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Abstract 

Noble metals have played an integral part in human history for centuries; however, their integration with recent 
advances in nanotechnology and material sciences have provided new research opportunities in both academia and 
industry, which has resulted in a new array of advanced applications, including medical ones. Noble metal nano-
particles (NMNPs) have been of great importance in the field of biomedicine over the past few decades due to their 
importance in personalized healthcare and diagnostics. In particular, platinum, gold and silver nanoparticles have 
achieved the most dominant spot in the list, thanks to a very diverse range of industrial applications, including bio-
medical ones such as antimicrobial and antiviral agents, diagnostics, drug carriers and imaging probes. In particular, 
their superior resistance to extreme conditions of corrosion and oxidation is highly appreciated. Notably, in the past 
two decades there has been a tremendous advancement in the development of new strategies of more cost-effec-
tive and robust NMNP synthesis methods that provide materials with highly tunable physicochemical, optical and 
thermal properties, and biochemical functionalities. As a result, new advanced hybrid NMNPs with polymer, graphene, 
carbon nanotubes, quantum dots and core–shell systems have been developed with even more enhanced physico-
chemical characteristics that has led to exceptional diagnostic and therapeutic applications. In this review, we aim to 
summarize current advances in the synthesis of NMNPs (Au, Ag and Pt).
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Introduction
Noble metals have been in use for a very long time, dat-
ing back to the first Egyptian civilization, and have always 
been viewed as a sign of superior power and wealth. As a 
result, they can be seen in history in the form of expen-
sive artworks, coins, jewels, etc. [1]. These metals gen-
erally tend to be more expensive than others because of 
their availability in the Earth’s crust [2, 3]. Due to their 
robust nature, resistance to extreme conditions of cor-
rosion and oxidation, they have been widely used in the 
aerospace, automotive, chemical, energy, electrical and 
electronics industry and more importantly healthcare 
(from surgical equipment to contrast enhancers in imag-
ing) [4, 5].

Over the past two decades, nanotechnology has proven 
to be the most promising future technology, offering 
countless possibilities. Multidisciplinary support from 
academic and industrial sectors has made it the most 
rapidly expanding field, with highly promising outcomes 
[6–8]. Currently, the technological leap in synthesizing 
and controlling metals at the nanoscale level has pro-
vided immense research opportunities to progress in per-
sonalized healthcare, diagnostics and therapies [9–11]. 
Metal nanoparticles (MNPs) have turned out to be the 
most commonly and broadly studied because of their 
impressive physicochemical properties and large surface-
to-volume ratio compared to their bulk material (metal). 
As for biomedical applications, NMNPs became a natural 
pick due to their resistance to harsh environments. They 
have been applied in highly sensitive diagnostic assays, as 
thermal ablation enhancers in radiotherapy, and as drug 
and gene delivery vehicles [3, 12, 13].

Open Access

*Correspondence:  prokesoj@vscht.cz
Department of Biochemistry and Microbiology, University of Chemistry 
and Technology Prague, Technická 5, 166 28 Prague, Czech Republic

http://orcid.org/0000-0003-0857-153X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-021-03480-8&domain=pdf


Page 2 of 12Habibullah et al. Nanoscale Res Lett           (2021) 16:47 

The recent merging of nanotechnology with mate-
rial sciences has resulted in the development of new 
nanocomposite materials with highly enhanced ther-
mal, catalytic, electrical, optical and mechanical proper-
ties compared to the individual components. Notably, 
composites made of NMNPs have gained a great deal of 
research interest because of their impressive physico-
chemical properties that play a vital role in modifying the 
nanoscale building blocks and result in wide applications 
in catalysis (mainly electrocatalysis), optics, nanomedi-
cine and environmental protection [14–17]. Noble met-
als in the colloidal state have been the subject of intensive 
studies, mainly due to their effectiveness in therapeu-
tics and diagnostics [2, 18]. Similarly, improvements in 
the synthesis of materials such as graphene oxide and 
reduced graphene oxide [14, 19, 20], quantum dots [21–
23] and carbon nanotubes [24–26] has contributed to 
more feasible and effective methods for the formation of 
NMNCs.

Due to the small size of Au and PtNPs and NMNPs, 
their large surface area-to-volume ratio and abil-
ity to assist in high electron transfer processes, they 
are ideal candidates for applications as electrochemi-
cal sensors [27–29]. The optical properties of NMNPs 
have served as a topic for many studies, especially Ag 
and AuNPs. These NPs are able to respond differently 
to different wavelengths of light (extensive scatter-
ing from the visible region to the near infrared region 
with Au), and so they are applied as signal enhancers in 
surface-enhanced Raman spectroscopy (SERS), local-
ized surface plasmon resonance and other resonance 
scattering spectroscopy [30–33]. Due to the exten-
sively tunable optical properties and biocompatibility 
of AuNPs, they have been applied in the photothermal 
therapy and in vivo imaging (photoacoustic imaging) of 
tumors [34–36]. Recently, AgNPs have also exhibited 
their potential in photothermal therapy, where they are 
generally applied as Ag core–shell systems or compos-
ites (with reduced graphene oxide/ carbon nanotubes) 
[37–39]. The biocompatibility of NMNPs with cells and 
tissues has opened up broad applicability in diagnos-
tics [14]. Biosensors of NMNPs and NMNCs (especially 
graphene) have played a key role in enhancements of 
accuracy and specificity that provide an advantage over 
existing biomolecular diagnostics methods [40, 41]. 
Generally, Au and PtNPs are employed in the develop-
ment of novel biosensors and probes due to their ability 
to adsorb to the biomolecules along with their supreme 
conductivity and stability [42–45]. As a result, NMNPs 
themselves or in the form of NMNCs are applied as 
immunosensors [46], biomolecules for detection [47] 
and nanoprobes (for in  vivo cell imaging, tracking 
and studying the pathogenesis of disease progression) 

[2, 6, 48]. Despite all these advantages of NMNPs and 
NMNCs, there have still been many questions and 
debates concerning their safety profile in the human 
body [49–51].

In this review, we provide a survey on the synthesis 
methodologies of NMNPs (Ag, Au and Pt) and NMNCs 
(with Ag, Au and Pt) along with their current devel-
opments in biomedical applications as therapeutics 
and diagnostics, including the synergism exhibited 
by NMNCs with NMNPs in terms of improved per-
formance, which is a current hot topic in materials 
research.

Current Trends in NMNPs Synthesis
Synthesis Methods of NMNPs
The preparation of NPs basically follows two different 
approaches, (1) top-down (destructive method) and (2) 
bottom-up (constructive method) (Fig. 1).

Top-down processes involve breaking bulk materials 
into smaller particles of nano-dimensions using vari-
ous physical and chemical methods. In contrast, in the 
bottom-up approach, NPs are produced by the self-
assembly of the atoms, the molecules or the clusters. 
Top-down approaches involve externally controlled 
processes of cutting, milling and shaping the materi-
als into the desired order and shape. Several physical 
methods, such as pyrolysis [61, 62], nanolithography 
[63, 64], thermolysis [65] and radiation-induced meth-
ods [66–68] belong in this category. However, this 
approach comes with a major limitation, which is the 
imperfect surface structure of the resulting MNPs, 
which substantially affects their physical and chemical 
properties [1]. Moreover, this method requires an enor-
mous amount of energy to maintain the high-pressure 
and high-temperature conditions during the synthetic 
procedure, making the process expensive.

In bottom-up methods, NPs are assembled from the 
corresponding atoms, clusters and molecules using 
chemical as well as biological procedures. The bottom-up 
approach has turned out to be advantageous, as it pro-
vides a far better control over the final product formation 
with more homogeneous size, shape (physical parame-
ters) and chemical composition. Moreover, this approach 
in general is less expensive. The bottom-up approach is 
commonly a wet-chemical synthesis procedure, such as 
chemical [69, 70], electrochemical [71–73], sonochemi-
cal [74, 75] and green synthesis [76, 77]. In the bottom-
up approach, the purification of the synthesized particles 
from their reaction mixture (toxic chemicals, organic sol-
vents and reagents) is a major challenge that casts doubt 
on their biomedical applications except for green synthe-
sis methods.
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Top‑Down Approaches
Sputtering
Sputtering is one of the most commonly used synthesis 
protocols that includes the deposition of NPs as a thin 
layer generated by the collision of ions over the substrate 
and followed by annealing. This method is also referred 
as the physical vapor deposition (PVD) method [78, 79]. 
The efficiency of this method mainly depends on factors 
such as layer thickness, substrate type, annealing dura-
tion and temperature, which directly influence the size 
and shape of the NPs [55, 80, 81].

Micropatterning
Micropatterning, a popular technique employed in bio-
sensors, microarrays, tissue engineering and cellular 
studies [82], is also used in the synthesis of MNPs. In 
general, this technique is equivalent to a printing process 
in which a material is cut or formed into the required 
shape and size either with a light or electron beam for 

the synthesis of nanostructured arrays from an appropri-
ate precursor. This is a low-temperature, non-vacuum 
method that uses photolithography for the synthesis of 
MNPs, employing the laser sintering of MNP ink [83, 
84]. Apart from photolithography, numerous lithogra-
phy techniques have been developed such as scanning, 
soft nanoimprinting, colloidal, nanosphere and E-beam 
lithography [2, 57, 85, 86].

Milling
Milling is generally represented as the public face of top-
down processes, as it involves the direct breaking of bulk 
materials into micro/nanostructures. In mechanical mill-
ing, the kinetic energy of the rollers/balls is transferred 
to the bulk material, which results in the reduction 
in grain size [87]. Parameters such as the type of mill, 
milling atmosphere, milling media, intensity, time and 
temperature play a crucial role in controlling the shape 
and size of the NPs [88, 89]. Different techniques have 

Fig. 1 Schematic representation of the top-down (images with the green background) and bottom-up (images with pale yellow background) 
approaches of nanoparticle synthesis, the image was adapted and redrawn from [52–60]
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been developed in order to overcome these constraints, 
including shaker mills, tumbler mills, vibratory mills, 
attrition mills and planetary mills.

Laser Ablation
Laser ablation is one of the methods that is considered 
to be a suitable replacement for conventional chemical 
methods due to its fast processing times, providing bet-
ter control over the size and shape of the particles and 
high yields with better long-term stability [78, 90–92]. In 
a laser ablation process, a solid surface (generally a plate 
of pure metal) is irradiated with a laser beam, leading to 
a low-flux plasma plume, which is finally evaporated or 
sublimated to form NPs [93]. At a higher flux, the materi-
als are converted to plasma. The lack of requirement to 
remove excess reagents as well as the possibility of metal 
nanoparticle synthesis in both aqueous and organic sol-
vents has enabled the implementation of the laser abla-
tion method in biomedical applications such as the in situ 
conjugation of biomolecules with MNPs, which has been 
proved to be more effective than standard techniques [54, 
94, 95].

Pyrolysis
Thermal decomposition is another important technique 
commonly used separately or in combination with other 
physical methods for MNP synthesis [78]. It is an endo-
thermic chemical decomposition process that uses heat 
to break the compound’s chemical bonds, resulting in 
decomposition of the precursor, forcing it into a chemi-
cal reaction producing NPs along with other by-prod-
ucts in the form of ash. Through further processing of 
the obtained solid ash, NPs are recovered. Pyrolysis is 
frequently used for the preparation of noble MNPs [56, 
96, 97]. Excessive energy consumption is one of the most 
important drawbacks of this method.

Chemical Vapor Deposition
This method is also known as the vacuum deposition 
method, where the gaseous reactant is deposited as a thin 
film onto a substrate along with a combination of other 
gas molecules that promote superheating of the substrate. 
During the reaction, the substrate comes in contact with 
the combined gases, leading to reduction of the ions 
[78]. The product of this reaction is usually in the form 
of a film which the NPs need to be scraped out from. The 
method produces highly pure, uniform and nonporous 
nanoparticles; as a result, this method has become highly 
important in the electronics and semiconductor industry. 
Despite these huge advantages, this method suffers from 
some major disadvantages: The requirement for special 
equipment for making the films and chambers for the 

reaction, and the fact that the gaseous by-products of this 
reaction are extremely toxic [98].

Bottom‑Up Approaches
Reduction of Metal Ions in Solution
This approach involves the reduction of metal ions from 
their ionic salts by using various chemical reducing 
agents in the presence of a stabilizing agent under favora-
ble reaction parameters (pH, temperature, etc.). This 
procedure is the most common and reliable method of 
all the bottom-up approaches due to its sheer simplicity 
[2, 99]. An extensive list of a number of reducing agents 
is available for this process that includes commonly used 
sodium citrate [10, 100], tannic acid [99], sodium boro-
hydrate [101], hydrazine, hydrogen, lithium aluminum 
hydride, and alcohols can also be used [2, 60]. Simi-
larly, when it comes to stabilizing agents there are many 
options, and they generally fall into two categories (1) 
low-molecular-weight (e.g., citrate, SDS, chitosan, etc.) 
and (2) high-molecular-weight ones (e.g., starch, tween, 
PVP, PEG, DISPERBYK, etc.). The low-molecular-weight 
stabilizers (generally charged detergents) have the ten-
dency to alter the surface charge of the synthesized par-
ticles and maintain the repulsive force between them, 
preventing aggregation; this type of stabilizer generally 
does not protect well against environmental stress fac-
tors (especially changes in storage temperature and light 
exposure). High-molecular-weight stabilizers generally 
engulf the particles and protect them from environmen-
tal stresses. They have been shown to be more efficient 
than the low-molecular-weight stabilizers. Despite their 
advantages, their biological applications and catalytic 
properties are questionable due to the thick layer of sta-
bilizing agent over the particles that prevents their dis-
solution [102, 103]. In terms of homogeneity in particle 
size and shape, the clear winner is the chemical-based 
reduction. This is because reduction can be easily regu-
lated by changing the reaction parameters (pH and the 
ratio between the reducing and the stabilizing agent). 
Tyagi and his team produced AuNPs [104] using the cit-
rate reduction method at room temperature, at pH 3 with 
2:1 and 5:1 molar ratios of citrate to  AuCl3 of, yielding 
particles with an average size of 28 and 25  nm, respec-
tively. At this pH, the reaction was much faster than at 
other pH values. They also showed that AuNPs of differ-
ent shapes such as prisms, rods and spheres were formed 
at pH values ranging from 3 to 6 (with a 2:1 molar ratio 
of citrate to  AuCl3). In another study by Agnihotri and 
coworkers [105], who applied a similar citrate reduction 
method for the synthesis of AgNPs, obtained particles 
with an average size of 5  nm at the highest concentra-
tion of sodium citrate (4.28 ×  10–3 mol  dm−3). Their size 
increased at elevated concentrations of citrate (to 100 nm 
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at 1.77 ×  10–2  mol   dm−3). Another study by Hou et  al. 
[106] described the synthesis of highly stable and mono-
dispersed Pt nanoparticles in the form of hydrosols for 
electrocatalytic applications.

Microemulsion
The fabrication of metal NPs based on microemulsions 
is becoming a topic of great interest, and it has also 
emerged as an effective method that provides better con-
trol over the physical aspects of the synthesized nanopar-
ticles such as size and shape. In general, microemulsions 
are simply mixtures of two immiscible liquids in the 
presence of a surfactant. These systems generally have 
ultralow interfacial tension, a large interfacial area and 
thermodynamic stability [107]. The first microemulsion-
based synthesis of NMNPs was described by the team of 
Muñoz-Flores et al. [58, 108, 109] who synthesized plati-
num, palladium and rhodium NPs. In the microemul-
sion-based NPs synthesis, two separate microemulsions 
are prepared, one containing the ionic salt and another 
containing the reducing agent produced in an amphi-
philic environment. The collision between the emulsions 
leads to the mixing of the reactants and reduces the ions 
from the salt to neutral atoms, which then form nanopar-
ticles [2]. Water-in-oil systems are generally employed for 
the synthesis of metal nanoparticles, and as the nanopar-
ticles produced by this method are derived in the form 
of emulsions, they are generally thermodynamically sta-
ble. Depending on the need, this process could be also 
tailored to synthesize a specific type of nanoparticle by 
altering the ratio of the surfactant to oil. This makes it 
possible enables to control the size and shape of the par-
ticles [110].

Electrochemical Methods
Electrochemical processes are commonly employed for 
the synthesis of NMNPs and nanocomposites, which 
are mostly used for their catalytic properties and have 
recently been used in biomedical applications as biosen-
sors [111]. The electrochemical method was first intro-
duced in 1994 by Reetz and Helbig, who dissolved a pure 
metal sheet from the anode to achieve the deposition of 
metal salt on the cathode of an electrochemical cell in the 
presence of an electrolyte to produce nanoparticles [2, 
112]. The effectiveness of this method depends on vari-
ous parameters such as the nature of the reducing agent, 
the purity of the metal and the stabilizer, choice of the 
electrolyte, concentration ratio and temperature, which 
directly impact the physical parameters of the NPs [53]. 
At present, the synthesis of nanocomposites (especially 
those with graphene) using electrochemical methods is 
preferred to the synthesis of NPs [113].

Radiation‑Induced Synthesis Methods
This method employs ionizing radiation (especially 
gamma radiation and includes X-rays and UV-light) for 
the synthesis of metal nanoparticles. It has been proved 
to be highly efficient compared to the conventional meth-
ods of NP synthesis, as it provides fully reduced, highly 
pure (by-product free) metal nanoparticles. The topic has 
been nicely covered in several reviews [59, 66, 114, 115]. 
In this process, an aqueous solution of reducing and sta-
bilizing agent is exposed to radiation-mediated radiolysis, 
which leads to the formation of NPs. During the radia-
tion exposure, the water molecules break up, yielding 
transient products that act as strong oxidizing or reduc-
ing agents and reduce metal ions to neutral metal atoms, 
which further nucleate to form NPs. The synchrotron 
X-ray techniques enabled monitoring of the growth tra-
jectories of colloidal NPs in real time [116]. The physical 
parameters critical for the synthesis of NPs include the 
radiation dose, pH of the system and the type of solvent 
used in the synthesis [117]. Recently, radiation-induced 
synthesis was used for the production of tween 80 stabi-
lized AgNPs for antibacterial applications [118].

Microwave‑Induced Green Synthesis Methods
Generally, microwave-assisted synthesis is also known as 
one-pot synthesis and involves the synthesis of NPs from 
salts and surfactant solutions. It is a highly reliable, fast 
and easy method that supports control over the mor-
phology of the synthesized NPs [2]. This method works 
on the principle of dipole interaction (molecules tend to 
align themselves and oscillate in step with the oscillating 
electrical field of the microwaves, collision and friction 
between them causes heat) and ionic conduction (The 
electric field generates ionic motion as the molecules try 
to orient themselves to the rapidly changing field, causing 
instantaneous super heating) producing a heating effect 
that results in the reduction of metal ions to NPs [119, 
120]. The microwave irradiation time and the concentra-
tion of the reactant mainly determine the morphological 
parameters of the NPs. Recently, physical properties such 
as monodispersity and grain size of superparamagnetic 
magnetite NPs prepared by microwave-assisted synthe-
sis were controlled by the injection of humate-polyanion 
at different stages of the synthesis [121]. Microwave-
induced electric discharge was used also for the synthesis 
of Cu, Ni, und Zn nanoparticles from metal particles in 
the absence of solvents or surfactants [122].

Green Synthesis Methods
The excessive use of chemicals in chemical synthesis 
has almost jeopardized the future of biological appli-
cations of NMNPs. This resulted in the exploration 
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of other, ecological methods with a minimal use of 
chemicals. Green synthetic methods employing plant 
extracts, microorganisms and biopolymers have proven 
to be potent candidates for replacing chemical methods 
of NP synthesis (Fig.  2) [123]. Thanks to simpler and 
greener methodologies, there has been an exponential 

increase in publications in the past two decades [52, 
124, 125].

Biosystem Synthesis of NMNPS
The quest for the development of economically and 
environmentally benevolent methods has led to the 
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Fig. 2 Schematic representation of green synthesis methods
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exploration of microorganisms as a potential candidate 
for the synthesis of nanoparticles [126, 127]. Biological 
systems are excellent examples of hierarchical organiza-
tions of atoms and molecules, which attract research-
ers to use microorganisms as potential cell factories for 
nanomaterial preparation. Both prokaryotic (bacteria) 
and eukaryotic (algae, fungi and plants) species are used 
for the green synthesis of NPs [123].

Bacteria‑Based Synthesis of  Nanoparticles Bacteria 
that have been repeatedly exposed to metal-rich envi-
ronments have often developed resistance to these 
extreme conditions [128]. Thus, prokaryotes have 
become a natural choice for producing nanomaterials. 
Pseudomonas stutzeri AG259, a metal-accumulating 
bacterium isolated from a silver mine, was utilized by 
Klaus et  al. [129] to create intracellular nanocrystals 
of metallic silver of up to 200 nm in size. The extracel-
lular synthesis of NPs was first reported by Shahverdi 
and co-workers [130], where AgNPs were produced 
by the reduction of aqueous  Ag+ ions through various 
culture supernatants of Gram-negative bacteria, i.e., 
Enterobacter cloacae, Escherichia coli and Klebsiella 
pneumonia. The synthesis rate was much faster than the 
intracellular synthesis, which resulted in Ag-NPs syn-
thesis within 5  min of the Ag + ions encountering the 
cell filtrate. Extracellular reductase enzymes produced 
by the microorganisms, namely Bacillus licheniformis 
and Bacillus clausii, reduce the silver ions to neutral 
silver, resulting in nanosized particles. Protein assay 
of these microorganisms revealed that the NADH-
dependent reductase enzyme plays a vital role in the 
bioreduction of silver ions to silver nanoparticles. The 
reductase enzyme gets its electrons from NADH oxida-
tion to NAD + . During the oxidation, the enzyme also 
gets oxidized at the same time, resulting in the reduc-
tion of silver ions to AgNPs. In some cases, it has been 
observed that the nitrate-dependent reductase can also 
participate in the bio reduction [131–133]. In addition, 
several bacterial strains (gram-negative as well as gram-
positive), namely A. calcoaceticus, B. amyloliquefaciens, 
B. flexus, B. megaterium and S. aureus, have also been 
used for both the extra- and intracellular biosynthesis of 
AgNPs [123]. Similarly, AuNPs and PtNPs are also pre-
pared by the accumulation and reduction of gold and 
platinum salts by bacteria. B. licheniformis, B. mega‑
terium, Delftia sp KCM-006., Shewanella sp., Steno‑
trophomonas maltophilia and Lactobacillus sp. are some 
examples of bacteria which have been used to produce 
gold nanomaterials [134, 135]. In addition, the bacteria 
Shewanella sp. and Acinetobacter calcoaceticus PUCM 
1011 were utilized for the preparation of PtNPs [136, 
137]. Although bacteria-mediated synthesis is promis-

ing in terms of its green nature and control over the par-
ticle shape and size (mostly in extracellular synthesis), it 
suffers from disadvantages such as handling difficulties 
and low yields.

Fungus‑Based Synthesis In recent years, NMNP synthe-
sis with eukaryotic microorganisms has emerged as a bet-
ter alternative to prokaryotes due to their high intracellu-
lar metal uptake capability, ability to synthesize NPs with 
different chemical compositions, ability to produce a large 
amount of enzymes per unit biomass and easy biomass 
handling at laboratory scale [131].

In general, fungi have the potential to synthesize metal-
lic NPs due to their metal bioaccumulation capacity, 
their tolerance, high binding capacity and intracellular 
uptake like bacteria [127]. Fungi use both intracellular 
and extracellular methods for the synthesis of NPs, and 
extracellular synthesis is the most commonly reported 
synthesis mechanism due to their ability to produce large 
quantity of extracellular enzymes that convert  Ag+ ions 
to nanoscale silver particles [138–140]. In intracellular 
synthesis,  Ag+ ions are adsorbed to the cell surface by 
the electrostatic interaction between negatively charged 
carboxylate groups in enzymes and positively charged 
 Ag+ ions.  Ag+ ions are later reduced by the enzymes 
present in the cell wall to form AgNPs, in this process 
NPs are formed on the surface of mycelia, not in solu-
tion. In 2001, the intracellular preparation of AuNPs 
using Verticillium sp was first reported by Mukherjee 
et al. [141], where  Au3+ ions from tetrachloroaurate were 
reduced within the fungal cells, resulting in the forma-
tion of particles within the size range of 20  nm. Vahabi 
and coworkers [142] employed Trichoderma reesei for 
AgNPs synthesis, where the media with biomass was 
inoculated with  AgNO3 and incubated over a period 
of 72 h, resulting in the formation of AgNPs in the size 
range of 5–50 nm. Similarly, another study by the team of 
Vigneshwaran et al. [138] demonstrated the intracellular 
synthesis of AgNPs from Aspergillus flavus and reported 
that enzymes in the cell wall were mainly responsible for 
the reduction, and the proteins were responsible for sta-
bilization. Despite all these advantages such as faster syn-
thesis, and better control over the size and shape of the 
synthesized particles, intracellular processes suffer from 
a huge disadvantage in terms of product recovery that 
makes the process hard and expensive, since NPs bind to 
the cell. As a result, extracellular synthesis is preferred. 
In extracellular synthesis, cell-free broth/suspension is 
used in the synthesis process that turns out to be more 
environmentally friendly and cost-effective. In 2016, the 
team of Balakumaran et al. [143] used a cell-free suspen-
sion of Aspergillus terreus for the synthesis of both Au 
and AgNPs, resulting in spherical nanoparticles in the 
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size range of 8–20 nm and 10–50 nm for Ag and AuNPs, 
respectively. FTIR evaluation of the particles confirmed 
the binding of proteins with the NPs.

Algae‑Based Synthesis The algae-mediated synthesis of 
NPs utilizes four different methods: (1) whole algal cells 
are harvested from their culture media at a given phase of 
growth using centrifugation and then dispersed directly 
into an aqueous solution of the metallic salt; (2) cell-free 
aqueous extract made from freshly harvested or lyophi-
lized cells; (3) an aqueous extract filtrate or supernatant 
of ground, fresh or dried algae; and (4) an aqueous fil-
trate of an algal broth. Extract-mediated synthesis is the 
most commonly reported algae-based synthesis mecha-
nism [131, 144]. The accumulation of elemental gold in 
the form of AuNPs (9–20 nm) was noted with a dried cell 
suspension of Chlorella vulgaris by Hosea et al., who also 
reported an increase in the concentration of gold with 
time, proving the ability of the algal cells to uptake and 
reduce the gold ions from tetrachloroauric acid [145]. 
Velgosova and coworkers [146] reported on the synthe-
sis of highly stable AgNPs from Parachlorella kessleri, a 
green algae aqueous extract, where the synthesized par-
ticles were in the size range of about 20 nm and exhib-
ited excellent stability over a year. Other Algal sp, such as 
Pithophora oedogonia, Sargassum wightii and Plectonema 
boryanum, have been used successfully to construct Ag, 
Au and PtNPs, respectively [147–149].

Plant‑Based Synthesis Plant- and plant extract-medi-
ated synthesis has been the most commonly reported syn-
thesis methodology [123, 135, 150]. This type of synthesis 
is designated phytosynthesis. The major advantage of this 
synthesis method is easy product recovery. In 2003, the 
team of Gardea-Torresdey et al. was the first to illustrate 
the synthesis of metal nanoparticles (AgNPs) using a liv-
ing plant system with alfalfa sprouts (Medicago sativa) in 
an agar medium. The roots possess the tendency to absorb 
the Ag from the medium and transport it along the shoot 
of the system in the same oxidation state, in the shoot 
the Ag atoms are further arranged to form AgNPs. Simi-
larly, another study employed the alfalfa plant secretome 
to reduce  Au+ to  Au0, which also followed a similar pro-
cedure to produce AuNPs [151]. Plant-extract-mediated 
synthesis uses a plant component (leaves, stems, roots, 
shoots, flowers, barks and seeds) extract for the synthesis 
of NPs, the major advantage of this method is the ability 
of the extract to serve as both the reducing and stabiliz-
ing agent [152]. This method has been proved to be the 
most cost efficient and user friendly method to produce 
nanoparticles with long-term stability. In 2016, the team 
of Balashanmugam et  al. demonstrated the phytogenic 
synthesis of AgNPs from Cassia roxburghii aqueous leaf 

extract. The synthesized AgNPs were in the size range 
of about 35  nm and exhibited excellent stability over a 
year. This method also facilitated the synthesis of both 
individual and bimetallic particles. Neem (Azadirachta 
indica) leaf extract was successfully used by Shankar 
et  al. [153] to prepare silver, gold and bimetallic Au/Ag 
core–shell NPs. Similar plant extracts (bark, leaf, fruit and 
gum) have been used by several researchers to produce 
a variety of NMNPs [153–155]. Currently, light-induced 
nanoparticles are in the spotlight, as this procedure facili-
tates faster synthesis during the exposure of the mixture 
to sunlight. Kumar et al. [156] used Erigeron Bonariensis 
aqueous leaf extract for the synthesis of silver nanoparti-
cles that yielded spherical and oval-shaped AgNPs with a 
size range of 13 nm (TEM size). The crucial parameters to 
be considered in this synthesis are the light exposure time 
and the concentration of the plant extract in the reaction 
system.

Conclusion
Several physical, chemical as well as biological methods 
have been developed for the synthesis of NPs. All these 
processes are widely used based on the utility and appli-
cability of the nanoproducts. However, each of the exist-
ing protocols suffers from certain drawbacks and also 
most of these processes cannot be scaled up for large-
scale production. Thus, the development of alternative 
processes to fabricate NPs with controlled and tunable 
properties is still an open challenge.
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