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Abstract 

This work presents a method for obtaining a color-converted red light source through a combination of a blue GaN 
light-emitting diode and a red fluorescent color conversion film of a perovskite CsPbI3/TOPO composite. High-quality 
CsPbI3 quantum dots (QDs) were prepared using the hot-injection method. The colloidal QD solutions were mixed 
with different ratios of trioctylphosphine oxide (TOPO) to form nanowires. The color conversion films prepared by the 
mixed ultraviolet resin and colloidal solutions were coated on blue LEDs. The optical and electrical properties of the 
devices were measured and analyzed at an injection current of 50 mA; it was observed that the strongest red light 
intensity was 93.1 cd/m2 and the external quantum efficiency was 5.7% at a wavelength of approximately 708 nm 
when CsPbI3/TOPO was 1:0.35.
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Background
Numerous types of quantum dots (QDs), including CdSe 
QDs [1], carbon QDs [2], InP QDs [3], CuInS2 QDs [4], 
CdTe QDs [5], and perovskite QDs [6, 7], were widely 
studied to be involved in the main mechanism that 
underlies the observed phenomenon. QDs have been 
utilized in the field of light-emitting diodes (LEDs) [8, 
9], solar cells [10, 11], photodetectors [12, 13], and bio-
markers [14, 15] and have been adopted to construct sen-
sors to detect biologically interesting molecules [16]. In 
particular, a perovskite material was the most popular 
potential materials in recent years, and enormous pro-
gress and applications have been made in this direction 
[17–23]. They can be synthesized to have various dimen-
sional morphologies, including three-dimensional (3D) 

morphologies such as thin film and bulk single crystal, 
two-dimensional (2D) morphologies such as nanoplates 
and nanosheets, one-dimensional (1D) such as nanowires 
and nanorods, and zero-dimensional (0D) morphologies 
such as QDs and nanoparticle structures. All-inorganic 
perovskite QDs (CsPbX3, X = Cl, Br, I) have excellent 
optical properties such as a high absorption coefficient, 
a narrow half-peak width of 20–40 nm, a quantum yield 
of up to 90%, and higher stability than hybrid organic–
inorganic perovskite QDs [such as MAPbX3 and FAPbX3 
(X = Cl, Br, I)] [24–27]. The synthesis method is simple 
and low cost and is expected to replace traditional fluo-
rescent materials. Moreover, by adjusting the ratio of 
halogen element X (X = Cl, Br, I), we can adjust the emis-
sion wavelength of perovskite CsPbX3 QDs from 380 to 
780  nm and can achieve an all-visible light region [28–
30]. The integration of perovskite QDs into LEDs can 
achieve a breakthrough of more than 110% of the NTSC 
color gamut and a better color rendering performance 
[23, 31–34]. This showed that CsPbI3 QD has consider-
able potential to become a candidate material for red 
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phosphor. In contrast, cadmium-containing QDs were 
highly toxic. After they were prepared into various types 
of application-end products, the environmental damage 
was considerable. Considering environmental protection 
issues, the development of cadmium-free QD materials 
is necessary, but the efficiency of cadmium-free materi-
als is poor, the full width at half maximum (FWHM) is 
wide, the improvement in efficiency and the control of 
FWHM are the focus of the development of cadmium-
free QDs, and the instability of perovskite-based devices 
still hinders their entry to the commercial market [35]. 
As far as we know, there have been few reports on the 
use of CsPbI3 QDs as red phosphor to manufacture red 
LEDs, most of which include the addition of the halogen 
element Br to form CsPbBrxI3−x QDs [36–38].

Trioctylphosphine oxide (TOPO), a highly branched 
capping ligand with a strong steric effect, is commonly 
used as a capping ligand for conventional II–VI, III–V, 
and IV–VI QDs [39–41]. Because of the highly branched 
molecular structure and the relatively strong coordina-
tion ability of the P=O group, TOPO species can coop-
erate with the surface of the obtained QDs through a 
certain scheme, thereby providing a more complete 
surface passivation for the QDs [42–44]. Zhang and 
co-workers successfully synthesized the monodisperse 
TOPO-capped CsPbX3 QDs with excellent stability 
against an ethanol solvent attack by introducing TOPO in 
the Pb precursor with an oleic acid (OA) and oleylamine 
(OAm) system [45]. Zhang et al. [46] performed a novel 
synthesis of CsPbxMn1−xCl3 QDs by using TOPO and a 
Mn organometallic complex as the Mn reaction precur-
sor, which exhibited PLQYs as high as 63% and excellent 
dispersibility and stability. Herein, we present a hot-
injection method to synthesize CsPbI3 QDs and then 
prepare a perovskite CsPbI3/TOPO composite with high 
PL intensity by introducing TOPO into the CsPbI3 QD 
solution. We found that the CsPbI3/TOPO composite 
could form CsPbI3 nanowires and QDs, as well as show 
excellent material and optical characteristics. Then, the 
CsPbI3/TOPO composite was uniformly mixed with UV 
resin to prepare a color conversion fluorescent film, and 
a color-converted pure red LED was obtained by exciting 
the blue GaN-based LED chip.

Methods
Cesium carbonate (Cs2CO3, 99.998%) and lead (II) iodide 
(PbI2, 99.999%) were purchased from Alfa Aesar. 1-octa-
decene (ODE, 90%), oleic acid (OA, 90%), oleylamine 
(OAM, 90%), and trioctylphosphine oxide (TOPO, 99%) 
were purchased from Sigma-Aldrich. Ethyl acetate (EA), 
n-hexane, and acetone were purchased from Echo Chem-
ical. Ultraviolet (UV) resin (U-76063S-A) was purchased 
from Synergy Innovation.

Perovskite CsPbI3 QDs were prepared by using the 
hot-injection and ice water bath methods, as presented 
in Fig. 1. Firstly, 81.4 mg of Cs2CO3 and 0.25 mL of OA 
were added to a glass vial containing 3 mL of ODE, and 
the mixture was placed on a 200 °C hot plate and stirred 
magnetically for 0.5 h until completely dissolved to form 
an optically clear Cs-oleate precursor solution. Then, PbI2 
(200  mg), OA (1  mL), and OAm (1  mL) were added to 
a glass bottle containing ODE (10 mL), and the mixture 
was placed in a 140 °C heating bag and stirred for 0.5 h 
until the PbI2 salt had completely dissolved. Thereafter, 
the heating temperature was increased to 160  °C and 
stirred for 5 min, followed by quickly injecting 0.8 mL of 
the Cs-oleate precursor solution by using a micro-drop-
per. After 10 s, the CsPbI3 crude solution was placed in 
an ice water bath for 40 s to immediately stop the reac-
tion and was cooled to room temperature. To wash the 
CsPbI3 QDs, the crude solution was precipitated by 
using the EA washing solvent in a volume ratio of 1:4 via 
centrifugation with 6000 rpm for 15 min and finally dis-
persed in 1 mL of n-hexane under ultrasonication for fur-
ther use. All the synthesis and washing occurred under 
ambient atmospheric conditions.

Furthermore, 20 mg of TOPO powders was added into 
1 mL of hexane and at room temperature while stirring 
at 600 rpm until the powders were completely dissolved. 
Subsequently, the perovskite CsPbI3 QD solution was 
added to the TOPO/hexane system with different volume 
ratios (volume ratios 1:0.15, 1:0.35, and 1:0.60 of CsPbI3 
QDs and TOPO) while stirring for 1  min at room tem-
perature to obtain the CsPbI3/TOPO composites.

The different ratios of CsPbI3/TOPO composites were 
mixed with the UV resin (volume ratio 1:2 of CsPbI3/
TOPO composite and UV resin). Then, the resulting 
mixture was vacuumed for 0.5 h to remove the bubbles. 
The different ratios of CsPbI3/TOPO–UV resins were 
obtained. The blue GaN-based LED chip (1 mm × 1 mm) 
with an emission wavelength of 455 nm was mounted in 
a groove with a diameter of approximately 7 mm. There-
after, these mixtures were coated/filled onto glass sub-
strates and blue LED chips and baked at 40 °C for 3 min 
and then cured using a 365 nm UV lamp for 60 s in the 
glove box to form color conversion films and color-con-
verted red LEDs, as shown in Fig. 2.

For the characterization, the crystal phases, absorp-
tion spectrum, photoluminescence (PL) spectra, and 
PL quantum yield (PLQY) of CsPbI3 QDs and CsPbI3/
TOPO composites were obtained using field-emission 
scanning electron microscope (FESEM) (ZEISS Sigma, 
ZEISS, Munich, Germany), high-resolution transmis-
sion electron microscopy (HRTEM) (JEM-2100F, JEOL, 
Tokyo, Japan), X-ray diffraction (XRD) with CuKα 
radiation (X’Pert PRO MRD, PANalytical, Almelo, The 
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Netherlands), UV–Vis spectrophotometer (Thermo 
Scientific™ Evolution 220, Thermo Fisher Scientific, 
Taiwan), fluorescence spectrophotometer (F-7000, 
Hitachi, Tokyo, Japan), and a FluoroMax spectrofluo-
rometer with an integrating sphere fiber coupled to a 
fluorometer (Horiba Jobin Yvon, Longjumeau, France). 
The current–voltage (I–V), luminance, external quan-
tum efficiency (EQE) characteristics, and electrolumi-
nescence (EL) spectra of perovskite color-converted 
red LEDs were measured by a Keithley 2400 source 
meter and a Spectrascan® spectroradiometer PR-670 

(Photo Research Inc., Syracuse, NY, USA) at room 
temperature.

Results and Discussion
The crystal structures of the obtained CsPbI3/TOPO 
composite films with different ratios were character-
ized by using XRD, as shown in Fig.  3. The addition of 
TOPO did not change the microscopic reorganization 
of CsPbI3 QDs, and the QDs were located at approxi-
mately 14.95° and 29.1°, corresponding to the (100) and 
(200) crystal planes of the CsPbI3 cubic lattice structure, 

Fig. 1  Schematic representation of the synthesis of perovskite CsPbI3 QDs via hot-injection and ice water bath methods

Fig. 2  Schematic representation of encapsulating strategy
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respectively. Moreover, no crystal binding or by-prod-
ucts appeared with other small crystal diffraction peaks. 
When the CsPbI3/TOPO ratio was 1:0.35, the diffrac-
tion peak of the perovskite CsPbI3/TOPO composite 
film in the XRD pattern was stronger and sharper than 
that of the other CsPbI3/TOPO ratios; meanwhile, the 

(111), (210), and (211) crystal planes of other cubic lattice 
structures appeared, which confirmed that the perovskite 
composite prepared with this parameter had better crys-
tallinity [47, 48]. In contrast, excessive TOPO (CsPbI3/
TOPO = 1:0.60) led to a decrease in perovskite crystal-
linity, which could be attributed to the excessive amount 
of TOPO that caused the CsPbI3 QDs to produce more 
nanowire-like structures, resulting in a decrease in film 
compactness.

Figure  4 shows the film formation SEM images of 
CsPbI3/TOPO composite films with different ratios 
coated on the glass substrates. Figure 4a shows the mor-
phology of the CsPbI3 QD film without TOPO, which was 
formed by the aggregation of discontinuous, large grains 
and QDs. After the addition of different ratios of TOPO, 
surprisingly, the nanowires of the CsPbI3/TOPO com-
posite films with diameters of 50–160 nm and lengths up 
to several microns, as well as QDs adhered to the nanow-
ires, were observed (Fig.  4b–d). In addition, when the 
amount of TOPO increased, most of the CsPbI3/TOPO 
composite materials formed thicker nanowires and the 
QD grain size increased, resulting in reduced film cover-
age and poor quality.

According to the XRD and SEM results, nanow-
ires and QDs can be obtained by adding TOPO to the 
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Fig. 3  X-ray diffraction (XRD) patterns of CsPbI3/TOPO composite 
films with different ratios

Fig. 4  Top view of SEM micrographs of CsPbI3/TOPO composite films with different ratios: a 1:0, b 1: 0.15, c 1:0.35, d 1:0.60
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CsPbI3 QD solution. We chose to have better CsPbI3/
TOPO composite (CsPbI3/TOPO = 1:0.35) quality and 
analyze its nanowires and QDs by using HRTEM. The 
HRTEM images of the perovskite CsPbI3 QDs and the 
CsPbI3/TOPO composite (CsPbI3/TOPO = 1:0.35) solu-
tions are displayed in Fig. 5a, b. Figure 5a clearly shows 
that TOPO-free CsPbI3 had a cubic shape and uniformly 
arranged QDs and was measured to have a narrow size 
distribution in the range of 7–12  nm. CsPbI3 nanow-
ires and QDs were obtained when the ratio was CsPbI3/
TOPO = 1:0.35, as shown in Fig.  5b. The nanowires of 
the CsPbI3/TOPO composite were in a broad diameter 
range of 7–14  nm with a length range of 50–170  nm, 
and the particle size range of QDs was 5–8 nm (Fig. 5c). 
We attributed the formation of the nanowire-type struc-
ture to the coordination bonds between the O-donor 
base in TOPO (Lewis base) and the perovskite QDs. It 
was attributed to the fact that the Pb in the CsPbI3 was 
a Lewis acid and TOPO was a Lewis base. In the Lewis 
acid–base interactions, a base was defined as the electron 
donors and an acid was defined as the electron accep-
tors. A Lewis acid–base reaction occurred when a base 
donated a pair of electrons to an acid, which formed a 
Lewis acid–base adduct, a compound that contained a 
coordinate covalent bond between the Lewis acid and the 
Lewis base [30, 47]. An energy-dispersive X-ray (EDX) 

analysis was performed to check the composition and 
the stoichiometric ratio of the nanowires in the CsPbI3/
TOPO composite, and the result is shown in Fig.  5d. 
There were no impurity element-related peaks in the EDX 
spectrum, which confirmed the XRD result of the pure 
phase formation. The observed constituent elements and 
atomic ratios were proved to be CsPbI3. In addition, we 
found that the size of the nanowires and QDs as observed 
by TEM was different from that obtained from the SEM 
analysis, which might be attributed to the aggregation 
phenomenon caused by the solution after spin coating.

Figure 6 compares the effects of different TOPO ratios 
on the UV–Vis absorption and PL spectra of the perovs-
kite CsPbI3/TOPO composite films, where the absorp-
tion peak was at approximately 700  nm, while the PL 
peak was located at approximately 692 nm. Table 1 shows 
the optical properties of CsPbI3 QDs and CsPbI3/TOPO 
composite films. Figure  6a shows that the TOPO treat-
ment caused a slight shift in absorption; it was observed 
that the absorption of the CsPbI3/TOPO composite film 
enhanced slightly as the TOPO content increased. How-
ever, the absorption slightly declined when the ratio of 
CsPbI3/TOPO exceeded 1:0.35. In the visible-light region 
(470–800  nm), the absorbance of the CsPbI3/TOPO 
composite film prepared with the CsPbI3/TOPO ratio 
of 1:0.35 increased, indicating improved crystallinity. 

Fig. 5  High-resolution TEM (HRTEM) micrographs of CsPbI3/TOPO composite solutions with different ratios: a 1:0, b 1:0.35, c 1:0.35 
high-magnification, d energy-dispersive X-ray (EDX) analysis for the nanowire in the CsPbI3/TOPO composite
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Figure 6b shows the observation that the PL intensity of 
all perovskite CsPbI3/TOPO composite films added with 
TOPO was higher than that of the CsPbI3 QD film with-
out TOPO. When UV light was irradiated on the perovs-
kite CsPbI3/TOPO composite films, the films absorbed 
the photons and caused the electrons in the valence 
band to jump to the conduction band. The photons in 
the conduction band transitioned back to the valence 
band for emission or to fall into the traps in the film to be 
quenched. Therefore, when the perovskite CsPbI3/TOPO 
composite films had high quality and relatively few traps 
or defects, the fluorescent signal was stronger. When 
the CsPbI3/TOPO ratio was 1:0.35, the PL intensity was 
the strongest with a high PLQY of 47.2% and a narrow 
FWHM of approximately 36.4  nm, which implied that 
the perovskite CsPbI3/TOPO composite film prepared in 
this ratio was of high quality.

As presented in Fig. 7a, the I–V curves of the CsPbI3/
TOPO composite-converted red LEDs with different 
ratios were almost the same, confirming that the coat-
ing QDs had nearly no influence on the LED circuit. The 
luminance–current (L–I) and EQE–current (EQE–I) 
characteristics for all the LED devices are shown in 
Fig.  7b, c, and the optoelectronic characteristics of the 
devices are summarized in Table  2. We found that the 
maximum brightness and EQE values of the devices 

increased first and then slightly declined with a continu-
ous increase in the TOPO content of the CsPbI3/TOPO 
composite. The performances of the CsPbI3/TOPO 
composite-converted red LEDs could be optimized by 
altering the TOPO amount, and the optimized ratio of 
CsPbI3/TOPO was 1:0.35. The optimized CsPbI3/TOPO 
composite-converted red LED device exhibited a turn-
on voltage of 2.65  V (@20  mA) and maximum bright-
ness and EQE values of 93.1 cd/m2 and 5.7%, respectively, 
which were significantly better than those of the other 
devices. In contrast, the maximum brightness and EQE 
values of the other CsPbI3/TOPO ratios (1:0, 1:0.15, and 
1:0.60) were 57.1, 66.5, and 44.8  cd/m2, as well as 3.0%, 
4.0%, and 2.4%, respectively. However, the surface defects 
caused by the CsPbI3/TOPO composite films treated 
with excessive TOPO content reduced the ability of fluo-
rescence conversion, resulting in a significant decrease in 
both luminance and EQE. This result was inferred from 
the SEM observation that excessive TOPO content led to 
a decrease in the film coverage and quality. The emission 
spectra of all the CsPbI3/TOPO composite-converted 
red LEDs with different ratios under a driving current of 
50 mA are shown in Fig. 7d, which illustrates that all the 
color-converted devices had a major EL peak at 708 nm 
with a FWHM of approximately 34 nm.

We found that the luminance of a CsPbI3/TOPO 
composite-converted red LED dropped by only 
31.42%, whereas it dropped by up to 75.68% for a 
CsPbI3-converted red LED, as shown in Fig. 8. The lumi-
nance of a CsPbI3-converted red LED showed a rapid 
linear decrease with an increase in the stored time, while 
a CsPbI3/TOPO-converted red LED showed that ∼ 85% 
of the initial value was maintained even within the first 
four days. Thus, we concluded that a CsPbI3/TOPO-
converted red LED not only had more luminance than 
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Fig. 6  a Ultraviolet–visible (UV–Vis) absorption spectra, b photoluminescence (PL) spectra of CsPbI3/TOPO composite films with different ratios; the 
inset is the fluorescence photograph of the CsPbI3/TOPO composites/glass under 365 nm light excitation

Table 1  Optical properties of CsPbI3 QDs and CsPbI3/TOPO 
composite films

QDs/TOPO 1:0 1:0.15 1:0.35 1:0.60

PL (nm) 691 692 692 693

FWHM (nm) 37.9 37.2 36.4 36.8

PLQY (%) 32.8 35.8 47.2 37.4



Page 7 of 9Chen et al. Nanoscale Res Lett          (2020) 15:216 	

the CsPbI3-converted design but also improved stability. 
Although a CsPbI3/TOPO composite material is pro-
posed to incorporate TOPO to improve the quality of the 
quantum-sized composite material, the stability of the 
composite material still needs to be improved to meet the 
practical application standards in future work.

Conclusions
In conclusion, we presented a simple method to pre-
pare all-inorganic perovskite CsPbI3 QDs under ambi-
ent atmosphere and then combined a TOPO solution 
to obtain the CsPbI3/TOPO composite including QDs 
and NWs. The TEM image was obtained; it revealed 
that the perovskite CsPbI3 gradually changed from a 

QD type to a nanowire type with an increase in the 
amount of TOPO. The PL spectra were examined. They 
revealed that the PL intensity of CsPbI3/TOPO compos-
ites increased with increasing TOPO; the PLQY of the 
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Table 2  Optoelectronic properties of  CsPbI3/TOPO 
composite-converted red LEDs

QDs/TOPO 1:0 1:0.15 1:0.35 1:0.60

Lmax (cd/m2) 57.1 66.5 93.1 44.8

EQEmax (%) 3.0 4.0 5.7 2.4
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Fig. 8  Stability of CsPbI3-converted and CsPbI3/TOPO 
composite-converted red LEDs
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CsPbI3/TOPO composite also improved as compared to 
that of the TOPO-free CsPbI3 QDs. Finally, it was applied 
in a color conversion device using the UV resin; it could 
be easily made into a quantum composite thin film and 
affected by water and oxygen, thereby extending the life-
time of the CsPbI3/TOPO composite in the atmospheric 
environment.
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