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Abstract 

Both multilayered (ML) and few-layered (FL) Ti3C2Tx nanosheets have been prepared through a typical etching and 
delaminating procedure. Various characterizations confirm that the dominant terminal groups on ML-Ti3C2Tx and FL-
Ti3C2Tx are different, which have been assigned to O-related and hydroxyl groups, respectively. Such deviation of the 
dominant terminals results in the different physical and chemical performance and eventually makes the nanosheets 
have different potential applications. In particular, before coupling to Ag nanoparticles, ML-Ti3C2Tx can present 
stronger near-field enhancement effect; however, Ag/FL-Ti3C2Tx hybrid structure can confine stronger near-field due 
to the electron injection, which can be offered by the terminated hydroxyl groups.
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Introduction
Ti3C2Tx, a typical two-dimensional layered transi-
tion metal carbide with a graphene-like structure, has 
attracted great attention due to its wide potential appli-
cations in fields of catalysis, energy, and medicine thanks 
to its unique properties, especially large specific surface 
area and so on [1–6]. It has been demonstrated that the 
physical and chemical performance of Ti3C2Tx could 
be determined by its terminal groups, referred as Tx in 
the formula (usually are –F, –O and/or –OH), which 
can be adjusted by choosing different preparation pro-
cedures [7, 8]. For example, some experimental results 
indicate that the hydrophilic hydrophobic equilibrium 
of Ti3C2Tx can be modulated by interacting some agent 
groups with –O terminal groups on Ti3C2Tx [9], and the 
Pb adsorption capacity can be improved by connect-
ing with hydroxyl groups on Ti3C2Tx [10]. In the mean-
time, some theoretical works have determined that the 
attached methoxy groups could improve the stability 

of Ti2C and Ti3C2 [11], and O-related terminal groups 
could enhance the lithium ion storage capacity of various 
nanosheets [12]. Apart from the multifarious applications 
by taking advantage of the unique layered structure with 
certain terminal groups, it is found that Ti3C2Tx can pre-
sent plasmonic performance as well, and the resonance 
wavelength can be tuned by the terminals and/or thick-
ness [13], indicating that Ti3C2Tx could confine elec-
tromagnetic field under excitation and eventually can 
be employed as broadband perfect absorbers [14, 15], 
Terahertz shielding devices [16], and photonic and/or 
molecular detectors or sensors [17–19]. However, most 
of previous works either concerned the etching condition 
dependent terminal groups [20] or focused on the over-
all plasmonic performance [21]. Therefore, it is interest-
ing to systematically study the relationship between the 
terminal groups of Ti3C2Tx with different layers and their 
near-field enhancement effect, since such effect has been 
widely employed in many optical related fields, such as 
surface-enhanced Raman scattering detection, due to the 
strong confined electromagnetic field [22–24].

In this work, in order to simplify the terminal options 
and avoid using hazardous HF, the mixed etching agent 
of LiF and HCl has been used to minimize the fluorine 
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terminals (–F) in the etching process [25]. Furthermore, 
the procedure of sonication in water has been carried out 
to delaminate the multilayered Ti3C2Tx (ML-Ti3C2Tx) 
into few-layered Ti3C2Tx (FL-Ti3C2Tx) without intro-
ducing any other reagents. As a result, the obtained 
Ti3C2Tx with different layers in this work will be mainly 
terminated by either O- or OH-related groups, which 
make ML-Ti3C2Tx or FL-Ti3C2Tx nanosheets reveal dif-
ferent physical and chemical properties and eventually 
present different near-filed enhancement performance. 
In addition, the hybrid structures composed of Ti3C2Tx 
and Ag nanoparticles have been prepared and the cor-
responding coupling effects have been explored as well. 
Such exploration regarding terminal dependent plas-
monic performance of these Ti3C2Tx with different layers 
and configurations could help people to select suitable 
Ti3C2Tx-based materials in some specific optical fields.

Methods
Preparation of Ti3C2Tx Nanosheets
ML-Ti3C2Tx was prepared  by following a modified previ-
ously reported method [26]. The typical etching process 
started with the preparation of LiF solution by dissolv-
ing 1 g of LiF in 20 mL of dilute HCl solution (6 M) with 
stirring. Subsequently, 1 g of Ti3AlC2 powder was slowly 
added into the above solution, and the etching process 
was kept at 70  °C for 45 h under stirring. The wet sedi-
ment was then washed several times with deionized water 
until the pH of the suspension liquid was bigger than 6. 
Afterward, the suspension was collected and named as 
ML-Ti3C2Tx. To obtain FL-Ti3C2Tx, ML-Ti3C2Tx was fur-
ther delaminated by sonication for 2 h in Ar atmosphere 
and followed by centrifugation at 3500 rpm for 1 h.

Preparation of Ag/Ti3C2Tx Nanocomposites
The synthesis of the hybrid materials was started with the 
preparation of the mixed solution of AgNO3 (12.5  mL, 
2 mmol/L) and NaC6H5O7 (12.5 mL, 4 mmol/L) at room 
temperature. After rapidly adding PVP solution (25 mL, 
0.1  g/mL), Ti3C2Tx solution (5  mL, 0.05  mg/mL) was 
then slowly added into the mixed solution with stir-
ring for 10 min at room temperature. Subsequently, the 
above-mixed solution was heated up to 70  °C to react 
for 45  h. After centrifuging, the products were kept in 
water and named as Ag/ML-Ti3C2Tx and Ag/FL-Ti3C2Tx, 
respectively, according to the type of Ti3C2Tx used in the 
procedure.

Characterization
A field emission scanning electron microscope (Carl 
ZEISS Sigma) and two transmission electron microscopes 
(JEM-2100F and JEM-1400Flash) have been employed to 
determine the morphologies of the samples. The X-ray 

diffraction (XRD) patterns in the range of 2θ = 5°–80° 
with a step of 0.02° were recorded on a powder diffrac-
tometer (X’Pert PRO MPD). Zeta potentials and surface 
states of ML-Ti3C2Tx and FL-Ti3C2Tx were measured by a 
Malvern Zetasizer (Nano-ZS90) and an X-ray photoelec-
tron spectroscopy (XPS, ESCALAB 250Xi), respectively. 
The absorption and Raman performance of samples were 
recorded by a UV–Vis spectrophotometer (CARY 5000) 
and a Raman spectroscopy (LabRAM HR Evolution), 
respectively. The excitation wavelength of Raman detec-
tion was 532 nm, and the laser powers for usual Raman 
measurements and surface enhanced Raman scattering 
(SERS) characterizations were 12.5 mW and 0.05 mW, 
respectively.

Results and Discussion
Both morphologies of ML-Ti3C2Tx and FL-Ti3C2Tx are 
shown in Fig. 1a, b and c, d, respectively. It can be seen 
that FL-Ti3C2Tx looks more transparent, indicating that 
its layer number is much less than ML-Ti3C2Tx. Figure 1e 
shows the XRD patterns of all samples. Ti3AlC2 and ML-
Ti3C2Tx show their typical phase features, which agree 
well with some previous reports [26–28]. It can be readily 
observed that the intense (002) peak of ML-Ti3C2Tx shifts 
to the lower angle comparing with that of Ti3AlC2, imply-
ing the removal of Al atoms from the MAX phase and the 
expanding along the c axis. Compared with the diffrac-
tion peaks of ML-Ti3C2Tx, both broadened (002) peak 
and disappeared (004) and (008) peaks of FL-Ti3C2Tx 
determined the successful preparation of the few-layered 
sample [29]. Moreover, the (002) peak of FL-Ti3C2Tx 
locates at a little higher angle than that of ML-Ti3C2Tx, 
indicating that ML-Ti3C2Tx and FL-Ti3C2Tx should be 
terminated with different groups, which can be attrib-
uted to -O and -OH, respectively, since the as-prepared 
Ti3C2Tx (ML-Ti3C2Tx) will not be mainly terminated with 
-F without HF as etching agent and the corresponding c 
parameters attracted from the XRD patterns agree well 
with what previous works reported [25, 30].

Figure  2a shows Raman spectra of ML-Ti3C2Tx and 
FL-Ti3C2Tx. As it can be seen that the Raman signals in 
the range of 200–800  cm−1 for both samples are quite 
similar. Among them, the peak at 717  cm−1 is due to 
the A1g symmetrical out-of-plane vibration of Ti and C 
atoms, while the peaks at 244, 366 and 570 cm−1 are aris-
ing from the in-plane (shear) modes of Ti, C and surface 
terminal groups, respectively [31, 32]. As for the Raman 
signals ranging from 800 to 1800  cm−1, comparing 
with ML-Ti3C2Tx, FL-Ti3C2Tx not only shows stronger 
Raman signal at 1580  cm−1 (G band), but also presents 
two emerging Raman bands at 1000–1200  cm−1 and 
1300  cm−1 (D band). Herein, the appearance of D band 
indicates that some Ti atoms have been peeled away and 
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more C atoms are exposed to the surroundings [33]. 
Therefore, the integrated Raman intensity of FL-Ti3C2Tx 
in this range is slightly larger than that of ML-Ti3C2Tx, 
implying that FL-Ti3C2Tx adsorbs more terminal groups. 
Zeta potentials of ML-Ti3C2Tx and FL-Ti3C2Tx are −4.38 
and −26.9 mV, respectively, as shown in Additional file 1: 
Fig. S1, which further confirm that FL-Ti3C2Tx are termi-
nated by more groups with negative charges.

The UV–Vis spectra shown in Fig. 2b reveal that both 
FL-Ti3C2Tx and ML-Ti3C2Tx present two dominant 
absorption bands. In the UV region (225–325  nm), FL-
Ti3C2Tx displays relatively stronger absorption band 
which corresponds to the band gap transition [34], 
implying that there are more -OH groups have been ter-
minated on FL-Ti3C2Tx [35]. On the other hand, the com-
parison between the long wavelength absorption bands 

(600-1000  nm) of both samples shows that the relative 
intensity of FL-Ti3C2Tx in this range is obviously lower 
than that of ML-Ti3C2Tx, indicating that ML-Ti3C2Tx 
are mainly terminated by –O [35]. FL-Ti3C2Tx can be 
well dispersed in the aqueous solution since the termi-
nated –OH groups shows hydrophilicity and electrostatic 
repulsion between sheets [31, 36]. As for ML-Ti3C2Tx 
with more –O terminals, it can only form a suspension in 
the beginning and will deposit subsequently as shown in 
Additional file 1: Fig. S2a.

In order to shed more light on the surface groups ter-
minated on ML-Ti3C2Tx and FL-Ti3C2Tx, XPS spectra of 
both samples were collected and are shown in Fig. 3. All 
corresponding detailed information regarding the sur-
face states are summarized in Additional file 1: Table S1. 
The fraction of Ti-C in FL-Ti3C2Tx (9.80%) is lower than 

Fig. 1  Morphology and phase determinations. a, b SEM and TEM images of ML-Ti3C2Tx. c, d SEM and TEM images of FL-Ti3C2Tx. e XRD patterns of 
Ti3AlC2, ML-Ti3C2Tx and FL-Ti3C2Tx

Fig. 2  a Raman spectra and b Normalized absorption spectra of FL-Ti3C2Tx and ML-Ti3C2Tx. The inset in b presents the absorption bands of 
FL-Ti3C2Tx and ML-Ti3C2Tx in the UV region
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that in ML-Ti3C2Tx (17.31%), while the ratio of C–C in 
FL-Ti3C2Tx (44.62%) is higher. Such surface states chang-
ing evidences the loss of Ti atoms and the more exposed 
C atoms on the surface of FL-Ti3C2Tx, which agrees with 
the emerging D band in its Raman spectrum shown 
in Fig.  2a. The increased C-Ti-Tx ratio in FL-Ti3C2Tx 

(21.27%) indicates that there should be more active ter-
minal groups adsorbed on its surface than ML-Ti3C2Tx, 
which agrees with the Zeta potential results shown in 
Additional file 1: Fig. S1. Apart from the quantity of the 
terminal groups, the analysis of XPS results also reveals 
that FL-Ti3C2Tx and ML-Ti3C2Tx have been terminated 

Fig. 3  XPS spectra of ML-Ti3C2Tx and FL-Ti3C2Tx a Ti2p, b C1s, c O1s
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by different dominant functional groups, which also has 
been suggested by the (002) diffraction peaks shown in 
Fig. 1e. Regarding O 1 s spectra of these two samples, it 
can be clearly seen that more O-related states have been 
found on the surface of ML-Ti3C2Tx, and some of them 
are adsorbed oxygen molecules, which can dissociate to 
form Ti3C2Ox and therefore will repel O2 in air to prevent 
further oxidation of ML-Ti3C2Tx [37]. As a result, ML-
Ti3C2Tx seems present a better oxidation resistance with 
a lower TiO2 ratio (13.98%) than FL-Ti3C2Tx (19.60%).

Based on the observations and analyses of Figs. 1, 2 and 
3, it can be concluded that although both ML-Ti3C2Tx 
and FL-Ti3C2Tx are terminated by some functional 
groups with negative charge, the amount and dominant 
type of the groups are quite different. On  one hand, the 
quantity of terminal groups on FL-Ti3C2Tx is larger than 
that of ML-Ti3C2Tx. On the other hand, the dominant 
terminal structure on ML-Ti3C2Tx is Ti3C2O2, which 
makes ML-Ti3C2Tx to be more stable in the air [38], while 
for FL-Ti3C2Tx, it is mainly terminated by Ti3C2(OH)2, 
which helps FL-Ti3C2Tx to be well-dispersed in aqueous 
solutions [36].

Ti3C2Tx with functional terminal groups could reveal 
good adsorption performance and therefore could act as 
a surface-enhanced Raman scattering (SERS) substrate to 
improve the Raman activity of positively charged probe 
molecules [3, 39, 40]. Comparing with ML-Ti3C2Tx, FL-
Ti3C2Tx should present better adsorption ability since 
it has been determined that it is terminated with more 

negative charges. Such better adsorption performance 
has been demonstrated by the optical photographs of 
the mixed solution with R6G and FL-Ti3C2Tx as shown 
in Additional file  1: Fig. S2b. However, Fig.  4a reveals 
that the ML-Ti3C2Tx substrate obviously performs bet-
ter SERS activity than FL-Ti3C2Tx one. Considering ML-
Ti3C2Tx with –O terminal presents stronger absorption 
band centered at around 800 nm, which can be assigned 
to the surface plasmon resonant absorption [3, 15, 39, 
41], it therefore can be concluded that ML-Ti3C2Tx with 
stronger SERS activity should result from the stronger 
near-field effect induced by the relatively stronger surface 
plasmon resonance as shown in Fig. 2b.

In order to further explore the relationship between 
the terminal groups and the near-filed effect of Ti3C2Tx 
nanosheets, the hybrid structures composed of Ti3C2Tx 
nanosheets, including few layered and multilayered, and 
Ag nanoparticles (NPs) have been synthesized, which 
are accordingly labeled as Ag/FL-Ti3C2Tx and Ag/ML-
Ti3C2Tx, respectively. The morphologies of both hybrid 
samples are shown in Additional file 1: Fig. S3. The insets 
indicate the corresponding size distributions of Ag NPs 
loading on ML-Ti3C2Tx (5–40  nm) is larger than that 
on FL-Ti3C2Tx (2–20  nm). Intuitively, it might be con-
cluded that Ag/ML-Ti3C2Tx could perform better SERS 
activity than Ag/FL-Ti3C2Tx since both larger Ag NPs 
and relative stronger surface plasmon resonance of ML-
Ti3C2Tx are beneficial to confine stronger near-field. 
However, the SERS spectra shown in Fig.  4b reveal a 

Fig. 4  a SERS spectra of R6G (10–3 M) with ML-Ti3C2Tx and FL-Ti3C2Tx. b SERS spectra of R6G (10–6 M) with Ag/ML-Ti3C2Tx and Ag/FL-Ti3C2Tx. c 
Schematic diagram of electron transfer from FL-Ti3C2Tx to Ag NP due to their work function difference. Wm and Ws represent the work functions of 
Ag NP and FL-Ti3C2Tx, respectively
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counterintuitive result. It is clear that the enhancement 
effect offered by Ag/FL-Ti3C2Tx is nearly 3 times of that 
by Ag/ML-Ti3C2Tx, implying that the coupling between 
Ag NPs and FL-Ti3C2Tx should play an important role 
during the detection process. As confirmed above that 
FL-Ti3C2Tx has been mainly terminated by -OH groups 
with lots of surface electrons, which will result in the for-
mation of Ti3C2(OH)2 structure with a work function of 
1.6–2.8  eV [42, 43]. As shown in Fig.  4c, the abundant 
surface electrons will therefore transfer from FL-Ti3C2Tx 
to Ag NPs with a work function of 4.7 eV [44]. With the 
extra injection of hot electrons from FL-Ti3C2Tx, Ag NPs 
with smaller size could present stronger resonance under 
the excitation and eventually perform better SERS activ-
ity due to the coupling induced stronger electromag-
netic effect. It is worth noting that the work function of 
Ti3C2O2 structure formed on the surface of ML-Ti3C2Tx 
is around 6.0 eV [43], which will result in electron trans-
fer from Ag NPs surface to ML-Ti3C2Tx nanosheets and 
therefore will weaken the near-field enhanced effect 
supported by the Ag NPs. On the other hand, not like 
FL-Ti3C2Tx with -OH terminals, ML-Ti3C2Tx with -O 
terminals cannot offer sufficient electrons under excita-
tion [42]. It is therefore reasonable that the SERS activity 
of Ag/ML-Ti3C2Tx is worse than that of Ag/ FL-Ti3C2Tx.

Conclusions
In summary, ML-Ti3C2Tx and FL-Ti3C2Tx terminated 
with different dominant functional groups have been 
successfully prepared. It has been demonstrated that 
ML-Ti3C2Tx is more stable in the air due to the surface 
structure of Ti3C2O2 and show stronger SERS activity 
than FL-Ti3C2Tx because it can reveal stronger near-field 
effect. However, FL-Ti3C2Tx terminated by Ti3C2(OH)2 
can be well dispersed in aqueous solution and will show 
better SERS performance after coupling to the Ag NPs 
due to the sufficient electron injection. Such research 
regarding the terminal groups-dependent near-field 
enhancement performance will help people to expand 
the potential applications of Ti3C2Tx in the optical related 
fields.
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