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Abstract

Mixed-dimensional (2D + nD, n = 0, 1, and 3) heterostructures opened up a new avenue for fundamental physics
studies and applied nanodevice designs. Herein, a novel type-II staggered band alignment CuFe2O4/MoS2 mixed-
dimensional heterostructures (MHs) that present a distinct enhanced (20–28%) acetone gas sensing response
compared with pure CuFe2O4 nanotubes are reported. Based on the structural characterizations and DFT calculation
results, the tentative mechanism for the improvement of gas sensing performance of the CuFe2O4/MoS2 MHs can
be attributed to the synergic effect of type-II band alignment and the MoS2 active sites.
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Introduction
Integration of nanostructured materials with dissimilar
physical properties is essential for creating multifunc-
tional devices and it has long been a pursuit of nanoma-
terials science community [1–5]. Two-dimensional (2D)
layered materials, such as graphene, g-C3N4, and MoS2,
have received broad interdisciplinary attention [6–13],
owing to their potential in diverse technologies, includ-
ing sensors, electronics, optoelectronics, and so on [14–
20]. In particular, 2D layered materials provide a new
platform for building mixed-dimensional heterostruc-
tures (MHs) efficiently with 0D and 1D nanostructures
(including quantum dots, nanowires, and nanotubes)
[21–29]. According to previous reports, the electrical
conductivity, surface activity, and sensing response of
MHs can be efficiently tailored by choosing the suitable
candidate materials [30–35]. Although most research
has been focused on the novel physical properties of
MHs based on 2D layered materials, more efforts are
still needed to develop the 0D/1D MH-based

nanodevices. CuFe2O4 is an important n-type metal
oxide semiconductor with an indirect bandgap in the
range of 1.3–1.95 eV [36, 37], which has been considered
a promising material for gas sensors because of its nat-
urally abundance, low-cost, environmental friendliness,
simple electronic interface, low maintenance, ease of
use, and fabrication [38–40]. It is worth noting that the
CuFe2O4-based gas sensors exhibited relatively low re-
sponses toward some target gasses (such as ethanol and
acetone) [37]. Therefore, it is significant to improve the
sensitivity performance of CuFe2O4-based gas sensors by
the reasonable design of MHs. MoS2 is one of the most
prominent 2D materials possessing a bandgap of 1.2–
1.8 eV, because of high surface to volume ratio and
highly sensitive to oxygen adsorption allowing their ex-
ploration in chemical sensing applications [41].
In this paper, we report a CuFe2O4/MoS2 MHs (1D/

2D) for the first time synthesized by two-step method
using electrospinning followed by a hydrothermal
process. The morphologies, crystal structures, and com-
positions of the CuFe2O4/MoS2 MHs have been con-
firmed, and the density function theory (DFT) results
further indicate the formation of type-II band alignment
in the MHs. The CuFe2O4/MoS2 MHs have obvious ad-
vantages for gas sensing, which benefits from the type-II
band alignment and active sites in MoS2 ultrathin
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nanosheets. Gas sensing properties of the CuFe2O4/
MoS2 MHs are studied in both ethanol and acetone gas-
ses. As was expected, the MHs-based sensor shows sub-
stantial improved gas sensing performance compared
with pure CuFe2O4 nanotubes therefore suggesting po-
tential applications of CuFe2O4/MoS2 MHs in highly
sensitive gas sensors.

Method Section
Synthesis of CuFe2O4/MoS2 MHs
The detailed preparation processes of CuFe2O4/MoS2
MHs are shown in Fig. 1. Firstly, the pure CuFe2O4

nanotubes were pre-synthesized by electrospinning
method. Firstly, 0.5 mmol of Cu(NO3)2·3H2O, 1.0 mmol
of Fe(NO3)3·9H2O, and 0.68 g of polyvinylpyrrolidone
(PVP) were dissolved in 5 mL of ethanol and 5mL of N,
N-Dimethylformamide(DMF). After stirring for 6 h, the
above solution was placed in a syringe and injected with
a feeding rate of 0.4 mL h−1. A DC voltage of 15 kV was
applied between the needle tip and stainless-steel mesh
with a distance of 18 cm. The as-spun precursor fibers
were collected in a tube furnace and maintained at
500 °C for 2 h in air.
The CuFe2O4/MoS2 MHs were synthesized by hydro-

thermal method in the second step. CuFe2O4 nanotubes
were dispersed in deionized (DI) water (15 mL) via son-
ication. The (NH4)6Mo7O24·4H2O and CN2H4S were
then added into the mixture. After stirring for 30 min,

the solution was transferred into a 25-mL polytetra-
fluoroethylene (PTFE) autoclave and kept at 200 °C for
10 h. Finally, the MHs were collected in a centrifuge,
washed with DI water and dried at 60 °C.

Microstructural Characterization
The morphology and structure of pure CuFe2O4 nano-
tubes and CuFe2O4/MoS2 MHs were characterized by
field emission scanning electron microscopy (FE-SEM,
FEI NanoSEM200). X-ray diffraction (XRD) patterns
were recorded on a Rigaku Smartlab with Cu Kα radi-
ation operating at 45 kV and 200 mA. Transmission elec-
tron microscopy (TEM) measurements were conducted
on the JEOL 2100F. The energy dispersive X-ray spec-
trometer (EDS) was introduced to identify the chemical
composition. Raman measurements were performed
using a Renishaw inVia at room temperature with a 532-
nm excitation laser (2 mW).

Fabrication and Measurement of Gas Sensors
Gas sensors were fabricated by coating the mixture of
the tested materials (pure CuFe2O4 or CuFe2O4/MoS2
MHs) and DI water onto the interdigitated Au electrode
arrays (gap and width are 200 μm) on the SiO2/Si sub-
strate. Gas sensing properties of the sensors were mea-
sured by using a commercial CGS-4TPs system (Beijing
Elite Tech Co., Ltd., China). The response is defined as

Fig. 1 Schematic illustration of the preparation processes of CuFe2O4/MoS2 MHs
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Ra/Rg, where Ra is the resistance in atmospheric air and
Rg is the resistance in the tested gas, respectively.

Results and Discussion
The morphologies of pure CuFe2O4 nanotubes and
CuFe2O4/MoS2 MHs are shown in Fig. 2 and Additional
file 1: Figure S1. Both of the samples are well-defined
tubular nanostructures with several tens of micrometers
in length, and 70–150 nm in diameter, which can be
confirmed by the cross-section of broken nanotubes
(Additional file 1: Figure S1b). The SEM images (Fig. 2a,
b) show CuFe2O4/MoS2 MHs still maintains the original
tubular structure after the hydrothermal process. And
we can see that the CuFe2O4 nanotubes have a relative
smooth surface before compositing with tiny MoS2,
while the rough surfaces appear in the CuFe2O4/MoS2
MHs. Moreover, Raman spectroscopies were performed
to verify the presence of MoS2 in the CuFe2O4/MoS2

MHs. The strong vibrational modes of CuFe2O4 (T2g −
477 cm−1, A1g − 685 cm−1) and MoS2 ( E12g − 382 cm−1,

A1g − 409 cm−1) can be found in pure CuFe2O4 nano-
tube or MoS2 nanosheet samples (Fig. 2c). By comparing
with the pure CuFe2O4 nanotubes and MoS2 nanosheets
(Additional file 1: Figure S2), the Raman vibrational
mode of CuFe2O4 (T2g, A1g), and MoS2 (E

1
2g, A1g) all ap-

peared in the Raman spectrum of CuFe2O4/MoS2 MHs.
The position of these four peaks is unchanged, indicat-
ing the formation of the composite structure of CuFe2O4

and MoS2 in the CuFe2O4/MoS2 MHs. Meanwhile, the
XRD results of pure CuFe2O4 and CuFe2O4/MoS2 MHs
are shows in Additional file 1: Figure S3. It can be seen
that the diffraction peaks of CuFe2O4 are well indexed to
the standard JCPDS card (34-0425), revealing that the
CuFe2O4 belongs to a body-centered tetragonal structure.
The XRD pattern of the CuFe2O4/MoS2 is superimposed
by the diffraction peaks of CuFe2O4 and MoS2,

Fig. 2 SEM and Raman characterization of CuFe2O4 and CuFe2O4/MoS2 MHs. FE-SEM images of a pure CuFe2O4 nanotubes and b CuFe2O4/MoS2
MHs. c Raman spectra of pure CuFe2O4 nanotubes, pure MoS2 nanosheets, and CuFe2O4/MoS2 MHs

Fig. 3 TEM characterization of CuFe2O4/MoS2 MHs. Low-resolution TEM image of a CuFe2O4/MoS2 MHs and b partial zooming panel a in the
dotted line. c HRTEM image of the region in the dotted line in the b
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respectively (the standard JCPDS card of CuFe2O4 (34-
0425) and MoS2 (06-0097)), and there is no characteristic
peak for impurity in the XRD pattern, indicating that the
composite is consisted by the CuFe2O4 and MoS2 only.
To further characterize the microstructure of CuFe2O4/

MoS2 MHs, TEM observations were carried out, as shown
in Fig. 3 a. The low-resolution TEM images (Fig. 3b) show
that the surfaces of CuFe2O4 nanotubes are uniformly
covered with many hexagonal nanosheets 15–20 nm in

diameter. Figure 3 c gives the high-resolution TEM
(HRTEM) images of tiny nanosheets marked in Fig. 3b.
The lattice fringes spacing of 0.27 nm can be corre-
sponded to the (100) plane of MoS2. In addition, the
morphology and size of MoS2 can be tailored by adjusting
the hydrothermal reaction conditions (Additional file 1:
Figure S2). Selected area electron diffraction (SAED) pat-
tern also reveals the hexagonal symmetry for the layered
MoS2 (Additional file 1: Figure S4). To demonstrate the

Fig. 4 EDS result of CuFe2O4/MoS2 MHs. a SEM image of sample in dotted line of Fig. 3a. b–f The in-suit EDS intensity map of Mo, S, Cu, Fe, and
O, respectively

Fig. 5 Sensing measurements of CuFe2O4/MoS2 MHs. a Fabricated diagram of gas sensor and photos of fabricated gas sensor (CuFe2O4 nanotubes
and CuFe2O4/MoS2 MHs). Sensing reproducibility of the CuFe2O4 nanotubes and CuFe2O4/MoS2 MHs gas sensor to 100 ppm b ethanol and c acetone.
d, e Dynamic response-recovery curves of CuFe2O4 nanotubes and CuFe2O4/MoS2 MHs gas sensors at different acetone concentrations. f The
response increment rate of CuFe2O4/MoS2 MHs device relative to pure CuFe2O4 nanotube device at different acetone concentrations
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distribution of MoS2 nanosheets on the surface of
CuFe2O4 nanotubes, the in situ EDS elemental mapping
images of CuFe2O4/MoS2 MHs (marked in Fig. 3b) are
performed as shown in Fig. 4. The homogeneous distribu-
tion of Mo, S, Cu, Fe, and O elements indicates that a
large number of MoS2 nanosheets are uniformly dispersed
in CuFe2O4/MoS2 MHs.
In order to investigate their gas sensing properties, the

pure CuFe2O4 nanotubes and CuFe2O4/MoS2 MHs gas
sensors were fabricated as shown in Fig. 5 a and Add-
itional file 1: Figure S5. Figure 5b and c preset the
response-recovery curves of pure CuFe2O4 nanotubes
and CuFe2O4/MoS2 MHs gas sensors toward 100 ppm
ethanol and acetone (6 cycles), respectively. After com-
positing with the MoS2 nanosheets, it can be seen that
the CuFe2O4/MoS2 MHs sensor shows positive re-
sponses on exposure to both ethanol and acetone, which
are about 18–20% higher than those of pure CuFe2O4

nanotubes. Evidently, the CuFe2O4/MoS2 MHs sensor
exhibits consistent sensing responses even after 6 cycles,
indicating the good reversibility and repeatability. Figure
5d and e give the dynamic transient response curves of

pure CuFe2O4 nanotubes and CuFe2O4/MoS2 MHs gas
sensors to various acetone concentrations (0.5–1000
ppm). The CuFe2O4/MoS2 MHs sensor exhibits im-
proved response to each acetone concentration (Fig. 5f).
In particular, the percentage of improvement in acetone
response exceeds 20% at acetone concentrations not
higher than 50 ppm. It is noticeable that the acetone re-
sponses improved about 18% even at 0.5 ppm. That
means the CuFe2O4/MoS2 MHs are more sensitive to
acetone in contrast with pure CuFe2O4.
To probe the important role of MoS2 nanosheets in

the gas sensing reaction, the electronic band structures
of CuFe2O4 and multilayer MoS2 were calculated re-
spectively by using DFT (Fig. 6a, b). The indirect band-
gap of CuFe2O4 and multilayer MoS2 is about 1.3 eV and
1.2 eV, respectively. According to the results, the band
alignment of CuFe2O4/MoS2 MHs is drawn in Fig. 6c,
which forms a type-II band alignment. The improvement
of sensor response manifested in changes in the electrical
resistance (Ra/Rg) in the presence of air or target gas. Be-
cause of the type-II band alignment, the electron-hole
pairs can be separated effectively at the heterojunction

Fig. 6 DFT results of CuFe2O4/MoS2 MHs. Electronic structures of a CuFe2O4 nanotubes and b multilayer MoS2. c Schematic illustrations of the
type-II band alignment in CuFe2O4/MoS2 MHs. d The edge adsorption energy for CH3COCH3 molecules on CuFe2O4/MoS2 MHs. e Model for the
CuFe2O4/MoS2 MHs in acetone vapor
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interface. Holes remain within the CuFe2O4 nano-
tubes, while most electrons will be injected into MoS2
layers. When the pure CuFe2O4 or CuFe2O4/MoS2
MHs sensors are exposed to air, oxygen molecules
will adsorb on the surface of sensors to generate oxy-
gen species (O2

−, O−, and O2−). Meanwhile, the free
electrons transfer from CuFe2O4 or CuFe2O4/MoS2
MHs to oxygen species at sensors surface lead to the
decreases of electrical resistance (Ra). In the case of
target gas detection, the reaction of adsorbed oxygen
species and target molecules will occur on the sensor
surface (e.g., CH3COCH3 + 8O− → 3CO2 + 3H2O +
8e−) and release free electrons to the CuFe2O4 or
CuFe2O4/MoS2 MHs. Thus, the sensor resistance (Rg)
decreases in target gas. It is noteworthy that the
MoS2 edges offer high density of potential active sites
for reduction reaction [42–44]. Figure 6 d shows the
calculated adsorption energy of CH3COCH3 on
CuFe2O4/MoS2 MHs by using the DFT method. The
adsorption energy for CH3COCH3 molecules over the
edge of CuFe2O4/MoS2 MHs is − 30.07 eV (very
small). That means the edge of CuFe2O4/MoS2 MHs
are active sites for CH3COCH3 molecules. Benefiting
from the active sites in MoS2 nanosheets, the
CuFe2O4/MoS2 MHs obtained free electrons more ef-
ficiently compared with pure CuFe2O4 (Fig. 6e). The
positive effect is more obvious in low target gas con-
centration. While the improved gas response perform-
ance is limited in the extra-high concentrations due
to the limited active sites.

Conclusions
We report a novel CuFe2O4/MoS2 MHs and the obvious
improvement of sensing performance for acetone. The
CuFe2O4/MoS2 MHs are confirmed by Raman, SEM,
XRD, TEM, and EDS results. The coupling interactions
between CuFe2O4 and MoS2 lead to the formation of
type-II heterostructures, which is verified by DFT re-
sults. The practical gas sensor devices were fabricated
based on CuFe2O4/MoS2 MHs and shows the high sensi-
tivity and excellent repeatability. A sensing enhancement
is also seen with ethanol gas. The enhancement of gas
sensing properties of the CuFe2O4/MoS2 MHs can be
attributed to the effect of type-II band alignment and the
MoS2 active sites. We believe that our studies will be valu-
able for the various applications of mixed-dimensional
heterostructures.
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