
NANO EXPRESS Open Access

Alternative Strategy to Reduce Surface
Recombination for InGaN/GaN Micro-light-
Emitting Diodes—Thinning the Quantum
Barriers to Manage the Current Spreading
Le Chang1†, Yen-Wei Yeh2†, Sheng Hang1, Kangkai Tian1, Jianquan Kou1, Wengang Bi1, Yonghui Zhang1,
Zi-Hui Zhang1* , Zhaojun Liu3* and Hao-Chung Kuo2*

Abstract

Owing to high surface-to-volume ratio, InGaN-based micro-light-emitting diodes (μLEDs) strongly suffer from
surface recombination that is induced by sidewall defects. Moreover, as the chip size decreases, the current
spreading will be correspondingly enhanced, which therefore further limits the carrier injection and the external
quantum efficiency (EQE). In this work, we suggest reducing the nonradiative recombination rate at sidewall defects
by managing the current spreading effect. For that purpose, we properly reduce the vertical resistivity by
decreasing the quantum barrier thickness so that the current is less horizontally spreaded to sidewall defects. As a
result, much fewer carriers are consumed in the way of surface nonradiative recombination. Our calculated results
demonstrate that the suppressed surface nonradiative recombination can better favor the hole injection efficiency.
We also fabricate the μLEDs that are grown on Si substrates, and the measured results are consistent with the
numerical calculations, such that the EQE for the proposed μLEDs with properly thin quantum barriers can be
enhanced, thanks to the less current spreading effect and the decreased surface nonradiative recombination.
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Introduction
Owing to the distinctive characteristics of high bright-
ness, low power consumption, and long operation life-
time [1], III-nitride-based light-emitting diodes (LEDs)
have gained extensive research interest [2, 3]. Thus far,
tremendous progress for large-size InGaN/GaN blue
LEDs has been made and commercialized [3], which
have found applications in solid-state lighting and large-

size panel displays. However, conventional InGaN/GaN
LEDs are of small modulation bandwidth, making them
not proper for, e.g., visible light communication (VLC)
[4–6]. Meanwhile, the large chip size makes the pixel
capacity low for, e.g., cell phone displays, wearable watch
displays. Therefore, at the current stage, InGaN/GaN
micro-LEDs (i.e., μLEDs) with chip size smaller than
100 μm have attracted extensive attentions. Despite the
aforementioned advantages, there are still many issues
remaining to be solved for the further development of
μLEDs, such as high-precision mass transfer [7–9] and
size-dependent efficiency [10]. The size-dependent effi-
ciency arises from surface damages that are caused by
dry etching when making mesas, and hence large num-
bers of defects are generated, giving rise to nonradiative
surface recombination. Note, for different types of
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optoelectronic devices, crystalline quality and charge
transport are among the essential parameters than affect
the photoelectronic properties [11–16]. Uniquely for
μLEDs, the surface recombination at defected regions
can significantly reduce the internal quantum efficiency
(IQE) for μLEDs [17]. Recently, Kou et al. further find
that as the chip size decreases, holes are more easily
trapped by the defects and the hole injection capability
can become even worse for μLEDs with decreasing chip
size [18]. Thus, it is important to reduce the sidewall de-
fect density. A very convenient method to passivate side-
wall defects is to deposit the dielectric passivation layer
[19], which is doable by using plasma-enhanced chem-
ical vapor deposition (PECVD) method or atomic layer
deposition (ALD) method. It is shown that the dielectric
passivation layer can better annihilate sidewall defects by
using ALD technique because of the even better quality
for the grown layer [20]. The sidewall defect number can
be then further decreased by thermally annealing the
passivation layer [21], which shows the enhanced EQE
even for the 6 μm × 6 μm μLED. As is well known, the
current spreading can become even better when the chip
size continues to decrease because of the reduced lateral
resistivity [22]. Therefore, we propose to reduce the ver-
tical resistivity to better confine the current within
mesas, which then keeps the carriers apart from sidewall
defects and helps to suppress the surface nonradiative
recombination.
Hence, for achieving the target, we propose decreasing

the thickness of quantum barriers to manage the energy
barriers and the vertical resistance. Our numerical calcu-
lations show that the current can be more laterally con-
fined into the mesa, which therefore reduces the hole
consumption by surface nonradiative recombination.
The reduced surface nonradiative recombination also
helps to facilitate the hole injection according to our
previous report [18]. Furthermore, the thinned quantum
barriers homogenize the hole distribution across the
multiple quantum wells (MQWs). Experimental results
indicate that the EQE for μLEDs with reduced quantum
barrier thickness is improved.

Research Methods and Physics Models
To prove the effectiveness of the proposed structures in
suppressing the surface recombination, promoting the
hole injection and the improving the EQE for InGaN-
μLEDs, different sets of μLEDs are designed, which are
grown on [111] oriented Si substrates by using metal-
organic chemical vapor deposition (MOCVD) system
[23, 24]. All the devices have a 4-μm thick n-GaN layer
with the electron concentration of 5 × 1018 cm−3. Then,
four-pair In0.18Ga0.82N/GaN MQWs are utilized to pro-
duce photons. The structural information is presented in
Table 1. Next, a 26-nm thick p-Al0.15Ga0.85N layer serves

as the p-type electron blocking layer (p-EBL), for which
the hole concentration level is 3 × 1017 cm−3, of the p-
EBL is then capped with a 100-nm thick p-GaN layer
with a hole concentration is 3 × 1017 cm−3. Finally, both
μLED samples are covered by a 20-nm p-GaN layer. All
the investigated InGaN-based blue μLEDs have the chip
dimension of 10 × 10 μm2. The 200 nm ITO is utilized
as the current spreading layer, which is annealed at the
temperature of 500 °C for 120 s to form ohmic contact
with p-GaN layer. Then Ti/Al/Ni/Au/ alloy is simultan-
eously deposited on the current spreading layer and the
n-GaN layer serving as the p-electrode and the n-
electrode, respectively.
To reveal the device physics at an in-depth level, the in-

vestigated devices are calculated by using APSYS [25, 26],
which can self-consistently solve drift-diffusion equations,
Schrödinger and Poisson’s equations. The light extraction
efficiency is set to 88.1% for flip-chip devices [27]. The en-
ergy band offset ratio between the conduction band and
the valence band in the InGaN/GaN MQWs is set to 70:
30 [28]. Carrier loss due to nonradiative recombination is
also considered in our calculations, including Auger re-
combination with the recombination coefficient of 1 ×
10−30 cm6s−1 and Shockley-Read-Hall (SRH) recombin-
ation with the carrier lifetime of 100 ns [29]. The nonra-
diative recombination occurring at mesa surfaces cannot
be ignored for μLEDs. For accurately modeling the surface
recombination, the trap levels for electrons and holes are
set at 0.24 eV below the conduction band (i.e., Ec − 0.24
eV) and 0.46 eV above the valence band (i.e., Ev + 0.46
eV), respectively. The capture cross-section of 3.4 × 10−17

cm2 and the trap density of 1 × 1013 cm−3 are set for elec-
tron traps [30]. The capture cross-section of 2.1 × 10−15

cm2 and the trap density of 1.6 × 1013 cm−3 are set for
holes [31]. Other parameters can be found elsewhere [32].

Results and Discussions
Proof of the Better Current Confinement Within the Mesa
Region by Thinning Quantum Barriers for μLEDs
It is well known that a more favored hole injection can
be obtained when the quantum barriers become thin
[33]. However, it is not clear if thin quantum barriers
help to confine current within mesas for μLEDs. For ad-
dressing the point, we here have μLEDs A, B, and C, for
which the quantum barrier thicknesses, according to
Table 1, are set to 6 nm, 9 nm, and 12 nm, respectively.

Table 1 The structural parameters of the active region for
μLEDs A, B, and C

MQWs μLED A μLED B μLED C

GaN (QB) 6 nm 9 nm 12 nm

In0.18Ga0.82N(QW) 3 nm 3 nm 3 nm

GaN (QB) 6 nm 9 nm 12 nm
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To exclude the impact of surface recombination on the
carrier distribution [18], we do not consider any traps in
the mesa periphery for the investigated μLEDs. Figure 1
shows the calculated EQE and optical power in terms of
the injection current density level for μLEDs A, B, and C,
respectively. As shown in Fig. 1, both the EQE and the op-
tical power increase when the quantum barrier thickness
is reduced, such that the EQE values for μLEDs A, B, and
C are 28.8%, 24.0%, and 22.2% at 40 A/cm2.
Figure 2 shows the hole concentration profiles in the

MQW region for μLEDs A, B, and C at the current density
of 40 A/cm2. We can see when the quantum barrier thick-
ness is reduced, the hole concentration in the quantum
wells increases. Meanwhile, the spatial uniformity for the
hole distribution in the four quantum wells can also be
improved. Therefore, the findings here for μLEDs are con-
sistent with that for large-size LEDs, such that properly
thin quantum barriers can promote hole transport [33].
As has been mentioned, the current can be less spreaded
to the mesa edge when thin quantum barriers are adopted.
We then present the lateral hole distribution in the first
quantum well that is closest to the p-EBL in Fig. 3a. We
find that the hole concentration decreases along with the
lateral position apart from the p-electrode. We then calcu-
late the droop level for holes, which is defined as pleft-
pright/pleft. Here, pleft and pright are denoted as the hole
concentration at the left mesa edge and the right mesa
edge, respectively. The droop levels are 10.7%, 10.3%, and
9.8% for μLEDs A, B, and C, respectively. For better illus-
tration, we normalize the lateral hole concentration that is
depicted in Fig. 3b. It also shows that the droop level in-
creases as the quantum barrier becomes thin.

We then show the energy band diagrams for μLEDs A,
B, and C in Fig. 4a–c. It illustrates that the valence band
barrier heights for all the quantum barriers get de-
creased when the quantum barrier thickness reduces.
The reduced valance band barrier height can better fa-
cilitate the hole transport across the MQW region,
which is consistent with Fig. 2. On the other hand, when
the quantum barriers are thinned, a reduced vertical re-
sistivity will be correspondingly generated. According to
the report by Che et al. [34], when the vertical resistance
is reduced, the lateral current spreading can be sup-
pressed such that the current tends to be apart from the
mesa edge. This speculation is also proven when we
refer to Fig. 3a and b.
As has been mentioned above, the current spreading

will be enhanced by thickening quantum barriers, which
will surely affect the carrier recombination processes.
We then show the ratios between the SRH recombin-
ation and the radiative recombination at the edge for the

mesas (see Fig. 5). The ratio is calculated by using RSRH=

Rrad ¼
R tMQW

0 RSRHðxÞ � dx=
R tMQW

0 RradðxÞ � dx , where
RSRH(x) represents the SRH recombination rate, Rrad(x) de-
notes the radiative recombination rate, and tMQW is the
total thickness for MQW region. Figure 5 shows that the
ratios of RSRH/Rrad both in the edge of the mesa decrease as
the quantum barrier thickness increases, which means that
the radiative recombination rate can be enhanced by im-
proving the current spreading effect for ideal μLED archi-
tectures. This means that μLEDs can possess excellent
current spreading because of the remarkably reduced chip
size [21, 22]. Note, we have not yet considered the surface

Fig. 1 Calculated EQE and optical power density in terms of the injection current density for μLEDs A, B, and C, respectively
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recombination for Fig. 5. Therefore, we can speculate that
the much better current spreading effect for realistic μLEDs
can sacrifice the carrier radiative recombination, which can
be modeled by taking surface imperfections into account,
and the detailed discussions will be made subsequently.

Reduced Surface Recombination by Using MQWs with
Thin Quantum Barriers
To probe the impact of the surface recombination on
the hole injection for μLEDs with different quantum bar-
rier thicknesses, we further design μLEDs I, II, and III.

The structural information of the MQWs for μLEDs I,
II, and III is identical to that for μLEDs A, B, and C (see
Table 1), respectively except that the surface defects are
considered for μLEDs I, II, and III, such that the width
of the defected region for μLEDs I, II, and III is set to
0.5 μm from the etched mesa edge.
The numerically computed EQE and optical power as

a function of the current density are demonstrated in
Fig. 6. Figure 6 shows that when surface nonradiative re-
combination is considered, the optical intensity can be
significantly decreased. Therefore, this further confirms

Fig. 2 Numerically calculated hole concentration profiles in MQW regions for μLEDs A, B, and C. Data are calculated at the current density of 40
A/cm2. Inset figure shows the position along which the date profiles are captured

Fig. 3 (a) Numerically calculated hole concentration profiles, and (b) normalized hole concentration profiles in the first quantum well near the p-
EBL for μLEDs A, B and C, respectively. Inset figure shows the position along which the hole concentration profiles are captured. Data are
calculated at the current density of 40 A/cm2
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that the surface nonradiative recombination cannot be ig-
nored for μLEDs [10, 17, 18]. In the meantime, agreeing
well with the observations in Fig. 1, the EQE and the op-
tical power also get enhanced when the quantum barrier
thickness decreases, e.g., μLED I with the thinnest
quantum barrier has the largest EQE and optical power.
The experimentally measured EQE for μLEDs I and III are
shown in inset Fig. 6a, which shows the same trend as the
numerical calculation results. In addition, we measure and
show the normalized electroluminescence (EL) spectra for
μLEDs I and III in Fig. 6b and c, respectively. The peak
emission wavelength for all the tested μLEDs is ~450 nm.
The measured EL can be reproduced by our models. This
indicates that the physical parameters we have utilized are
set correctly, e.g., the polarization level and the InN com-
position in the MQWs that determine the emission wave-
length have been properly set.
In order to reveal the effect of the sidewall defects on

the hole injection efficiency for μLEDs I, II, and III, the
hole concentrations are shown in Fig. 7. Note, the hole
concentration in Fig. 7a is probed in the middle region
for the devices [as indicated by the red arrow in the inset

of Fig. 7a]. Figure 7b shows the hole concentration in
the defected region for the devices [as indicated by the
red arrow in the inset of Fig. 7b]. As Fig. 7a and b illus-
trate, for both the non-defected region and the sidewall
region, the reduced thickness for quantum barriers fa-
vors the hole transport across the MQWs. The results
here are consistent with Fig. 2. Further comparison be-
tween Fig. 7a and b shows that hole injection efficiency
at the defected sidewall regions is obviously lower than
that in the non-defected region. The observations here
agree well with Kou et al. [18], which further manifests
that it is essentially required to make current less spread
to the defected sidewalls by properly reducing the
quantum barrier thickness (see Fig. 3a and b).
We then repeat our analysis as we have done in Fig. 5,

the values for which are now demonstrated in Fig. 8. We
can see that the ratio for RSRH/Rrad at the mesa edge in-
creases when the quantum barrier is thickened, which is
uniquely ascribed to the significantly enhanced surface
nonradiative recombination rate. As we have proposed,
thick quantum barriers allow the current to arrive at mesa
edges and trigger the surface nonradiative recombination.

Fig. 4 Energy band diagrams for μLEDs (a) A, (b) B, and (c) C. Ev, and Efh denote the valance band and quasi-Fermi level for holes, respectively.
The data care calculated at the current density of 40 A/cm2
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Fig. 6 Calculated EQE and optical power density in terms of the injection current density for μLEDs I, II, and III, respectively. Inset Fig of (a) shows
the experimentally measured EQE for μLEDs I and III, respectively. Inset figures of (b) and (c) present the measured and numerically calculated EL
spectra for μLEDs I, and III. Data for inset Figs (b) and (c) are collected at the current density of 40 A∕cm2

Fig. 5 Ratios of integrated SRH recombination (SRH) rate and integrated radiative recombination rate for μLEDs A, B, and C. Insets (a), (b), and (c)
are the profiles for SRH recombination (SRH) rate and the radiative recombination rate at the mesa edge for μLEDs A, B, and C, respectively. Data
are calculated at the current density of 40 A/cm2
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As a result, inset Fig. a–c also shows that the surface non-
radiative recombination becomes extremely strong at
mesa edges. The nonradiative recombination rate at side-
walls even overwhelms the radiative recombination rate.

Conclusions
In summary, we have numerically investigated and dem-
onstrated the impact of different quantum barrier thick-
nesses on the hole injection and the current spreading

for InGaN-based μLEDs. The results indicate that by
thinning the quantum barrier thickness, a better current
confinement within the mesa region can be enabled.
Correspondingly, the current spreading can be well
managed to be apart from mesa edges, which then sup-
presses surface nonradiative recombination. Both nu-
merically and experimentally, we observe the improved
external quantum efficiency for InGaN-based μLEDs
with properly thin quantum barriers. We believe that the

Fig. 7 Numerically calculated hole concentration profiles in the MQW region (a) in the center, (b) at the edge of the mesas for μLEDs I, II, and III,
respectively. Data are calculated at the current density of 40 A/cm2. Inset figures show the position along which the hole concentration profiles
are captured

Fig. 8 Ratios of the integrated SRH recombination (SRH) rate and the integrated radiative recombination rate for μLEDs I, II, and III. Inset figures
(a), (b), and (c) are the profiles for SRH recombination (SRH) rate and the radiative recombination rate at the mesa edge for μLEDs I, II, and III,
respectively. Data are calculated at the current density of 40 A/cm2
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proposed approach is promising for removing the bottle-
neck that limits the development of high-performance
μLEDs. Moreover, the device physics that is presented in
this work will increase the understanding of InGaN-
based μLEDs.
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