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Abstract 

In this study, we demonstrated large‑area high‑quality multi‑color emission from the 12‑fold symmetric GaN photonic 
quasicrystal nanorod device which was fabricated using the nanoimprint lithography technology and multiple quan‑
tum wells regrowth procedure. High‑efficiency blue and green color emission wavelengths of 460 and 520 nm from 
the regrown  InxGa1−xN/GaN multiple quantum wells were observed under optical pumping conditions. To confirm 
the strong coupling between the quantum well emissions and the photonic crystal band‑edge resonant modes, the 
finite‑element method was applied to perform a simulation of the 12‑fold symmetry photonic quasicrystal lattices.
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Background
The GaN-based materials with the wide band gap and 
unique properties had been applied in many optoelec-
tronic systems and devices, including light emitting 
diodes (LEDs) [1–3] and laser diodes (LDs) [4, 5]. The 
GaN-based LEDs have been applied in traffic signals, dis-
play backlights [6–8], solid-state lighting [9, 10], biosen-
sors [11], and optogenetics [12]. One of the challenges for 
the advanced GaN LEDs is to realize the phosphor-free 
white LEDs, including multichip white LEDs, monolithic 
LEDs, and color-conversion white LEDs [13, 14]. GaN-
based nanorod LED with low dislocation, low internal 
field, and high light extraction efficiency [15, 16] could 
be a possible solution. Various approaches have been 

employed to increase the light extraction efficiency for 
III-nitride LEDs, such as rough surfaces [17–20], sap-
phire microlenses [21], oblique mesa structure [22], nan-
opyramids [23], graded refractive index materials [24], 
self-assembled lithography patterning [25], colloidal-
based microlens arrays [26, 27], and photonic crystals 
[28–31]. Photonic crystals have been reported in quasic-
rystal or defective two-dimensional (2D) grating configu-
rations and lead to improved light extraction efficiency in 
LEDs [32–35]. The photonic crystal structure is periodic 
with translational symmetry. The periodic structure can 
exhibit a photonic band gap to inhibit the propagation 
of guided modes and uses a photonic crystal structure 
to couple guided modes with radiative modes [36–39]. 
Photonic crystal lasers based on the band-edge effect 
have several advantages, such as high-power emissions, 
single mode operation, and coherent oscillation [40–42]. 
E-beam lithography and laser interference lithography 
have been used to produce the photonic crystal struc-
ture [43, 44]. Furthermore, because the emitting units are 
separated and the emission surfaces face each other, the 
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light can be mixed effectively. Thus, nanorods are consid-
ered to have a great advantage for improving the lumi-
nous efficiency in the green-to-red emission region, and 
numerous efforts have been adopted [45, 46].

However, nanoimprint lithography (NIL) offers high-
level resolution, low-cost, and high throughput com-
pared with other forms of lithography including laser 
interference and e-beam lithography [47–49]. In this 
study, we demonstrated the multiple color emission 
from a GaN-based 2D photonic quasicrystal (PQC) 

structure as illustrated in Fig.  1. The PQC structure 
was fabricated using NIL [41, 42]. The total area of the 
PQC pattern is approximately 4  cm × 4  cm(2-in. sap-
phire substrate) and possessed 12-fold symmetry [50, 
51], with a lattice constant of approximately 750 nm, a 
diameter of 300 nm, and the depth of the nanopillars is 
approximately 1 μm. The PQC structure formed a com-
plete band gap with the regrowth of 430-nm-tall GaN 
pyramids and 10-pair semipolar {10-11}  InxGa1−xN/
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Fig. 1 Schematic structure of GaN‑based PQC structure with the regrowth of semipolar {10‑11} GaN pyramids and 10‑pair  InxGa1−xN/GaN 
(3 nm/12 nm) MQW
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GaN (3  nm/12  nm) multiple quantum well (MQW) 
nanostructures, as illustrated in Fig. 1.

Under room temperature pumping operation, the 
device demonstrates laser action with a low threshold 
power density and the multiple color emission simultane-
ously. We had reported the single-color laser action from 
the GaN PQC structure [41, 42]. This PQC platform 
exhibits the advantages in low fabrication costs, and bet-
ter integration of GaN-based material with multi-color 
systems. In the future, the multiple-color GaN-based 
lasers can be expected with the optimization of regrowth 
procedure and the high-quality photonic crystal cavity.

Methods
Design and Fabrication of Sample
Figure  2 illustrates the schematic procedures of the 
device fabrication. The fabrication procedures included 
epitaxial growth of a GaN wafer, NIL of PQC patterns, 
and dry etching. The GaN-based material was grown in 
a low-pressure metalorganic chemical vapor deposition 
reactor on a C-plane (0001) sapphire substrate. To pre-
pare a clean surface of the sapphire substrate, the sub-
strate was immersed into a burning solution of sulfuric 
acid: phosphoric acid = 3:1, then heat the beaker to a 
constant temperature for 1 h. The substrate was cleaned 
with DI water under ultrasonic oscillation. A GaN (1-μm 
thick) was first grown on a 2-inch sapphire substrate at 
1160 °C. A 0.4-μm  SiO2 mask and 0.2-μm polymer mask 
were then deposited. After the polymer film was dry, a 

patterned mold of a 2-inch PQC structure was placed 
onto it by applying high pressure (Fig.  2. step 1). The 
substrate was heated to higher than the polymer’s glass 
transition temperature (Tg). The substrate and the mold 
were then cooled to room temperature to release the 
mold. The PQC patterns were defined on the polymer 
layer (Fig. 2, step 2). The patterns were then transferred 
into a  SiO2 layer with reactive ion etching (RIE) by using 
a  CHF3/O2 mixture (Figure, step 3). The  SiO2 layer was 
used as a hard mask. The structure was then etched using 
inductively coupled plasma RIE with a  Cl2/Ar mixture. 
The mask of  SiO2 layer was removed at the end of the 
etching process (Fig. 2, step 4).

Before the regrowth process, the sample was passivated 
with porous  SiO2 at the sidewall of the nanopillars. The 
pyramid-shaped GaN structures were regrown on top of 
the GaN nanopillars at 730  °C. The 0.43-μm-high pyra-
mids contained 10-pair  InxGa1-x N/GaN (3  nm/12  nm) 
quantum wells, which supported different wavelengths 
of blue and green color emission, with the ratio of in 
composition:  InxGa1−xN/GaN-dependent InN fraction 
variations.  In0.1Ga0.9N/GaN MQWs and  In0.3Ga0.7N/
GaN MQWs corresponded to 460- and 520-nm emis-
sion wavelengths, respectively (Fig.  2, step 5). The etch 
depth of the nanorods was approximately 1 μm, as illus-
trated in Fig. 3a. Figure 3b, c shows the SEM images of 
the PQC structure with the porous  SiO2 layer and a semi-
polar {10-11}  InxGa1−x N/GaN MQW. Figure 3d displays 
the magnification of semipolar {10-11}  InxGa1−x N/GaN 
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Fig. 2 The schematic of the GaN PQC structure fabrication process. Including epitaxial growth of a GaN wafer (step 1), NIL of PQC patterns (step 2), 
dry etching (steps 3 and 4), and pyramid‑on‑nanorods MQW structure after regrowth (step 5)
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MQW with the facets of trapezoid microstructures. The 
semipolar {10-11} planes can reduce the influence of the 
quantum-confined Stark effect on the quantum efficiency 
of LEDs due to the surface stability and suppression of 
polarization effects [52–55].

To study the optical properties of the GaN-based 
PQC with nanopyramid structure, two GaN PQC sam-
ples were prepared: A,  In0.1Ga0.9N/GaN MQWs, and 
B,  In0.3Ga0.7N/GaN MQWs with regrowth fabrication. 
During the regrowth step, the temperature is the key 
to control the ratio of indium composition. The control 
temperature of blue  In0.1Ga0.9N is 760–780  °C, and the 
control temperature of green  In0.3Ga0.7N is 730–740 °C.

Results and Discussion
To demonstrate the optical mode from the photonic 
quasicrystal structure, samples A and B were optically 
pumped by a continuous-wave (CW) He-Cd laser at 
325  nm with an incident power of approximately 50 
mW. The light emission from the device was collected 
by a 15 × objective lens through a multimode fiber, and 
coupled into a spectrometer with charge-coupled device 
detectors. Figure  4a illustrates the measured PL spectra 
under He-Cd 325 nm CW laser pumping. The spectrum 

of the black curve is the light emission with a wavelength 
of 366 nm from the GaN-based PQC structure displayed 
in Fig.  3a. Both samples A (blue curve) and B (green 
curve) had a strong emission peak which corresponded 
to wavelengths of approximately 460 and 520 nm, respec-
tively, resulting from the  InxGa1-x N/GaN MQWs struc-
ture. The spectrum linewidths of the samples A and 
B were 40 and 60  nm, respectively. Figure  4a also dis-
plays photographs of the PQC structure of samples A 
and B during measurement. The CIE coordinates of PL 
from samples A and B were (0.19, 0.38) and (0.15, 0.07), 
respectively, as illustrated in Fig.  4b. Thus, this hybrid 
platform has several possibilities for multicolor LEDs. It 
should be note that the peak of the sample B is broader 
than the one of sample A in Fig.  4a. The slight broad 
spectrum from the sample B was attributed to the exist-
ence of defects and dislocations generated by the higher 
indium composition [56–58].

In order to confirm the optical resonant modes were 
the PQC band-edge modes, the finite-element method 
(FEM) [59, 60] was used to perform a simulation for the 
12-fold symmetry photonic quasicrystal lattices. The cal-
culated transmission spectra of the PQC with incident 
angles along with 0, 5°, 10°, 15°, 20°, and 25° as indicated 
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Fig. 3 a The tiled angle‑view SEM image of the PQC structure. b The cross‑sectional‑view SEM image of the PQC structure with porous  SiO2. c 
Top‑view SEM image of the PQC structure after the regrowth procedure. d Magnifying SEM image of semipolar {10‑11}  InxGa1−xN/GaN MQW with 
the facets of trapezoid microstructures
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in Fig. 5a are presented in Fig. 5b. Due to the symmetry of 
this PQC lattices, the spectra would repeat for every 30° 
incident angle. The high transmission value in the spectra 
(blue color) indicates that the incident signal coupled into 
the PQC lattice resonant modes which are the band dia-
gram areas. The low transmission (yellow color) regions 

indicate several photonic band gaps (PBGs) of the PQC 
structure. The ratio of high-to-low transmission is more 
than four order which show the PQC lattices take the 
strong effect to select the propagation modes in the device. 
The observed lasing actions occur around the band-edges 
of the PQC bandstructure, which are the boundaries 
between the high-transmission and low-transmission 
regimes in Fig. 5b. The flat dispersion curve near the band-
edge implies a low group velocity of light and strong locali-
zation and lead to the lasing actions of the devices. These 
PBGs matched the emission wavelength of  InxGa1−xN/
GaN with the corresponded normalized frequency are a/λ 
≈ 0.88, 1.0, and 1.25 which were labeled as mode  M1,  M2, 
and  M3. With the coupling between the PQC band-edge 
resonances and the emission from the InGaN/GaN lay-
ers, the emission efficiency and the light extraction at the 
specific wavelength would be further improved. The las-
ing action from GaN coupled to the high-frequency  M3 
could be achieved under sufficient excitation as our previ-
ous demonstration [43, 45]. For the regrown  In0.1Ga0.9N 
and  In0.3Ga0.7N which coupled to  M2 and  M1, the emission 
blue and green light would be boosted. Therefore, lever-
aging the coupling between the optical modes of PQC 
structure and  InxGa1−xN/GaN, efficient multicolor LEDs, 
LDs could be realized in such hybrid platform. The length 
of the nanorods in photonic crystal lattices is also impor-
tant to generate the high-quality color enhancement. In 
this study, in order to achieve high-quality color enhance-
ment, the photonic crystal nanorod length was etched to 
1000  nm which is more than four times of the effective 
wavelength. To realize the multicolor emission from a sin-
gle PQC device in the future, the multiple regrowth proce-
dures should be added in the epitaxial process.

Conclusions
In summary, a 12-fold symmetric GaN PQC nanopil-
lars was fabricated using the NIL technology. High-effi-
ciency blue and green color emissions from  InxGa1−xN/
GaN MQWs were achieved with the regrowth procedure 
of the top  InxGa1−xN/GaN MQWs grown on these facets, 
with an In composition ratio:  InxGa1−xN/GaN-dependent 
InN fraction variations. The emission peaks were observed 
around 366-, 460-, and 520-nm wavelength resulting from 
 In0.1Ga0.9N/GaN MQWs and  In0.3Ga0.7N/GaN MQWs, 
respectively. These emission modes correspond to the 
band-edge resonant modes of the GaN PQC structure with 
FEM simulation. The methods of fabrication demonstrated 
a great potential to be a low-cost technique for fabricating 
semipolar {10-11}  InxGa1−xN/GaN LED to use in manufac-
turing multicolor light sources. We believe that GaN-based 
photonic quasicrystal lasers could be integrated into multi-
color light source systems in the future.
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Fig. 4 a PL spectra from the nanorods of GaN‑based material (black), 
samples A (blue) and B (green). b Photographs of the PQC structure 
of samples A and B during measurement corresponding to the CIE 
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