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Abstract

have potential applications in rectification nano-devices.

We propose a planar model heterojunction based on a-borophene nanoribbons and study its electronic transport
properties. We respectively consider three types of heterojunctions. Each type consists of two zigzag-edge
a-borophene nanoribbons (ZaBNR), one is metallic with unpassivated or passivated edges by a hydrogen atom
(1H-ZaBNR) and the other is semiconducting with the edge passivated by two hydrogen atoms (2H-ZaBNR) or a
single nitrogen atom (N-ZaBNR). Using the first-principles calculations combined with the nonequilibrium Green'’s
function, we observe that the rectifying performance depends strongly on the atomic structural details of a junction.
Specifically, the rectification ratio of the junction is almost unchanged when its left metallic ribbon changes from
ZBNR to TH-ZaBNR. However, its ratio increases from 120 to 240 when the right semiconducting one varies from
2H-ZaBNR to N-ZaBNR. This rectification effect can be explained microscopically by the matching degree the
electronic bands between two parts of a junction. Our findings imply that the borophene-based heterojunctions may
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Introduction

Over the past decades, a great number of two-dimensional
(2D) materials, including graphene [1, 2], silicene [3, 4],
transition metal dichalcogenides (TMD) [5, 6], and phos-
phorene [7, 8], have been extensively studied due to their
unique properties. Especially, these 2D materials demon-
strate some interesting electronic transport behaviors,
such as giant magneto resistance (GMR) [9, 10], negative
differential resistance (NDR) [11, 12], spin filtering [13,
14], and rectification [15, 16], thus having potential appli-
cations in nanoscale electronic devices. Recently, some
studies have also shown that 2D materials have broad
application prospects in nanoscale thermoelectric devices
[17-20]. Subsequently, the research on lateral heterojunc-
tions based on 2D materials becomes an important topic.
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And some theoretical studies have showed that the lateral
heterojunctions have potential applications in field effect
transistor and complementary metal oxide semiconduc-
tor technologies [21, 22]. Further, the lateral heterojunc-
tions with atomic thickness have already been prepared in
experiments [23, 24]. These achievements have inspired
the effort for further exploring lateral heterojunctions
made of more suitable 2D materials.

Recently, borophene monolayers have also received
extensive interests [25-28] after graphene and silicene.
The theoretical studies predicted that the monolayer
boron sheets can be stably existed on the metallic sub-
strate, which was confirmed by the subsequent observa-
tions [29, 30]. So far, a number of 2D boron structures
have been obtained by epitaxial growth on Ag (111) sub-
strates, such as B12-, x3-, d¢-borophene and honeycomb
borophene [31-34]. Theoretical studies point out that the
stability of the boron sheet can be increased by introduc-
ing a hexagonal hole [35]. The DFT calculations indicated
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that the borophene with a “hexagon hole density” () of
1/9, named as «—borophene [35, 36], is favorable in terms
of energy. Further, the zigzag edge a-borophene nanorib-
bon (ZaBNR) exhibits either metallic or semiconduct-
ing behavior through different edge modifications [37].
Hence, the electronic transport property for borophene
nanostructures remains to be explored further, although a
large number of studies have been carried out on the elec-
tronic structures, mechanical and thermal properties [25—
28].

In this work, we investigate the transport properties of
heterojunctions made of the zigzag edge ZaBNRs. We
construct three types of in-plane metal-semiconductor
lateral junctions. We find that all the junctions exhibit
rectification behavior in the low bias regime due to the
presence of the interfaces in the scattering region and the
asymmetry on the left and right sides. Moreover, the rec-
tifying effect of the junctions becomes pronounced with
the increase of primitive cell numbers in the semicon-
ductor part of the junction. The transport properties of
junctions strongly depended on right part semiconduct-
ing nanoribbons. This phenomenon can be ascribed to
the band gap near the Fermi level of the semiconducting
part. The probability of electrons through the junction to
be smaller when the band gap is increasing, which causes
the current of the junction decreased and the rectifica-
tion ratio increased. In particular, the rectification rate of
junction M10N can reach about 240, which is comparable
to the previously studied heterojunction with graphene
as an electrode and indicates that it has potential appli-
cations in rectification devices [38]. The organization of
this paper is as follows. In the “Model and Computational
Methods” section, we describe the computational details.
In the “Results and Discussion” section, we present the
transport properties of the proposed junctions. Finally, we
summarize our results in the “Conclusions” section.

Model and Computational Methods

The unit cells of the considered ZaBNRs without or with
outmost edge-apex modifications are shown in the upper
part of Fig. 1, where (a) for the unpassivated ZaBNR, (b—
d) for the ZaBNRs with the outmost edge boron atoms
of the cell passivated by one hydrogen (H), two H atoms
and replaced by a nitrogen (N) atom, which are named
as 1H-ZaBNR, 2H-ZaBNR, and N-ZaBNR, respectively.
And their corresponding electronic energy dispersions are
subsequently shown in the lower part of Fig. 1, from which
we can identify the difference in band structure for the rib-
bons. From Fig. 1a, several bands of the intrinsic pristine
ZaBNR crosses over the Fermi level (Er), which exhibits
metallic property. For 1H-ZaBNR, since the partially dan-
gling bonds are saturated with H atoms, the number of
bands near the Er are less than those for the unpassivated
one and also exhibits metal behavior. For 2H-ZaBNR,
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however, the Er moves to the gap between the bond-
ing and antibonding bands due to the dangling bonds at
the edge are saturated with two H atoms. Therefore, 2H-
ZaBNR is a semiconductor with a 0.43 eV direct band gap
at the I'-point as shown in Fig. 1c. We mention that our
results of band structure for H-passivated ribbons here
agree well with the previous numerical calculations [37].
Moreover, as shown in Fig. 1d, the band structure of N-
ZaBNR indicates that it is a semiconductor with a 1.0 eV
indirect band gap. This may be owing to the substitution
of N to the B atomic positions at the edge, which brings
enough electrons to fill the bonding orbits.

We establish three metal/semiconductor lateral hetero-
junction models based on the above mentioned ZaBNRs.
Each model junction is divided into three parts: the left
electrode, the right electrode, and the central scatter-
ing region. The geometry structure of the junctions, as
shown in Fig. 2, where the left electrode is always a semi-
infinitive long bare unpassivated ZoBNR or 1H- ZoBNR,
and the right electrode is either a semiconducting 2H-
or N-ZaBNR. Particularly, however, the central scattering
regions of the three junctions are a Zo#BNR unit cell cou-
pled with n (n = 1, 2, 5, 8, 10) unit cells of 2H-ZaBNR,
a 1H-ZaBNR coupled with 7 cells of 2H-ZaBNR, and a
ZaBNR cell coupled with #n cells of N-ZaBNR, respec-
tively. Likewise, we accordingly name them as the MnH,
M’nH and MnN junctions, which are shown in Fig. 2a—
¢, respectively. It is worth noting that Fig. 2 only shows a
schematic diagram of the model with #» = 1 and the other
cases of n are omitted for saving the space.

The calculations were performed using the software
package Atomistix ToolKit (ATK), QuantumWise A/S
(www.quantumwise.com), which is based on the DFT
combined with the Keldysh nonequilibrium Green’s func-
tion (NEGF) [39-41]. The Perdew-Burke-Ernzerhof (PBE)
functional under the generalized gradient approximation
(GGA) is used for the exchange-correlation potential. The
Borilliouin zone (BZ) is sampled by using a 1 x 1 x 100
Monkhorst-Pack k-mesh, and the cutoff energy is set to
150 Ry. The geometric structures of all heterojunctions
were relaxed until the absolute value of force acting on
each atom is less than 0.01 eVA~!. In order to avoid inter-
actions between periodic images, the supercell at least has
a vacuum layer thickness of 15 A.

The current through the heterojunction under a bias
voltage V is calculated by the Landauer-Biittiker formula
[42, 43]

I(V) =2e/h f T(E, V) [fL(E, V) — fr(E, V)] dE,

where %, e, and V are respectively the Planck’s constant,
the elementary charge, and the bias voltage, and f; /r(E, V)
is the Fermi-Dirac distribution function in the left/right
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Fig. 1 The unit cell geometries (upper) and band structures (lower) for a unpassivated ZaBNR, b 1H-ZaBNR, € 2H-ZaBNR, and d N-ZaBNR, where

the Fermi level is set to zero, and the pink, magenta, and white spheres represent boron, nitrogen, and hydrogen atoms, respectively
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Fig. 2 The geometry structures of the proposed three types of model junctions, where a for MnH, b for M'nH, and ¢ for MnN, in which n represents
the number of unit cells of the semiconductor part in the central scattering. The large (blue) dashed frame represents the central scattering region
in which the small one indicates the unit cell
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electrode. The transmission coefficient is calculated by
T(E, V) = Tr[TL(E, VIGE VITR(E, V)G B V),

where G(E,V) and G'(E,V) denote the retarded and
advanced Green’s function, respectively, and I'; (I'r) is
the coupling matrix between the central scattering region
with the left (right) electrode.

Results and Discussion

The calculated current—voltage (I — V') curves of hetero-
junctions MnH, M’nH, and MuN within the bias range of
—1.0 to 1.0 V are shown in Fig. 3a—c, respectively. From
these I — V curves, we can clearly see that with the incre-
ment of positive bias, the current increases rapidly in all
three types of junctions. However, with the increase of
the negative bias, the current through the junctions are
increased more slowly. The I — V curves have obviously
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asymmetric characteristics under the whole bias, which
means that the junctions have a rectification behavior
within the bias range. The rectification effect in the het-
erojunction is mainly caused by the asymmetry of the
different nanoribbons on the left and right sides and
the formation of the interface in the central scattering
region. In order to evaluate the strength of the rectifi-
cation behavior, we use the data for the I — V curves
to calculate the rectification ratio (RR), which is defined
as RR(V)=|I(+V)|/|I(—=V)|, where I(£V) represents the
current under positive and negative bias. The calculated
RRs of the three types of junctions MnH, M'n#H, and MuN
within the 0.1 V—0.5 V bias range are shown in Fig. 3d—
f, respectively. For type MnH, the RR of M1H is only 3
at 0.2 V while that of M10H can reach 115 at the same
bias. Similarly, for the M'uN type at bias 0.2 V, the RR of
M'1H is 3 and that of M'10H is up to 90. Moreover, for
the MnN type, the RR of M1N is 2 at 0.3 V while that of
MION reaches up to 240. Further, by careful observation
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Fig. 3 The |-V characteristics and rectification ratios for the three types of heterojunctions, where a—c correspond to /- curves for junctions MnH,
M’nH, and MnN (n =1, 2, 5, 8, 10) within bias range of (— 1,1) V, respectively. The inset in ¢ is the enlarged -V curves of MnN within the bias range.
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on Fig. 3, we find that the magnitude of the current and
RR can be controlled by changing the size of the semicon-
ductor part of the junction. In specific, on the one hand,
the current in the junction is reduced with the number
of primitive cells of the semiconductor part is increased.
On the other hand, the RR is significantly increased
with the number of primitive cells is increased. Since
the right side of the heterojunction is a semiconductor
nanoribbon with a band gap, the probability of electron
tunneling decays exponentially as the length of the semi-
conductor increases. As a result, in the heterojunctions
of MnH, M'nH, and MxN, as 7 increases, RR increases
significantly. This result is in good agreement with pre-
vious studies on the heterojunctions based on other 2D
materials [44—46].

Comparing the I — V curves and RRs among the three
types of heterojunctions shown in Fig. 3, we find that the
variation of I — V curves and RRs for MunH and M'nH
have the similar trends. However, those for MuN are
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significantly different. In order to explain the difference
in transport properties of the three types of junctions, we
have calculated the transmission spectra under zero bias
shown in Fig. 4, where the band structures of the left and
right electrode are accompanied. From these transmis-
sion spectra, one can see that all of the junctions have a
transmission gap near the Fermi level, where we use the
magenta dotted line to denote the gap position. The rea-
son for the existence of the transmission gap is that the
energy band structure of the right electrode has a gap
near the Fermi level. Thus, the band structure of the left
and right electrodes does not match, causing the trans-
port channel to be closed, and the electrons of the left
electrode cannot reach the right electrode. This is also
the physical origin of the weak current at the low bias.
Additionally, the comparison of Fig. 4a, b and Fig. 4a, c
shown that the transmission spectra of MnH and M'nH
under zero bias has similar trends; however, the trends
of MunH and MnN are quite different. This is determined

-------- M1H -----M5H —— M10H
1 582 N>

S
2
>
©) 2°| | |
c
w g e f— —
-1 s 5 . -
Left T(E) Right

Fig. 4 The band structure of the left and right electrode, where the Fermi level is set to zero and the magenta dashed lines indicate the band gap of
the right semiconductor electrode. The transmission spectra at zero bias for heterojunctions a MnH, b M'nH, and € MnN with n=1 (red dashed line),
5 (blue dashed line), and 10 (green solid line) are correspondingly shown in the middle part of each figures, respectively
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by the matching degree of the left and right electrodes
band structures near the Fermi level. The left metallic
nanoribbon of the junction M'nH changes from ZaBNR
to 1H-ZaBNR compared to MunH. The matching degree
between left and right electrodes near the Fermi level is
almost unchanged. However, for MuN, the right semi-
conductor nanoribbon is changed from 2H-ZaBNR to
N-ZaBNR compared to MrH. The band gap is increased
from 0.43 eV to 1.0 eV, which results in a decrease in the
matching degree of the left and right electrodes near the
Fermi level. Therefore, the transport properties of MnH
and M'#H are almost same, while the MnH and MuN
are obviously different. This result indicates that chang-
ing the left part metallic nanoribbon has a little effect on
the transport properties of the junction; however, chang-
ing the right part semiconductor nanoribbon has a great
influence on it.

To further understand the details of the rectification
behavior for the heterojunctions, we calculated the trans-
mission spectra at several certain biases, as shown in Fig.
5, where the above/below part shows the transmission
spectra of the junction under the positive/negative bias.
According to the Landauer-Biittiker formula, we know
that the current in the junction is directly related to the
integrated area of the transmission spectrum within the
bias window [47-49]. From the transmission spectrum
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shown in Fig. 5, we can see that the three types of models
have a common trend. In the bias window, the integrated
area of the transmission spectrum decreases with the
number of primitive cells in the semiconductor part is
increased. This is why the current in the heterojunction
decreases with the number of cells in the semiconductor
portion is increased, as shown in Fig. 3. Figure 5a shows
the transmission spectra of the heterojunctions MnH at
£ 0.3 V. For M1H, the integral area of the transmission
spectrum in the bias window at 0.3 V is only slightly
greater than — 0.3 V. Hence, the current of 0.3 V is only
slightly higher than — 0.3 V, and the RR is only 3 at the
bias 0.3 V. However, for M5H and M10H, the integral area
of the transmission spectrum under positive bias in the
bias window is significantly greater than under negative
bias. This leads to the current of the M5H and M10H
under positive bias being greater than under negative bias,
and the RR is much larger than M1H. Figure 5b shows
the transmission spectra of M'nH at &+ 0.3 V. From the
figure, one can see that the transmission spectra of M'nH
in the bias window are almost the same as MnH. There-
fore, under the same bias voltage, the current and the RR
of M’nH and MuH are nearly the same [see Fig. 3b, e].
The transmission spectra of MuN at £0.9 V are shown in
Fig. 5¢. Since the transmission coefficients in the bias win-
dow are too small, we magnify the transmission spectra
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Fig. 5 The transmission spectra for heterojunctions a MnH at a bias = 0.3 V, b M'nH at a bias + 0.3V, and € MnN at a bias £ 0.9 V with the same
choice of niin line colors for Fig. 4, where in each figure the upper/lower part for the transmission at the positive/negative bias. The two vertical
(magenta) solid lines indicate the bias window. The inset in Fig. 5c is an amplification of the transmission spectra in the bias window
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in the bias window and attach it as an inset to the lower
right side of Fig. 5¢. The trend of the MIN transmission
spectrum in the bias window is similar to the M1H and
M’1H. Therefore, the RR of M1N is also small. For M5N
and M10N, the integral area of the transmission spectrum
under positive bias in the bias window is much larger than
the area under negative bias. Therefore, compared with
MIN, the asymmetric characteristics of these I — V' curves
are more obvious. This implies that they have a large recti-
fication ratio. It is worth mentioning that the RR of M10N
can reach 240, which is the best among the three types
heterojunction.

In order to more intuitively explain the transmission
spectrum in Fig. 5, we show the transmission eigenstate
of M5H and M/5H at V = 03 V, E = — 0.15 €V, and
V =—-03YV, E=0.15 eV in Fig. 6a and b, respectively.
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And the transmission eigenstate of M5N at V = 0.9 V,
E=—-045¢eV,and V = — 09 V, E = 045 eV are
shown in Fig. 6¢ [15, 16, 49]. The analysis of transmission
eigenstate can obtained by linearly combining the propa-
gating Bloch states ), Cu V. The C,,y can be derived
from the diagonalization of the transmission matrix, i.e.,
> w TnCan=AqCam, where A, is the transmission eigen-
value. As can be seen from Fig. 6, for all heterojunc-
tions, the transmission eigenstate under negative bias is
located in the metallic part (unpassivated Zo#BNR and
1H-ZaBNR). At positive bias, the transmission eigenstate
is mostly localized on the left part. However, it forms a
transmission channel in the heterojunction. The electrons
can be transferred from the left electrode to the right elec-
trode. Therefore, in the bias window, the transmission
coefficient under positive bias is greater than the under
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negative bias. In comparison Fig. 6a with b, one can see
that the transmission eigenstate of M’5H and M5H are
only slightly different. Thus, the heterojunctions M'5H
and M5H have almost the same transmission coefficients
in the bias window. In addition, for M5N, since the band
gap of the semiconductor part increases, which results in
more dramatic electronic scatter in the heterojunction.
Therefore, only a few of the transmission eigenstates can
be transmitted to the right side. This led to the transmis-
sion coefficient of MzN in the bias window is smaller than
that of the other two types of heterojunction. Meanwhile,
at the same bias, the current of MnN is the smallest of the
three types of heterojunctions.

Finally, in order to further explore the effect of the left
and right nanoribbons on the transport properties with
heterojunctions, Fig. 7 shows the projected density of
states (PDOS) of the three types of heterojunctions. From
Fig. 7a, one can see that the PDOS spectra contributed
by the left electrodes (unpassivated ZaBNR) of the junc-
tions M1H, M5H, and M10H with overlap together near
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the Fermi level. This indicates that the PDOS contributed
by the left electrode is hardly affected by the extension
of the semiconductor nanoribbon (2H-ZaBNR) in the
center scattering region. However, the PDOS spectra con-
tributed by the right electrode (2H-ZaBNR) has a gap near
the Fermi level. This is caused by a band gap near the
Fermi level of the right electrode [see Fig. 3c]. Affected
by the extension of the intermediate scattering region 2H-
ZaBNR, the PDOS spectra contributed by the right elec-
trodes of junctions M1H, M5H, and M10H differ greatly
from each other in the energy range outside the band gap.
Since there are no essential difference between the two
electrodes for heterojunction M'nH and MnH, the right
electrode is the same and the left electrode is metallic rib-
bon. So, the PDOS of M’nH and M#nH are almost the same
near the Fermi level, as shown in Fig. 7a, b. This is one of
the reasons why the transmission spectrum, I — V curves
and RR of M#H and M’uH are similar under low bias [see
Figs. 3 and 5]. In Fig. 7c, we present the PDOS of the MuN.
Due to the band gap of the semiconductor part in the

PDOS

PDOS

PDOS

o

Energy(eV)

Fig. 7 The projected density of states (PDOS) of the left unpassivated ZBNR electrode (upper) and the right electrode (1H-ZaBNR, 2H—ZBNR, or
N-ZaBNR) (lower) for a MnH, b M'nH, and € MnN with the same choice of n in line colors for Fig. 5, respectively

0.0
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heterojunction increases, the effect of the left electrode
on transmission properties becomes smaller. Therefore,
PDOS overlaps each other within a larger energy range
near the Fermi level. The PDOS spectrum contributed
by the right electrode exists a gap in the energy range of
(= 0.5, 0.5) eV. They are consistent with the position of
the gap with N—ZBNR band structure. From the PDOS,
we can conclude that the left side metal electrode has lit-
tle effect on the transport properties of the intermediate
scattering region. However, the semiconductor part elec-
trode on the right is critical to the transport properties of
the intermediate scattering region.

Conclusions

In summary, we have studied the transport properties
of a—borophene based three type heterojunctions. We
found that the three types of heterojunctions exhibit rec-
tification behavior, among which the rectification ratio of
heterojunction ZoBNR/N-ZaBNR can reach up to 240.
Moreover, as the number of unit cells in the central
semiconductor part increases, the effect of rectification
becomes more obvious. The origin of the rectification
behavior is revealed and discussed by analyzing the trans-
mission spectra and eigenstates under positive/negative
bias. The rectification behavior of the heterojunctions
strongly depends on the band gap value of the nanorib-
bons in the semiconductor part. This conclusion was
further confirmed by analyzing PDOS contributed by the
left and right electrodes. Our results provide new lines for
the design of rectifying electronic devices.
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