After the functionalization of PEI, the surface of CDFs 
was dominated by the amino groups, which quenched 
the fluorescence together with the growing sizes. The 
comparison of the fluorescence behavior of CDs and 
CDFs was further examined by TCSPC to understand the 
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Fig. 2 SEM for CDFs with relatively lower (a0) and higher magnification (b0); TEM (b1) HR-TEM (b2) of CDFs

Fig. 3 Zeta potential of CDs (a) and CDFs (b)

Table 1 Zeta potential (ZP) and Zeta deviation (ZD) of CDs and CDFs

Samples ZP1 (mV) ZD 1 (mV) ZP 2 (mV) ZD2 (mV) ZPP 3 (mV) ZD3

CDs 4.10 70.5 4.39 76.2 2.13 45.7

CDFs − 2.65 5.63 − 3.23 12.1 − 2.91 12.5
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photo-generated charge recombination pathways of the 
materials (Fig.  4b). Emission was monitored at 430  nm. 
The fluorescence decays required a two-component 
exponential fit. The time constants and relative ampli-
tudes are fitted and summarized in Table S1. It could be 
seen that the lifetime of the dominant component for 
CDs was 2.45 ns, while that of the other component was 
7.47 ns. On the other hand, the lifetime of the dominant 
component for CDs was 1.98 ns, while the other compo-
nent showed a lifetime of 7.30 ns. No significant lifetime 
change was observed between CDs and CDFs, which also 
indicated the properties of CDs was not substantially 
changed while assembly into CDFs [26].

Toxicity
For evaluation of the safety of the materials, the toxicity 
of the CDs and CDFs to PC12 cells is investigated. Assays 
of MTT were conducted to investigate the influence of 

the materials on cell viabilities (Fig. 5). After incubation 
of PC12 with CDs and CDFs, cell viabilities were not 
much affected within 24  h. Interestingly, both carbon 
materials promote the proliferation of PC12, which plays 
an important role in the therapy of nerve damage. These 
results indicate the low toxicity of the materials, and the 
materials are promising for nerve protection with PC12 
cells involved [27].

Antibacterial Investigations
The antibacterial activities of the CDs and CDFs were ini-
tially evaluated by measuring the bacterial density in the 
presence of these agents at 600  nm [28]. Fig.  6 shows a 
substantial antibacterial effect of both the CDs and CDFs 
against both the S. aureus and E. coli cells. Especially, the 
viability of the S. aureus cells was almost 0 when larger 
than 30 µg/mL of the CDFs were used. Similarly, the E. 
coli cells were disinfected by both CDs and CDFs. CDs 

Fig. 4 Fluorescence emission spectra a of CDs as the titration of PEI, and lifetime b for CDs and CDFs

Fig. 5 Cell viability of PC12 in the presence of CDs (a) and CDFs (b). Cell viability (%) = (absorbance of the experimental group—absorbance of the 
blank group)/(absorbance of the control group—absorbance of the blank group) × 100%
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showed multiple charges (Fig.  3a). On the other hand, 
the CDFs were with insignificant charges (Fig. 3b), which 
might suppress the bacterial adhesion under weak repul-
sion thus interacting with the bacterial surface more eas-
ily. By comparison, the CDFs show higher antibacterial 
activity based on the phenomenon that a relatively larger 
ratio of the cells is killed when larger than 6 µg/mL of the 
materials are used. The enhanced antibacterial activity of 
CDFs is possibly attributed to the synergy effect of CDs as 
building blocks as well as the more stable surface charges. 
To deeply understand the antibacterial mechanism, the 
ROS that could oxidize nonfluorescent DCFH to fluores-
cent DFC was measured (Fig.  6C). Both carbon materi-
als did not significantly induce ROS production after 
treating E. coli. However, CDFs remarkably enhanced 
intracellular ROS while interacted with S. aureus. Since 
ROS can damage bacterial DNA, RNA, and proteins, the 
enhanced value facilitated the disinfection of the bacte-
ria. Furthermore, the ROS was stimulated with  H2O2. It is 
worth noting that ROS productions were all dramatically 
promoted compared to the  H2O2 treatment alone, while 
CDFs showed the highest enhancement. This indicated 

the combination of  H2O2 with these two carbon materi-
als might further enhance the antibacterial activity, espe-
cially for the CDFs.

Some CDs were previously reported for disinfecting 
S. aureus, which is listed in Table 2 for comparison. The 
current CDFs showed a competitive MIC. Besides, rather 
than only decreasing the investigated cell viability, CDFs 
promoted cell proliferation of PC12, indicating their ver-
satility while treating bacterial infections.

The integrity of the bacterial membrane after the CDs 
and CDFs treatment was investigated by the live/dead 
staining experiment (Fig. 7). The green fluorescent FDA 
staining can only show the live cells, while red fluorescent 
PI specifically stains dead bacteria with broken mem-
branes, but the live ones with intact bacterial membranes 
are unstained  [30, 31]. As shown in the fluorescence 
images, obvious red fluorescence was seen in the CDs-
treated samples and a much higher density of the dead 
cells was seen by the CDFs-treated samples.

Based on the above comparisons, we conclude that 
CDFs are promising for killing both Gram-positive and 
Gram-negative bacterial cells. Therefore, E. coli and S. 

Fig. 6 Antibacterial activity of CDs and CDFs against S. aureus (a) and E.coli (b), c fluorescence intensity of DCF at 525 nm, which shows a linear 
relationship with the ROS level, with the treatment of CDs and CDFs in the absence and presence of  H2O2 (100 μM)
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aureus before and after treating with 30 µg/mL of CDFs 
were characterized by SEM (Fig. 8). As shown in Fig. 8a, 
c, bacteria before treatment with CDFs exhibit regular 
surface. However, after incubating with CDFs, the mor-
phology of the bacterial cells including S. aureus (Fig. 8b) 
and E.  coli (Fig.  8d) changed drastically. Moreover, the 
membranes of many bacterial cells broke apart. Some 
small materials were observed on the surface of the bac-
teria, which originated from the attached CDFs. This 

indicates the CDFs can disinfect the bacterial cells by 
damaging the membranes [32].

Since both CDs and CDFs are fluorescent, 6 µg/mL of 
the agents was investigated for bacterial imaging during 
the progress of disinfection. The imaging of S. aureus 
was investigated and shown in Fig.  9. Interestingly, it 
was found that both CDs and CDFs could be used for 
imaging of the S. aureus. However, CDFs show higher 
uptake efficiency since the bacterial cells observing 

Table 2 Synthesis of CDs and the eradication of S. aureus

CQDs, carbon quantum dots; 293 T cells, the human embryonic kidney (HEK) 293 T human cells

Name Synthesis condition MIC Cytotoxicity Refs.

CQDs Hydrothermal method using ammonium 
citrate at 180 ℃

50 μg/mL Several cancer cells showed little cytotoxicity 
response (cell viability > 90%) with 50 μg/mL 
CQDs

[29]

CDs Hydrothermal method using m-aminophenol 
and tartaric acid at 180 ℃

250 μg/mL The cell viability of HeLa cells exceeds 70% at 
400 μg/mL of CDs

[16]

ACDs The smoke of A. argyi leaves from burning was 
collected and filtered

S. aureus was not completely 
inhibited by ACDs of 150 μg/
mL

85% of 293 T cells survived at 150 μg/mL of 
ACDs

CDFs Hydrothermal method using L-cysteine and 
NaOH at 160 ℃

30 μg/mL CDFs promoted PC12 cell proliferation. Thus, 
the cell viability is larger than 100%, indicating 
the nerve protection potential

Current work

Fig. 7 FDA/PI staining S. aureus and E. coli in the absence and presence of CDs and CDFs at 30 µg/mL. Scale bar, 200 µm
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Fig. 8 SEM for S. aureus (a, b) and E.coli before (a, c) and after (b, d) the treatment with 30 µg/mL of CDFs. Scale bar: 2 µm

Fig. 9 Imaging of S. aureus by the uptake of CDs and CDFs after 12 h
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from the bright and dark fields almost overlapped. On 
the other hand, only part of S. aureus cells was stained 
by the CDs. Besides, the bacterial cell densities were 
smaller by the treatment of CDFs, representing CDFs 
disinfected S. aureus more efficiently compared to CDs 
at the same dosages. These results also reveal that CDFs 
may be used as alternative dyes for imaging various 
bacterial cells.

Conclusions
The assembly of CDs into CDFs results in more robust 
antibacterial activity. It is concluded that the assembly 
structure enables more stable properties but magnifies 
the antibacterial activity of CDs. This work also pro-
vides a new avenue of assembly small nanomaterials into 
frameworks for more practical applications.
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