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Abstract 

When the resistivity of the AZO conductive layer is within the MCP resistance requirement, the interval of the Zn 
content is very narrow (70–73%) and difficult to control. Aiming at the characteristics of the AZO conductive layer 
on the microchannel plate, an algorithm is designed to adjust the ratio of the conductive material ZnO and the high 
resistance material Al2O3. We put forward the concept of the working resistance of the MCP (i.e., the resistance dur-
ing the electron avalanche in the microchannel). The working resistance of AZO-ALD-MCP (Al2O3/ZnO atomic layer 
deposition microchannel plate) was measured for the first time by the MCP resistance test system. In comparison with 
the conventional MCP, we found that the resistance of AZO-ALD-MCP in working state and non-working state is very 
different, and as the voltage increases, the working resistance significantly decreases. Therefore, we proposed a set 
of analytical methods for the conductive layer. We also proposed to adjust the ratio of the conductive material of the 
ALD-MCP conductive layer to the high-resistance material under the working resistance condition, and successfully 
prepared high-gain AZO-ALD-MCP. This design opens the way for finding better materials for the conductive layer of 
ALD-MCP to improve the performance of MCP.
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Introduction
Microchannel plate (MCP) is an electron multiplier com-
posed of two-dimensional pore arrays by thin glass plate 
form integration, length of 0.5–5 mm, a 4–40 μm diam-
eter and with a bias angle usually 5°–13° to the normal of 
the plate surface; the open area ratio of the plate is up to 
60%, and the high length-to-diameter ratio in each pore 
is about 20:1 to 100:1 [1].

As shown in Fig.  1, incident electrons entering the 
microchannel collide with the walls causing secondary 
electrons to be generated on the surface of the micro-
channel walls. Multi-collisions with the microchannel 
walls will lead to an increasing number of secondary 

electrons, resulting in an electron avalanche inside the 
microchannel and the emission of a cloud of electrons 
from the output of the microchannel. The secondary 
electron electrons will be further accelerated along the 
microchannel by a bias voltage. The MCP gain is  103–104  
at a working voltage 700–900 V [2–9].

Each microchannel is as a detector and an electron 
multiplier. By having millions of microchannels work-
ing independently, MCP has the characteristics of high 
spatial resolution, high timing resolution and wide range 
of gain used to identify the photons, electrons, neutrons 
and ions. MCP can integrate into various kinds of instru-
ments, including photoelectric detector, photomultiplier 
tubes (PMTs), ultraviolet spectrometer, cathode ray tube, 
scanning electron microscope, field emission displays, 
residual gas analyzer, medical imaging, time-of-flight 
mass spectrometry, night-vision goggles, etc. [1, 4, 7–9]. 
The hydrogen firing of the traditional process makes the 
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microchannel suitable conductivity and secondary elec-
tron emission coefficient.

The usual process of hydrogen firing in the prepara-
tion of a microchannel has a lot of shortcomings: first, 
the hydrogen firing process cannot independently adjust 
the conductive layer and the emission layer [10, 11]; sec-
ond, the heavy metal elements (Pb, Bi) lead to environ-
mental pollution in the lead glass smelting process; third, 
large areas of MCP will become warped due to the high 
temperature [8]; fourth, lead glass being used hydrogen 
reduction reaction contains K, Rb and other radioactive 
elements resulting in background noise [8]; last, hydro-
gen which residues in the pores become ions due to bias 
voltage and they will fly in the opposite direction of elec-
tron to destroy the cathode of instrument [8, 12].

Early scientists propose a solution to grow the conduc-
tive layer and the emission layer on the microchannel wall 
to replace the hydrogen firing process [3]. Many thin film 
deposition methods are unable to grow a uniform film in 
the microchannel with high length-to-diameter ratios. The 
Argonne national laboratory proposed to use atomic layer 
deposition (ALD) to grow the conductive layer and the 
emission layer on the MCP to achieve an intact and uni-
form film on the microchannel walls [4, 13]. Furthermore, 
ALD-MCP solves the aforementioned shortcomings. Many 
research institutions are aiming towards finding competi-
tive materials which can improve the performance of MCP.

The Argonne National Laboratory selects AZO mate-
rials for the ALD-MCP conductive layer taking into 

consideration the MCP resistance requirements. If the 
resistance is too high, the conductive layer cannot replen-
ish electrons to the emission layer in time and continu-
ously, the MCP will have low gains or even fail to operate. 
On the other hand, if the resistance is too low, the MCP 
will overheat, eventually leading to a breakdown [4, 9, 
14, 15]. Hence, the design of the conductive layer is of 
importance for an ALD-MCP.

As shown in Fig.  2, when the resistivity of the AZO 
conductive layer is within the MCP resistance require-
ment, the allowed Zn content is in a very narrow range 
(70–73%) [16]. Hence, the MCP gain is unstable and 
the MCP can easily breakdown. Alternative conductive 
materials like W and Mo in place of Zn have been studied 
[3, 4, 17–19]. The chemical reaction of WF6 ( MoF6 ) and 
H2O is used to grow W (Mo) by ALD. However, using 
WF6 or MoF6 has two serious disadvantages: they are 
strongly corrosive and they contain impurities which can 
be difficult to remove during the production process. For 
these reasons, ALD-MCP with these materials is costly.

In our study, we find that reasonable designs with ZnO 
and Al2O3 can be realized for the MCP conductive layer, 
without the challenges faced if W or Mo is used, and is 
more competitive in price. Here, we name the ALD-MCP 
with an AZO conductive layer as AZO-ALD-MCP.

We propose an algorithm to adjust ratio of conduc-
tive material ZnO and high resistance material Al2O3 to 
obtain our desired AZO conductive layer characteristics.

We put forward the concept of the working resist-
ance of the MCP (i.e., the resistance during the electron 
avalanche in the microchannel). We tested the working 
resistance of AZO-ALD-MCP and found two differences 
between AZO-ALD-MCPs and conventional MCPs. We 

Fig. 1 MCP working state diagram

Fig. 2 Zn content, Zn/(Zn + A)*100(%), blue area as the MCP 
resistance area, green area as AZO change area, the red areas as the 
need area to control
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observed that the working and non-working resistances 
of both AZO-ALD-MCPs and conventional MCPs are 
significantly different. Furthermore, the resistance of 
AZO-ALD-MLP is negatively correlated with the voltage. 
Our proposal (the reference to the working resistance) 
for adjusting the ratio of the conductive material and the 
high resistance material provides a guidance to help us 
to search for new materials to be used for the ALD-MCP 
conductive layer in improving the performance of the 
MCP in the future.

Experimental and Methods
Growing ZnO and Al2O3 Atomic Film
Atomic layer deposition (ALD) is a technology that alter-
nates precursors and reactive gases to the surface of the 
substrate for physical or chemical adsorption or surface 
saturation reaction at a controlled rate. The material is 
deposited on the substrate in the form of a monoatomic 
film surface. ALD can produce a continuous film without 
pinholes, with excellent coverage, and can control the 
thickness and composition of the atomic film [1, 2, 4, 11, 
13, 19, 20].

The following are the chemical reaction equations of 
using ALD to grow  Al2O3:

The temperature of the reaction is 60–150  °C. As 
shown in Fig. 3, the time and the order of growing a layer 
of  Al2O3 atom is:
TMA/N2/H2O/N2 = 0.1 ∼ 1s/5 ∼ 45s/0.1 ∼ 1s /5 ∼ 45s.
The following are the chemical reaction equations for 

using ALD to grow ZnO:

A : Substrate−OH∗ + Al(CH3)3

→ Substrate−O− Al(CH3)
∗
2 + CH4 ↑

B : Substrate−O− Al(CH3)
∗
2 + 2H2O

→ Substrate−O− Al(OH)∗2 + 2CH4 ↑

C : Al−OH∗ + Al(CH3)3

→ Al−O− Al(CH3)
∗
2 + CH4 ↑

D : Al− CH∗
3 +H2O → Al−OH∗ + 2CH4 ↑

E : Substrate−OH∗ + Zn(CH2CH3)2

→ Substrate−O− ZnCH2CH
∗
3 + CH3CH3 ↑

F : Substrate−O− ZnCH2CH
∗
3 +H2O

→ Substrate−O− ZnOH∗ + CH3CH3 ↑

G : Zn−OH∗ + Zn(CH2CH3)2

→ Zn−O− ZnCH2CH
∗
3 + CH3CH3 ↑

H : Zn− CH2CH
∗
3 +H2O → Zn−OH∗ + CH3CH3 ↑

The temperature of the reaction is 60–150  °C. As 
shown in Fig. 3, the time and the order of growing a layer 
of ZnO atom is:

Design of the AZO Conductive Layer
The thickness of the AZO usually ranges from 300 to 
1000 atomic layers. We define a new mathematical opera-
tion rule to design the atomic layer orders of Al2O3 and 
ZnO in order to adjust the ratio of the conductive mate-
rial ZnO and high resistance material Al2O3.

The mathematical operation was named WYM opera-
tion. WYM operation has two properties and a formula.

WYM property 1:

DEZ/N2/H2O/N2 = 0.1 ∼ 1s/5 ∼ 45s/0.1 ∼ 1s /5 ∼ 45s.
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Fig. 3 Growing  Al2O3 and ZnO diagram
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WYM property 2:

WYM formula:

Note that, lowercase letters represent real numbers, 
while uppercase letters represent integers. In Examples 1 
and 2, we show an execution of the operation.

Example 1

The operation is interpreted as having two schemes: 
(

4
1
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atomic layer. If we repeat these two schemes twice, we 
will obtain the structure as shown in Fig. 4.

A more complicated usage of the operation rules is 
shown in Example 2, as follows:
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In Example 2, the operation in Plan 1 can be inter-
preted as follows:

Scheme 1 ALD grow 4 times ZnO atomic layer growth 
process and one Al2O3 atomic layer growth process; ALD 
grow 5 times ZnO atomic layer growth process and one 
Al2O3 atomic layer growth process, and repeat twice.

Scheme 2 ALD grow 4 times ZnO atomic layer growth 
process and one Al2O3 atomic layer growth process; ALD 
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grow 5 times ZnO atomic layer growth process and one 
Al2O3 atomic layer growth process, and repeat three 
times.

Repeat scheme  1 for 12 times, and scheme  2 for 13 
times.

The interpretation of the operation in Plan 2 is along 
the same line as Plan 1.

Microchannel Plate Resistance Test
As shown in Fig. 5a, we use atomic layer deposition tech-
nology to grow the AZO conductive layer and the Al2O3 
emission layer on microchannel walls of the two-dimen-
sional pore arrays. And then we use thermal evapora-
tion technology to grow the Ni–Cr electrode layer on the 
both sides of the MCP [2, 4] and put the electrode ring 
on the both sides of the MCP. Making preparations for 
the above, we directly test the ALD-MCP resistance. In 
this condition, we define the corresponding MCP resist-
ance as the non-working resistance of the MCP. We use 
a Keithley model 6517B electrometer to measure the 
non-working resistance of the MCP in a  10−3–10−5 Pa 
vacuum [1, 4, 13].

As shown in Fig.  5c, we use an electron gun as the 
cathode and a phosphor screen as the anode. The elec-
tron gun provides incident electrons to the MCP, and 
the phosphor screen receives the electrons output by the 
MCP. In addition, when the MCP is under operation, the 
high-voltage phosphor screen will emit green light to 
detect the uniformity of the MCP [1, 21].

As shown in Fig.  1, we use an electron gun that pro-
vides a 100 pA as the input of the MCP to measure the 
current. Due to an increasing number of secondary elec-
trons, there will be a condition where the emission layer 
loses a large amount of charges, and the conductive layer 
continuously provides a stream of charges to the emis-
sion layer. In this condition, we define the corresponding 
MCP resistance as the working resistance of the MCP. 
The vacuum environment of the working resistance is 
 10−3–10−5 Pa.

Result and Discussion
The cross-sectional SEM picture of the AZO-ALD-
MCP sample is shown in Fig. 6. We designed a series of 
AZO conductive layers as shown in Table  1 and their 

Fig. 4 Schematic diagram of ZnO and  Al2O3 growth sequence

electrode layer

emission layer

conductive layer

substrate
cathode

anode

electrode ring

a b c
Fig. 5 ALD–MCP resistance test schematic diagram

Fig. 6 Cross-sectional SEM picture of the AZO-ALD-MCP
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corresponding working and non-working resistances in 
Fig. 7. In the same figure, we also show the working and 
non-working resistances of a conventional MCP. In com-
parison with the non-working resistance of AZO-ALD-
MCP, the working resistance of the AZO-ALD-MCP is 
significantly reduced. However, there is no significant 
difference between the working resistance and non-
working resistance of a conventional MCP. As the volt-
age increases, the working resistance of AZO-ALD-MCP 
is significantly lower than that of a conventional MCP. 
Under the same voltage condition, the working and non-
working resistances of the AZO-ALD-MCP are stable. 
We believe that there are two main reasons for the afore-
mentioned characteristics.

According to formula [21],

compared to lead glass, AZO is a material with a higher 
negative temperature coefficient (NTC), so the resistance 
will be lower at the same temperature and initial resist-
ance. In the process of generating gain, AZO is bom-
barded by incident electrons at high voltage, thereby 
generating more electron–hole pairs, resulting in an 
increase in current.

We define the ratio of non-working resistance to 
working resistance to describe the stability of material 
resistance:

RMCP = R0 exp [−βT (TMCP − T0)]

Fig. 7 The working resistance and the non-work resistance with the voltage diagram at the AZO-ALD-MCP in the different ratio and 
conventional-MCP

Table 1 Detailed ALD experimental parameters for the AZO conductive layer
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Figure 8 shows that the κR of AZO-ALD-MCP is about 
 102–103 times, and the κR of conventional-MCP is about 
2–3 times. This shows that the resistance change of 
AZO-ALD-MCP is more obvious; therefore, the old con-
cept of non-working resistance as the definition for MCP 
resistance should be substituted with the working resist-
ance instead.

κR =
Rn

Rw

Figure 9 shows the ratio LR of the resistance from “adja-
cent” material design with respect to the operating volt-
age. The ratio LR is defined to be:

LR =
R

(

4 + N−1
N

)

R

(

4 + N

N+1

)

Fig. 8 The KR with the voltage diagram at the different ratio of 
AZO-ALD-MCP

Fig. 9 The resistance of the step length  LR with the voltage diagram 
at the different ratio of the working resistance of neighbor formula

Fig. 10 The working resistance with the percentage of ZnO cycles 
diagram at the different voltage

Fig. 11 The r with the percentage of ZnO cycles diagram at the 
working state
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where

and

As can be observed from Fig.  9, the  LR value ranges 
from 2 to 4.5 to adjust ratio of conductive material ZnO 
and high resistance material Al2O3 . And it proves the fea-
sibility of WYM operation to design laminated materials.

Figure 10 shows the working resistance with respect to 
the percentage of ZnO cycles (%ZnO), where %ZnO is 
defined to be:

under various voltage conditions, ranging from 100 to 
1000 V. It decreases that the working resistance under the 
same voltage with the increase in the percentage of ZnO 
cycles. It can be the same that the working resistance 
under different the percentage of ZnO cycles and under 
the different condition of voltage. Therefore, the AZO-
ALD-MCP of different formulations works under its spe-
cific voltage to meet the MCP resistance index.

We define the ratio of the resistance difference under 
the different condition of voltage and the voltage differ-
ence to describe the effect of the voltage on the resistance 
of MCP:
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Figure  11 shows that the effect of the voltage on the 
resistance of AZO-ALD-MCP decreased and gradually 
stabilized with the increase in the percentage of ZnO 
cycles. Therefore, the preparation of AZO-ALD-MCP 
should try to choose a formula with a large percentage of 
ZnO cycles.

Based on the above analysis, we have put forward the 
reference to the working resistance for the conductive 
layer of ALD-MCP. As shown in Fig.  5a, we design the 
AZO conductive layer of AZO-MCP by using the WYM 
operation and temperature adjustment based on the 
working resistance. We use atomic layer deposition tech-
nology to grow the Al2O3 emission layer on microchan-
nel wall of the two-dimensional pore arrays [3, 11, 22]. In 
Fig. 12a, the gain from our AZO-ALD-MCP is compared 
to that of a conventional MCP under different voltages. 
As can be observed, our preparation method of the AZO-
ALD-MCP provides a larger gain than that of a conven-
tional MCP. Figure 12b shows the phosphor screen with 
uniform green light under high pressure, thus proving 
the uniformity of the material deposited on the wall of 
each microchannel and the uniformity of the AZO-ALD-
MCP field of view.

Conclusion
We defined the working and non-working resistance of 
the microchannel plate. Aiming at the required resis-
tivity of the microchannel plate in the region with 
extremely narrow zinc content requirement (70–73%), an 
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∣

∣

∣

∣
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Fig. 12 The gain with the voltage diagram at the AZO-ALD-MCP and conventional-MCP
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algorithm for growing the AZO conductive layer is pro-
posed. Compared with the conventional MCP, we found 
a large difference between the working and non-working 
resistance and there is also a huge difference under dif-
ferent voltages. Therefore, we analyze the data by defin-
ing κR, LR, %ZnO, r . MCP should try to choose a formula 
with a large percentage of ZnO cycles. We recommend 
using the working resistance as an ALD-MCP resist-
ance indicator in industrial production. Building on our 
results as described in this work, our studies will help to 
find even better materials as the conductive layer for the 
ALD-MCP.
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