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Abstract

The defects into the hexagonal network of a sp2-hybridized carbon atom have been demonstrated to have a
significant influence on intrinsic properties of graphene systems. In this paper, we presented a study of
temperature-dependent Raman spectra of G peak and D’ band at low temperatures from 78 to 318 K in defective
monolayer to few-layer graphene induced by ion C+ bombardment under the determination of vacancy
uniformity. Defects lead to the increase of the negative temperature coefficient of G peak, with a value almost
identical to that of D’ band. However, the variation of frequency and linewidth of G peak with layer number is
contrary to D’ band. It derives from the related electron-phonon interaction in G and D’ phonon in the disorder-
induced Raman scattering process. Our results are helpful to understand the mechanism of temperature-dependent
phonons in graphene-based materials and provide valuable information on thermal properties of defects for the
application of graphene-based devices.
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Introduction
Graphene-based materials have been promising mate-
rials bridging thermal, electronic, and photonic devices
[1, 2] because of their intriguing properties [3, 4] since
most studies were firstly focused on monolayer graphene
(1LG) [3, 4] and subsequently transferred to few-layer
graphenes (FLGs) [5, 6] due to their promising bandgap
tunability [7, 8]. Raman scattering is one of the widely
used techniques to characterize the phonon properties
of graphene-based materials [2, 9]. Their thermal trans-
port properties can be investigated by studying
temperature-dependent (T-dependent) Raman spectra.
Balandin et al. [10] first measured the thermal conduct-
ivity of a mechanically exfoliated 1LG by monitoring the
shift of G peak with laser heating, and Ghosh et al. [11]

subsequently investigated the thermal transport in
mechanically exfoliated FLGs using the same technique.
In many practical applications, defects in 1LG and FLGs
are inevitable by different preparation methods and even
modification of perfect graphene structures is required
to tailor electrical parameters and to improve low chem-
ical activity [12, 13]. It is indispensable to study how the
defects affect the phonon properties of graphene to ob-
tain an in-depth understanding of their thermal trans-
port properties. Despite there have been few reports
about T-dependent phonon properties in the case of
nitrogen-doped and boron-doped graphene layer films
[14], there has been no mechanism discussion because
the potentially responsible mechanisms were relatively
complex, such as the Fermi level change due to charge
impurities, the N–C or B–C bond length change, and
the long-range interactions between nitrogen or boron
point defects. Up to now, there has been no report that
specially investigates T-dependent phonon properties in
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graphene with vacancies. However, vacancies [15] are
one of the most likely defects to occur in synthetic gra-
phene materials with a one-atom-thick sheet of cova-
lently bonded carbon atoms with sp2 hybridization
packed in a honeycomb crystal lattice.
To clarify different phonon properties with pristine

graphene, we performed a T-dependent Raman meas-
urement of mechanically exfoliated 1LG and FLGs after
ion C+ bombardment. Ion beam bombardment has been
an effective method to finish graphene cutting and per-
foration [16], which can introduce vacancies with uni-
formity into the hexagonal network of carbon atoms by
ion C+ bombardment. Besides the most important G
peak (∼ 1582 cm−1) derived from intrinsic graphene
structure, several additional symmetry breaking features
near G peak such as the defect-related D’ peak [17] (∼
1620 cm−1) can be found. In this paper, we presented a
study of T-dependent phonon properties of G peak and
D’ peak at low temperatures from 78 to 318 K in 1LG
and FLGs with vacancies and tried to discuss the mech-
anism of the defective phonon effect and extrinsic T-
dependent Raman behavior. Our results are helpful to
provide T-dependent information of detects on thermal
properties in graphene flakes for applications of devices.

Materials and Methods
Highly oriented pyrolytic graphite (HOPG) was mechan-
ically exfoliated on the same Si {100} substrates covered
with an 89-nm SiO2 to obtain 1LG and FLGs. We used
the notation NLG to indicate flakes with N layers. The

layer number (N) of NLG was estimated by Raman mea-
surements of the Si intensity ratio between the Si peak
(I(SiG)) from SiO2/Si substrate overlying graphene flakes
and the Si peak (I(Si0)) from bare SiO2/Si substrate [18].
The standard values of I(SiG)/I(Si0) for NLG flakes de-
posited on SiO2/Si substrate have been given in the sup-
plementary data of reference [19]. We prepared several
sets of graphene flakes with N determined and selected
2 sets of 1LG-4LG, 6LG, and 10LG flakes. Vacancies
were introduced intentionally by ion C+ bombardment
for one set of samples (called the defective set), with the
defect-free set as a contrast. The low energy C+ ions
bombarded perpendicularly to the sample surface at
room temperature which was performed using an LC-4
type system with the dose and kinetic energy of 2 × 1013

cm−2 and 80 keV, respectively. After ion C+ bombard-
ment, the D band at ∼ 1350 cm−1 and D’ peak at ∼ 1620
cm−1 appeared in the Raman spectra of NLG flakes, as
depicted in Fig. 1. The Raman spectra of the defect-free
set are also plotted in Fig. 1. Raman spectra were mea-
sured by the excitation of a 532-nm laser at room
temperature under a × 100 objective lens (NA = 0.90).
These two sets have the same thickness in order to fa-
cilitate the comparison. The G peak basically stayed at
1582 cm−1 before and after ion C+ bombardment, which
showed that defects in the samples only broke the sym-
metry of carbon honeycomb lattice but did not cause
evident doping which should make the frequency of G
peak upshift. This made subsequent research more
straightforward. There was another notable spectral

Fig. 1 Raman spectra of 1LG-4LG, 6LG, and 10LG for defect-free and defective sets were measured at room temperature in the range
of 1250–2850 cm−1
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band around 2700 cm−1 before and after ion C+ bom-
bardment, which is referred to as a 2D band [17] and is
an overtone of the D band [17]. The line shape of 2D
band has been widely used to distinguish the number of
graphene layers from one to four layers [20, 21]. How-
ever, the 2D band became mellow and full after ion C+
bombardment and its dependency on the number of gra-
phene layers became blurred due to the lattice change to
modify the phonon dispersion curve.
In order to examine the uniformity of vacancies intro-

duced in graphene structure by ion C+ bombardment,
we measured Raman mapping of the samples from the
defective set, with the defect-free set as a contrast. The
Raman mappings were measured at room temperature
in back-scattering with a HR Evolution micro-Raman
system, equipped with the unique SWIFT™ CCD, a ×
100 objective lens (NA = 0.90). An 1800 g/mm grating
resulted in a 0.5-cm−1 spectral resolution. The laser exci-
tation of 532 nm was used. A laser power below 2mW
was used to avoid sample heating. Mapping measure-
ments were performed using a motorized stage. The xy
coordinates of each point were previously set in order to
find the optimized focus. Mapping images were con-
structed for each xy coordinate by taking 100 points on
the surface of a sample with a 10 × 10 equally spaced
array of probing points. In all cases x, y step was 0.5 μm.
Raman spectra were measured in the range of 1250–
2850 cm−1. The mappings of G peak intensity I(G) as a

reference for defects contained in graphene flakes are
shown in Fig. 2 for defect-free and defective 1LG, 2LG,
and 3LG. The optical microscopic images of correspond-
ing samples are also shown in Fig. 2. I(G) is sensitive to
the number of defects [22] at low defect concentrations
in graphene systems because G peak arises from the in-
plane C–C bond stretching of all pairs of sp2 atoms in
both rings and chains. Moreover, G peak is a phonon
originating from a normal first-order Raman scattering
process in graphene systems, and its intensity can be en-
hanced because of the resonance process [2] due to the
excitation energy matching the transition from a valence
band to a conduction band. The color of I(G) mappings
in almost all samples is basically homogeneous over the
entire sheet to determine the uniformity of the atomic
structure of graphene layers. I(G) in defective NLG
flakes is lower than that in defect-free NLG flakes due to
the introduction of vacancies. Although the color of
some points at the corner in the defective set of samples
shows a bit difference, we can identify the uniformity of
vacancies in the dominant part of defective samples. In
addition, defects can be characterized by the average dis-
tance between nearest defects (LD) [22, 23]. We calcu-
lated the defect distribution LD which is about 4–6 nm
in C+-bombarded 1LG based on the intensity ratio be-
tween D band and G band, i.e., I(D)/I(G), using the well-
known Tuinstra-Koenig relation [24] (the mapping of LD
in C+-bombarded 1LG was shown in Fig. f1 with more

Fig. 2 The mappings of I(G) for defect-free and defective 1LG, 2LG, and 3LG and the optical microscopic images of corresponding samples
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physical explanations in supplementary.) I(D) is also dir-
ectly related with the number of defects [23, 25] because
the D mode corresponds to a phonon due to the pres-
ence of defects. Considering that the D feature could be
complex in FLGs [26] similar to the 2D band, the map-
pings of I(D) were shown for defective 1LG, 2LG, and
3LG in Fig. f2 of supplementary.
For the above prepared samples, we measured the T-

dependent Raman spectra near G band (including G
peak and D’ band) in both defect-free and defective sam-
ple sets of 1LG-4LG, 6LG, and 10LG flakes. The T-
dependent Raman spectra were measured in back-
scattering with a HR Evolution micro-Raman system,
equipped with the unique SWIFT™ CCD. The samples
were mounted on an in-house-made sample holder con-
sisting of a thin copper disk with a central pillar and a
500-μm-diameter hole. Measurements were carried out
in a liquid nitrogen (LN2) cooled low-temperature Lin-
kam stage equipped with a temperature controller. The
programmable cool-stage THMS600 (Linkam Scientific
Instruments) covers the temperature range from 78 to
318 K in a N2 gas environment. The Linkam instrument
has a temperature stability of ± 0.1 K. Using a grating
with a groove density of 1800 g/mm, the achieved spec-
tral resolution was 0.5 cm−1. A long working distance ×
50 objective lens (NA = 0.45) was used, achieving a
spatial resolution better than 1 μm. All spectra were ex-
cited with a 532-nm laser. During all the measurements,
laser power has been kept low enough to prevent any
sample heating. The integration time of 20 s was adopted
to ensure a good signal-to-noise ratio. The T-
dependence of Raman modes was measured in the range
from 78 to 318 K and recorded at 10 K intervals, for the
defect-free and defective sets.

Results and Discussion
The studies are firstly concerned with the G peak. Figure
3 shows the T-dependent G peak position (Pos(G)) for
the defect-free and defective sets. The data in 1LG are

relatively fluctuating and away from the data of other
layers. It is found that Pos(G) in both defect-free and de-
fective 1LG shows a progressive downshift as the
temperature increases, which indicates a linear relation-
ship consistent with the reports for intrinsic graphene
[14, 27, 28]. Pos(G) can be fitted to a linear equation,
ω(T) = ω0 + χT [29], where ω0 is the peak position of vi-
brational bands at zero Kelvin temperature and χ repre-
sents the first-order temperature coefficient of the
modes. The defect-free 1LG exhibits a negative
temperature coefficient of − (1.56 ± 0.20) × 10−2 cm−1/K
(plotted by the blue dotted line in Fig. 3a), which is ba-
sically consistent with the previous reports for intrinsic
1LG [14, 27, 28]. The temperature coefficient of the de-
fective 1LG is found to be − (2.52 ± 0.20) × 10−2 cm−1/K
(plotted by the blue dotted line in Fig. 3b), a value larger
than that of the defect-free 1LG, similar with the previ-
ous reports of nitrogen doping or boron doping [14].
For samples with more layers, Pos(G) is considerably
smaller than that of 1LG, but the T-dependent trend is
approaching that of 1LG in both defect-free set (plotted
by the pink dotted line in Fig. 3a) and defective set (plot-
ted by the pink dotted line in Fig. 3b). Although some
previous reports suggested that the temperature coeffi-
cient of the G peak in thicker samples is slightly smaller
than that in 1LG [27, 28], our data show it is insensitive
to the number of layers in the narrow range from 78 to
318 K. However, Pos(G) in the defect-free set are larger
than those of the defective set, which should be a result
of ion C+ bombardment.
Raman linewidth is another significant quality for

uncovering the interactions of electrons and phonons
when the crystal structure changes. Figure 4 shows the
T-dependent full width at half maximum of G peak
(FWHM(G)) for the defect-free and defective sets. It is
found that FWHM(G) is not sensitive to temperature for
both defect-free and defective sets, which is consistent
with the recently reported T-dependent FWHM(G) re-
sults of pristine graphite [30]. It is interesting to note

Fig. 3 The T-dependent Pos(G) of 1LG-4LG, 6LG, and 10LG for a defect-free and b defective sets in the temperature range of 78–318 K
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that T-dependent FWHM(G) in various graphene samples
have been discussed [14, 31, 32] and have some discrepan-
cies; for example, Lin et al. [31] observed an increase trend
in unsupported graphene, Kolesov et al. [32] showed differ-
ent T-dependencies in supported graphene on various sub-
strates, and even Late et al. [14] showed slightly positive or
insensitive dependencies in the case of nitrogen-doped or
boron-doped graphite. However, in the low-temperature
range below 350K, FWHM(G) always kept constant in all
the samples [14, 31, 32] probably due to weaker contribution
from phonon anharmonicity and electron-phonon coupling
(EPC) at low-temperature range [29, 33]. In addition,
FWHM(G) from 1LG to 10LG is from 9.2 to 14.6 cm−1 in
the defect-free set and from 10.9 to 16.1 cm−1 in the defect-
ive set. The FWHM(G) values in the defective set are larger
than those in the defect-free set, which should be another re-
sult of ion C+ bombardment.
We then studied the defect-related D’ band. Figure 5a

shows Pos(D’) for the defective set. When the temperature
increases from 78 to 318 K, Pos(D’) linearly decreases to
1620 cm−1 in C+ bombarded 1LG with a slope of around
− (2.37 ± 0.20) × 10−2 cm−1/K (plotted by the blue dotted
line in Fig. 5a). Pos(D’) shifts to larger values in thick
layers but has a similar T-dependent slope approach to
that of 1LG (plotted by the pink dotted line in Fig. 5a).

FWHM(D’) shows no obvious T-dependence as shown in
Fig. 5b. FWHM(D’) ranges from 7.6 to 14.4 cm−1 in 1LG
to 10LG, but it decreases with increasing layers. It is obvi-
ous that D’ band shows a similar temperature coefficient
with G peak after ion C+ bombardment. However, Pos(D’)
increases whereas Pos(G) decreases; simultaneously,
FWHM(D’) decreases whereas FWHM(G) increases as
graphene layers become thicker.
By reviewing the previous work, we come to realize that

there are several factors that influence the Raman spectra of
the graphene systems. First, the T-dependent Raman study
of pristine graphene has been explained by phonon anhar-
monicity and EPC [29]. However, the Raman spectra can be
also dependent on the sample in the presence of vacancies.
The temperature coefficient of G peak in defective graphene
samples is found to be larger than that of the defect-free
samples. Because EPC induces the increase of Pos(G)
whereas phonon anharmonicity decreases it when the
temperature increases, the domination of phonon anhar-
monicity leads to the softening of G phonon and hence re-
sults in a negative temperature coefficient for G peak [29].
After ion C+ bombardment, it is possible that the lattice
change modifies the EPC leading to the hardening of G pho-
non; correspondingly, the temperature coefficient of G peak
becomes less negative. Meanwhile, Pos(G) in the defect-free

Fig. 4 The T-dependent FWHM(G) of 1LG-4LG, 6LG, and 10LG for a defect-free and b defective sets in the temperature range of 78–318 K

Fig. 5 The T-dependent a Pos(D’) and b FWHM(D’) of 1LG-4LG, 6LG, and 10LG for the defective set in the temperature range of 78–318 K
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set are larger than those of the defective set, which means a
decrease in the phonon energy due to the lattice change by
vacancies [34]. Second, the FWHM(G) values in the defective
set are larger than those in the defect-free set, which means
a decrease in the phonon lifetime because of the phonon
confinement effect [35] when the atom structure of graphene
is destroyed by vacancies. Third, FLGs are formed by stack-
ing numbers of 1LG along the c-axis, and their phonon an-
harmonicity and EPC are closely related to that of 1LG. The
temperature coefficient of G band in FLGs is approaching
that of 1LG in both defect-free and defective samples. How-
ever, there are some differences between them. The ultrathin
nature of 1LG makes it necessary to consider the effect of
the substrate. Pos(G) in 1LG is higher than that of the
thicker samples for both defect-free and defective sets.
Pos(G) shifts up to ~ 1588 cm−1 in defect-free 1LG and ~
1584 cm−1 in defective 1LG at 300K in variable temperature
experiments although their Pos(G) basically stay at 1582
cm−1 in room temperature measurements. The possible rea-
son is the thermal expansion coefficient mismatch between
the material and the substrate [36]. Pos(G) in thicker samples
linearly increase up to ~ 1582 cm−1 in the defect-free set and
~ 1580 cm−1 in the defective set at 300K, which means that
it is increasingly insensitive to substrate effects as graphene
layers become thicker. Meanwhile, FWHM(G) significantly
sharpens down to ~ 9.2 cm−1 in defect-free 1LG and ~ 10.9
cm−1 in defective 1LG in variable temperature experiments
although FWHM(G) of pristine graphene is ~ 13 cm−1 in
room temperature measurements. The possible reason is the
blockage of the phonon decay into electron-hole pairs [37]
due to the dielectric effect of the substrate in the thinner gra-
phene layer. Finally, D’ phonon can be considered as a non-
trivial prototype to study the temperature effect of defective
graphene materials based on the following reasons: (1) add-
itional Raman modes can be observed in disordered gra-
phene samples, e.g., the so-called D and D’ modes. Although
these modes cannot be attributed to the vibration mode
from defects themselves, they correspond to phonons with
the breaking of momentum conservation [38] because of the
presence of defects in the sample. Their T-dependent behav-
iors can reflect the contribution from EPC due to the lattice
change in defective samples. (2) The relationship between G
peak and D’ mode is both interrelated and competitive be-
cause there is the related electron-phonon interaction in G
and D’ phonon because their frequency and linewidth de-
pend on the same conical electronic band structure in the re-
gion near the K point [39]. (3) D phonon is another typical
spectral feature in defective graphene samples. However, the
D band becomes broad and complex with the increase of
graphene layers along the c-axis due to an inter-valley
process connecting two conical electronic band structures
around inequivalent K and K’ points [40]. (4) More calcula-
tion is needed to explain the T-dependent behavior of D’
mode, which is beyond the scope of this work.

Conclusion
In this paper, vacancies were uniformly introduced into
carbon structures by ion C+ bombardment and character-
ized by Raman mappings of I(G). The T-dependent pho-
non properties of G peak and D’ band in defective 1LG
and FLGs were measured by Raman spectrometer com-
bined with a Linkam cryostat, with defect-free samples as
a contrast. At temperatures from 78 to 318 K, defects lead
to the increase of negative temperature coefficient of G
peak due to the lattice change. D’ mode as a Raman signa-
ture for disorder is both interrelated and competitive with
G peak under the defect-phonon interaction. The
temperature coefficient of D’ band is almost identical with
G peak. However, Pos(D’) increases simultaneously as
FWHM(D’) decreases with increasing layers, contrary to
G peak. In conclusion, the defects in graphene structure
by ion C+ bombardment induce a large change of T-
dependent properties of phonons; therefore, they have an
influence on the physical properties of graphene systems.
The introduction of foreign atoms into the hexagonal car-
bon networks has been a hot topic nowadays for an effect-
ive tool for tailoring the intrinsic properties of graphene
systems. The corresponding properties should be
thoroughly investigated in the future.
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