
NANO EXPRESS Open Access

Reduced Energy Barrier for Li+ Transport
Across Grain Boundaries with Amorphous
Domains in LLZO Thin Films
Yanlin Zhu1, Shuai Wu1, Yilan Pan1, Xiaokun Zhang1*, Zongkai Yan1* and Yong Xiang1,2*

Abstract

The high-resistive grain boundaries are the bottleneck for Li+ transport in Li7La3Zr2O12 (LLZO) solid electrolytes.
Herein, high-conductive LLZO thin films with cubic phase and amorphous domains between crystalline grains are
prepared, via annealing the repetitive LLZO/Li2CO3/Ga2O3 multi-nanolayers at 600 °C for 2 h. The amorphous
domains may provide additional vacant sites for Li+, and thus relax the accumulation of Li+ at grain boundaries. The
significantly improved ionic conductivity across grain boundaries demonstrates that the high energy barrier for Li+

migration caused by space charge layer is effectively reduced. Benefiting from the Li+ transport paths with low
energy barriers, the presented LLZO thin film exhibits a cutting-edge value of ionic conductivity as high as 6.36 ×
10−4 S/cm, which is promising for applications in thin film lithium batteries.
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Introduction
As the rise of 5G mobile telecommunication network,
the power consumption of mobile terminals is expected
to significantly increase [1–3]. Thin film lithium batter-
ies (TFLBs) with high energy density, long cycle life, and
excellent safety hold great promise for the integrated
power sources in the intelligent terminals, such as smart
cards [4]. To date, most of the workable TFLBs are
based on LiPON solid electrolyte [5]. But the low ionic
conductivity of LiPON limits the performance of TFLBs.
Garnet Li7La3Zr2O12 (LLZO) is another promising alter-
native, due to its high ionic conductivity, wide electro-
chemical window, and stability against to Li metal anodes
[6–10]. However, it remains a challenge to fabricate LLZO
thin films with high ionic conductivity [11, 12].
It is well-known that the energetically favorable paths

for Li+ transport are one of the keys to achieving high
ionic conductivity in solids [13, 14]. For the case of

polycrystalline LLZO thin films, there are two energy
barriers that determine the Li+ conducting performance.
One is related to Li+ transport within a grain. The lattice
sites possibly occupied by Li+ are energetically nonequiv-
alent, and thus Li+ must get over an energy barrier (EBg)
when it hops between these sites [15–18]. The other one
is related to Li+ transport across the grain boundaries
(GBs) [19, 20]. The lattice defects at GBs would cause
the accumulation of Li+. A space charge layer would
form because the unoccupied possible sites for Li+

around GBs are depleted (orange line in Fig. 1a). The
space charge effect results in a high migration energy
barrier (EBgb, red line in Fig. 1a) [21]. Typically, EBgb (~
0.7 eV) is much higher than EBg (~ 0.3 eV) for the case
of LLZO [20].
It has been reported that the possible sites for Li+ oc-

cupation in the LLZO with cubic phase, which are tetra-
hedral 24d site (Li1) and distorted octahedral 96 h site
(Li2), are close to energetically equivalent [16, 22, 23].
Therefore, it is generally believed that the EBg in the
cubic LLZO is moderate (~ 0.3 eV). Although the cubic
phase of LLZO is metastable at room temperature (RT),
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the strategies to stabilize it through the doping of high
valence cations, such as Al3+, Ga3+, and Ta5+, have been
well developed [24–33]. Lobe et al. reported Al-doped
LLZO thin films with ionic conductivity of 1.2 × 10−4 S/
cm and activation energy of 0.47 eV [34]. It is generally
believed that the high concentration of Li+ in the crystal
lattice may further help to lower EBg [11, 13]. LLZO thin
films with activation energy of 0.38 ± 0.02 eV have been
prepared by introducing extra Li2O during thin film de-
position [12, 35]. Li2O effectively compensated the lith-
ium loss during sputtering-deposition. On the other
hand, the strategy to address the conduction issues de-
rived from high EBgb is few, although it is well-known
the high-resistive GBs is the bottleneck for Li+ transport
in LLZO [14, 21].
In this work, we demonstrate a LLZO thin film with

amorphous domains between crystalline grains. The
amorphous domains could provide extra Li+ vacancies
[21, 36–38] and a lower migration barrier (~ 0.6 eV) [36]
at GBs (Fig. 1b), which would weaken the space charge
effect and lower EBgb (< 0.7 eV) [21, 38]. The presented
LLZO thin film is prepared via repeatedly depositing the

sequentially stacked nanolayers of LLZO, Li2CO3, and
Ga2O3, and the following annealing (Fig. 2). The ultra-
thin thicknesses of each layer facilitate the interdiffusion
in the multilayered structure, in turn enable Ga2O3 to
help to stabilize the cubic phase of LLZO, and Li2CO3 to
compensate the Li loss during deposition and annealing.
Through carefully tuning the temperature of annealing,
the LLZO thin film with the desired cubic phase and
amorphous domains between grains was obtained. The
electrochemical impedance measurement suggests the
presented LLZO thin film solid electrolyte achieves a
high ionic conductivity of 6.36 × 10−4 S/cm.

Methods
Fabrication of Ga-LLZO Thin Film Solid-State Electrolyte
The ultrathin layers of LLZO, Li2CO3, and Ga2O3 were
sequentially deposited by radio frequency magnetron
sputtering on polished MgO (100) substrates in pure Ar
atmosphere. A multilayered thin film with the thickness
of ~ 1500 nm (± 10%) was obtained by repeatedly depos-
ited the triple-layered unit for 80 cycles (Figure S1). The
targets of Li7La3Zr2O12 (99%), Li2CO3(99%), and

Fig. 1 Illustration of the migration barrier and Li vacancy concentration at the conventional grain boundary (a), and the grain boundary with
amorphous domains (b)

Fig. 2 Schematics of fabrication procedures of the presented LLZO thin films
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Ga2O3(99.9%) mounted on 190 mm × 55mm Cu back-
ing plates are provided by Zhongnuo New Materials
Manufacturing Co., China. The LLZO target used here
is with desired cubic phase (Figure S2) and its density is
5.35 g/cm3. The pressure for the deposition is 1 Pa. The
power density for LLZO deposition was 2.38W cm−2,
and 1.90W cm−2 for Li2CO3 and Ga2O3. The as-
deposited multilayered thin films were further annealed
in pure oxygen (99.99%) for 2 h at 600 °C, 700 °C, and
800 °C, respectively.

Characterization
The thickness of each single layer of LLZO, Li2CO3, and
Ga2O3 was determined by a step profiler (see details in
Note S1 and Table S1). The crystallographic structure of
the thin film was determined using X-ray diffraction
(XRD), with Cu-Kα source and 2θ in the range from 10
to 60°. The chemical composition was characterized
using time-of-flight secondary ion mass spectrometry
(TOF-SIMS) and high-resolution transmission electron
microscopy (HRTEM) equipped with an energy disper-
sive X-ray spectroscopy (EDX) detector. The ionic con-
ductivity was determined in an in-plane test
configuration at room temperature (25 °C), via measur-
ing electrochemical impendence spectroscopy (EIS) with
the applied frequency ranged from 3 × 106 to 1 Hz with
a constant 30 mVAC amplitude. The aluminum contacts
on the top of LLZO thin films were fabricated using dir-
ect current magnetron sputtering. The data of EIS was
processed using the Zview software.

Results and Discussion
The LLZO thin film samples and their process parame-
ters were summarized in Table 1. Sample #800-1 with-
out Li-supplementary and Ga-doping exhibits a Li-
deficient phase of La2Zr2O7 (LZO) after annealing at
800 °C for 2 h (Fig. 3a). After introducing Ga2O3 and
Li2CO3, the diffraction peaks belonging to the cubic
phase of LLZO are observed in the XRD pattern of
#800-2 (Fig. 3b). This suggests that Ga dopant and extra
Li would be favorable for the formation and/or
stabilization of the desired cubic phase of LLZO. How-
ever, a strong diffraction peak at 28.2° indexed to LZO
remains in the XRD pattern of #800-2. As the annealing
temperature decreases to 700 °C, the intensity of the

diffraction peak at 28.2° declined appreciably (Fig. 3c).
These observations indicate that the high temperature
annealing may lead to a severe Li loss even though extra
Li is introduced. Through further reducing the annealing
temperature to 600 °C, the thin film with a major phase
of cubic LLZO and a negligible diffraction peak of LZO
were obtained (Fig. 3d). Our observations are consistent
with previous literature [11, 12], which report that the
formation of the cubic phase in Ga-doped LLZO thin
films is triggered at 600 °C, and LZO may form within
700 to 800 °C.
Meanwhile, there are no diffraction peaks of Li2CO3

or Ga2O3 observed in the XRD patterns (Fig. 3). In
addition, the compositional depth profile of #600-1 ob-
tained using TOF-SIMS shows that the signal of CO3

2−

is very low through the whole thin film (orange line in
Fig. 4). And the competent content of Li in #600-1 is
demonstrated by the high intensity of the recorded
counts of 6Li+ (red line in Fig. 4). Thus, Li2CO3 in the
multilayered thin film should have completely decom-
posed after annealing at 600 °C for 2 h, and effectively
compensated the Li loss during thin film deposition and
heat treatment. In addition, the undesired reaction be-
tween LLZO and CO2, which may form a low-
conductive layer of Li2CO3, should be effectively pre-
vented by the annealing atmosphere of pure oxygen.
This inference is consistent with the measured high
ionic conductivity of #600-1 (see below).
TOF-SIMS characterization also reveals the even dis-

tribution of 6Li+, La3+, Zr4+, and Ga3+ throughout the
thin film #600-1 (Fig. 4). Typically, the interdiffusion of
the precursors should be the speed control step in solid-
state reactions. Huang et al. reported that the interdiffu-
sion distance of the Ga2O3 and LLZO precursor layers
was about 10–20 nm during an annealing process at 700
to 900 °C for 2 h. Thus, the thickness of each precursor
layer in this study was set to be less than 10 nm. The
multilayered structure based on the nanolayers of LLZO,
Li2CO3, and Ga2O3 fabricated here, facilitates the
homogenous mixing of the precursors via reducing their
necessary diffusion length significantly. The uneven dis-
tribution of doped element observed in the LLZO thin
films derived from the thicker precursor layers [11] are
not observed here. An enrichment of Li in the inter-
phase layer between the deposited thin film and MgO
substrate can be observed. This should ascribe to the dif-
fusion of Li+ into MgO lattice [34].
Briefly, the multilayers of LLZO/Li2CO3/Ga2O3 are

well-mixed and reacted, benefiting from the sufficient
interdiffusion among these ultrathin layers. Moreover,
the reaction kinetics in the multilayered thin films with
doped Ga and extra Li are optimized at 600 °C, for the
sake of trying to prepare the cubic phase of LLZO with
a low EBg.

Table 1 Samples of LLZO thin film solid electrolyte and their
preparation parameters

Samples Annealing temperature (°C) Gallium doping Extra lithium

#800-1 800 × ×

#800-2 800 √ √

#700-1 700 √ √

#600-1 600 √ √
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As mentioned above, the Li+ conducting performance
of LLZO is notably influenced by the structures at GBs
(Fig. 1). The microstructure of #600-1 is carefully char-
acterized using HRTEM. The crossed structure, which is
a typical indicator of the reactions between LLZO and
H2O or CO2 [35], can be observed in the HRTEM im-
ages. However, the XRD pattern and TOF-SIMS depth
profile of #600-1 suggest that the as-prepared LLZO thin
films prevent from reacting with H2O or CO2. Thus, it is

reasonable to ascribe the formation of crossed structure
to the exposure of LLZO thin films to air during the
preparation of testing samples. Remarkably, amorphous
domains between crystalline grains are observed (Fig. 5a,
b). It indicates that #600-1 LLZO thin film should be
not fully crystallized after annealing, which is consistent
with the relative large full width at half maximum
(FWHM) observed in the XRD pattern of #600-1
(Fig. 3d). EDX mapping reveals the uniform distribution

Fig. 3 XRD patterns of #800-1 (a), #800-2 (b), 700-1 (c), and #600-1 (d), and the standard diffraction patterns for cubic LLZO (e) and LZO (f)

Fig. 4 TOF-SIMS depth profiles of #600-1: 6Li+ (red), La3+ (green), Zr4+ (black), Ga3+ (indigo), CO3
2− (orange)
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of Ga, La, O, and Zr over the crystalline grains and
amorphous domains (Fig. 5c–f). Therefore, we propose
that the amorphous domains are composed of glassy Li-
Ga-La-Zr-O oxides. It has been known that amorphous
LLZO is a Li+ conductor. Its typical ionic conductivity
and activation energy are 1 × 10−6 S/cm and ~ 0.6 eV,
respectively [36]. The Li+-conductive amorphous do-
mains would improve the physical contact between crys-
talline grains, and thus, the paths for Li+ transport in the
thin films are with a better continuity [20]. More im-
portantly, the amorphous domains between the grains
are potential to provide additional vacant sites for Li+

[21, 36–38]. The electrostatic repulsion between Li+

would be reduced, compared with the conventional
LLZO GBs in which the possible sites for Li+ occupation
are depleted [19, 20]. In other words, the amorphous do-
mains may diminish the cacoethic space charge effects
and lower the EBgb for Li

+ transport across GBs (Fig. 1b).
Consequently, it is reasonable to expect a reduced grain
boundary resistance (Rgb) in the present LLZO thin film
solid electrolyte #600-1.
The EIS measurements of the presented LLZO thin

films are conducted with the in-plane test configuration
shown in Fig. 6a. Their total ionic conductivities (σtotal)
can be calculated according to the equation:

σ total ¼ L
SRtotal

ð1Þ

where L is the distance between the two contacting elec-
trodes, S is the electrode area, and Rtotal is the total re-
sistance of LLZO thin film determined through EIS
measurements. The Nyquist plots of the measured im-
pedance spectra (Fig. 6b and Figure S2a and S2b) are fit-
ted with the equivalent circuit depicted in the inserts,
which consists of a series combination of a constant
phase element (CPE) with two circles of a resistor in
parallel with a CPE. Rbulk and Rgb in the equivalent cir-
cuit represent the bulk resistance and the grain bound-
ary resistance of the LLZO thin film. The grain
boundary ionic conductivities (σgb) of LLZO thin films
are also normalized to the distance of two parallel con-
tacting electrodes, and can be calculated according to
the following equation [39]:

σgb ¼ L
SRgb

Cbulk

Cgb
ð2Þ

where Cbulk and Cgb are the bulk capacitance and the
grain boundary capacitance, which can be calculated
using the equation (3) based on the fitted values of their

Fig. 5 HRTEM images (a, b) and elemental mapping (c for Ga, d for La, e for O, f for Zr) of LLZO thin film #600-1
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corresponding R (Rbulk and Rgb) and CPE (CPEbulk
and CPEgb) [34, 40].

C ¼ CPE� R1 − n
� �1

n ð3Þ

The geometrical parameters (L and S) and the fitted
values of the elements in the equivalent circuit (Rtotal,
Rbulk, Rgb, Cbulk, and Cgb) are summarized in Table S2.
Table 2 summarizes the calculated σbulk, σgb, and σtotal at
room temperature of the presented LLZO thin films. σto-
tal of #800-1 is lower than 10−8 S/cm since it is domi-
nated by the Li-poor phase of LZO. The samples with
Ga dopant and extra Li, #800-2, #700-1, and #600-1,
possess the σtotal of 5.63 × 10−7, 3.89 × 10−5, and 6.36 ×
10−4 S/cm, respectively. This trend may be caused by
two reasons. First, the proportion of high-resistive LZO
in the prepared thin films is trimmed down as the an-
nealing temperature is reduced, which is demonstrated
by their XRD patterns (Fig. 3b–d). Second, the

intensities of the diffraction peaks of #600-1 are much
lower than that of the other two. Its low crystallinity
may be related to the formation of amorphous domains
between crystalline grains. As mentioned above, the
amorphous domains between crystalline grains may
lower the energy barrier for Li+ transport across GBs
(Fig. 1). In addition, the grain size of #600-1 is about 50
nm (Figure S3), which is smaller than the common
values (hundreds of nanometers) reported in previous
studies and may lead to a greater number of high-
resistive GBs. However, the ionic conductivity of #600-1
reaches a cutting-edge value. These facts give a good in-
dication that the strategy presented here to lower the en-
ergy barrier for Li+ transport across GBs is effective. The
analysis of EIS data indeed shows that σgb of #600-1 is
closed to 2 orders of magnitude higher than that of
#700-1, although it is difficult to quantify σbulk and σgb
of #800-1 and #800-2 because of their high grain bound-
ary resistance.

Conclusions
In summary, LLZO thin films with cubic phase and
amorphous domains between crystalline grains were ob-
tained through introducing Ga dopant and extra Li, and
carefully optimizing annealing temperature. Firstly, the
small energy disparity between Li+ sites in the LLZO lat-
tice of the cubic phase leads to a low energy barrier for
Li+ transport within crystalline grains. More importantly,
the amorphous domains provide additional Li+ vacant

Fig. 6 a The in-plane test configuration for EIS measurements. b The Nyquist plot of impedance spectrum of LLZO thin film #600-1 measured at
room temperature, insert shows the equivalent circuit for EIS analysis

Table 2 Bulk ionic conductivities (σbulk), grain boundary ionic
conductivities (σgb), and total ionic conductivities (σtotal) at room
temperature of the presented LLZO thin films

Sample name σbulk (S/cm) σgb (S/cm) σtotal (S/cm)

#800-1 / / 7.86 × 10−9

#800-2 / / 5.63 × 10−7

#700-1 1.03 × 10−4 6.23 × 10−6 3.89 × 10−5

#600-1 1.33 × 10−3 1.21 × 10−4 6.36 × 10−4
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sites around GBs and thus lower the energy barriers for
Li+ transport across GBs via relaxing the space charge
effects. As a result, benefiting from the Li+ transport
paths with low migration energy barriers, the presented
LLZO thin film exhibits an ionic conductivity of 6.36 ×
10−4 S/cm at room temperature, which is attractive for
applications in TFLBs.
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1186/s11671-020-03378-x.
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