
NANO COMMENTARY Open Access

Prediction Network of Metamaterial with
Split Ring Resonator Based on Deep
Learning
Zheyu Hou1, Tingting Tang2*, Jian Shen1,3*, Chaoyang Li1 and Fuyu Li2

Abstract

The introduction of “metamaterials” has had a profound impact on several fields, including electromagnetics.
Designing a metamaterial’s structure on demand, however, is still an extremely time-consuming process. As an
efficient machine learning method, deep learning has been widely used for data classification and regression in
recent years and in fact shown good generalization performance. We have built a deep neural network for on-
demand design. With the required reflectance as input, the parameters of the structure are automatically calculated
and then output to achieve the purpose of designing on demand. Our network has achieved low mean square
errors (MSE), with MSE of 0.005 on both the training and test sets. The results indicate that using deep learning to
train the data, the trained model can more accurately guide the design of the structure, thereby speeding up the
design process. Compared with the traditional design process, using deep learning to guide the design of
metamaterials can achieve faster, more accurate, and more convenient purposes.
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Introduction
Nano-optics is an interdisciplinary subject of nanotechnol-
ogy and optics. In recent years, by constantly designing
structures with different sub-wavelength sizes in order to
achieve special interactions with incident light, scientists
have succeeded in manipulating certain transmission
characteristics of light [1–3]. Since metamaterials were
proposed, they have attracted the attention of many
scholars in this field, and concurrently their related theor-
etical study [4, 5], process [6, 7], and applied [8] research
are all advancing at the same speed. Many peculiar func-
tions have been realized, including holographic imaging,
perfect absorption [9], and flat lenses [10]. Due to the
rapid development of terahertz technology and its unique
characteristics, it has also become a popular research topic
in the field of metamaterials in recent years [11–13].

Although the application of metamaterials is very
wide, the traditional design method requires the designer
to repeatedly perform complex numerical calculations
on the structure being designed. This process consumes
huge time and computing resources. Therefore, it is
urgent to find new ways to simplify or even replace trad-
itional design methods.
As a cross-disciplinary field, machine learning covers

many disciplines including life sciences, computer sciences,
and psychology, it has been working to use computers to
imitate and implement human learning processes to
acquire new knowledge or skills. The basic principle of
machine learning can be simply described as the use of
computer algorithms to obtain the correlation among a
large amount of data or to predict the rules among similar
data and finally achieve the purpose of classification or
regression. Until now, many machine learning algorithms
have been applied to the designation of metamaterials and
have achieved significant results, including genetic algo-
rithms [14], linear regression algorithms [15], and shallow
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neural networks. As the structure turns more and more
complex and the changes in the structure become more di-
verse, problems will require more time to solve. At the
same time, the highly nonlinear nature of the problems
makes it difficult for simple machine learning algorithms
to obtain accurate predictions. In addition, to design a
matching metamaterial structure for a specific electromag-
netic effect requires designers to try and perform complex
numerical calculations on the structure. These processes
will consume a tremendous amount of time and comput-
ing resources.
As one of the most outstanding algorithms in the field

of machine learning, deep learning has made world-
renowned achievements in various related fields such as
computer vision [16], feature extraction [17], and natural
language processing [18]. At the same time, successes in
other non-computer related fields are numerous, includ-
ing many basic disciplines such as life sciences, chemis-
try [19], and physics [20] [21]. Therefore, applying deep
learning to the design of metamaterials is also a hot re-
search direction at present, and many outstanding works
have appeared [22–24].
Inspired by deep learning, this paper reports a study

using a machine learning algorithm based on a deep
neural network to predict the structure of the split-ring
resonator (SRR) to achieve the purpose of designing on
demand. In addition, the forward network and the re-
verse network are innovatively trained separately, which
not only can improve the accuracy of the network, but
also can achieve different functions through flexible
combination. The results show that the method can
achieve MSE of 0.0058 and 0.0055 on the training set

and validation set, respectively, and displays good ro-
bustness and generalization. With the trained model
guiding the design of metamaterial structures, the design
cycle can be shortened to days or even hours, and the
improvement in efficiency is obvious. In addition, this
method also has good scalability and only needs to
change the training set data to design different inputs or
different structures on demand.

Theory and method
COMSOL model building
In order to show that deep learning can be applied to
the reverse design of metamaterials structures, we mod-
eled a three-layer SRR structure consisting of a gold
ring, a silica bottom, and a gold bottom to observe its
electromagnetic response under the action of the inci-
dent light. As shown in Fig. 1, the opening angle θ of the
gold ring, the inner radius r of the ring, and the line
width d of the ring are selected as independent variables
of this structure. When a beam of linearly polarized light
enters the metamaterials normally, the wavelength-
reflectance curves under different structures are ob-
tained by changing the structural variables. The thick-
ness of the Au ring is 30 nm, of the bottom of SiO2 is
100 nm, and of the bottom of Au is 50 nm, and the size
of the meta-atoms is 200 nm by 200 nm.
Use COMSOL Multiphysics 5.4 [25] for modeling,

choose three-dimensional space dimension, choose op-
tics ≥ wave optics ≥ electromagnetic wave frequency do-
main (ewfd) for the physical field and select the
wavelength domain for research. Create the above model
in geometry. The material of each part and its refractive

Fig. 1 Schematic diagram of the structure. The entire metasurface is composed of meta-atoms arranged repeatedly in two directions, and linearly
polarized light is incident perpendicular to the metasurface. Each meta-atoms is composed of a gold ring, a silica bottom, and a gold bottom in
order from top to bottom. The uppermost gold ring contains three structural parameters, namely the line width d, the opening angle θ, and the
inner ring radius r
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index are defined in order in the material, and ports and
periodic conditions are added in the electromagnetic
wave frequency domain.

Building a deep learning neural network model
We have constructed a reverse network and a forward
network for the metamaterial structure. The reverse net-
work can predict the structural parameters of the SRR
from the given two sets of wavelength-reflectance curves
with different polarization directions. The forward net-
work can predict the wavelength-reflectance curves in
two polarization directions by the given structural pa-
rameters. The function of the reverse network is the
main body of the prediction function. The role of the
forward network is to verify the prediction results of the
reverse network to observe whether the prediction re-
sults meet the required electromagnetic response.
Use eclipse 2019 as the development platform, py-

thon3.7 as the programming language, and TensorFlow
1.12.0 as the development framework.
The two networks are trained separately to keep the

training results of each network from being affected by
the error of the other network, which thereby ensures
the respective accuracy of the two networks.
As shown in Fig. 2, another advantage of training the

two networks separately is that they can be used for dif-
ferent purposes through different connection sequences:
(a) reverse network + forward network, which can use
the given wavelength-reflectance curve to calculate the
structure parameters, make predictions and verify
whether the prediction results meet the needs, and (b)

using the forward network alone can simplify the calcu-
lation process of the numerical calculation method and
reduce the calculation time.
It is worth noting that the process of inputting and

obtaining the results of the trained model using the
method of deep learning takes an extremely short time.
And whenever new data is obtained through simulation
or experiment, the model can be used for further train-
ing. Studies have shown that with the continuous in-
crease of training data, the accuracy of the model will
become higher and higher, and the generalization per-
formance better and better [26].
The parameters of the structure are multiple sets of

continuous eigenvalues, which belong to the regression
problem. In recent years, fully connected networks have
been the focus of deep learning networks on regression
issues and shown the characteristics of high reliability,
large data throughput, and low latency. Making some
adjustments on a fully connected network will allow the
network to better predict the structure.
As shown in Fig. 3b, the forward network is a fully

connected network in which all nodes of the two adja-
cent layers are connected to one another. The input data
is the structural parameter, and the output is the
wavelength-reflectance curve of the two polarization di-
rections. As shown in Fig. 3a, the reverse network con-
sists of a feature extraction layer (FE layer) and a fully
connected layer (FC layer). The FE layer includes two
sets of fully connected networks which are not con-
nected to each other and processes the wavelength-
reflectance curves of the linearly polarized light in the

Fig. 2 In this figure, FNN refers to the forward neural network, and RNN refers to the reverse neural network. The top graph (a) indicates that the
two networks can be connected to achieve the effect of prediction and verification, and the bottom graph (b) indicates that the forward
response network alone can be used to calculate the optical response
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two directions to extract some features of the input data.
The FC layer will learn the extracted features and output
the structural parameters. Because of the characteristics of
high cohesion and low coupling between the wavelength-
reflectance curves in different polarization states, separating
the inputs of two sets of polarized light data in different di-
rections can prevent the network from being disturbed by
data standardization during the data extraction process.
The forward network does not involve multiple sets of in-
puts and does not need to consider mutual interference be-
tween data, so it does not have a feature extraction layer.
In order to determine the optimal network structure,

networks in different structures are trained using the

same set of data. As shown in Fig. 4, after the data has
experienced 50 epochs (when all the data has undergone
a complete training, it is called an epoch), the MSE
reached by the forward network of different structures.
As can be seen from the left picture of Fig. 4, when the
forward network contains 5 hidden layers, each layer
containing 100 nodes, the lowest MSE achieved is about
0.0174, so the forward network of this structure will be
selected.
Similarly, different networks of reverse networks were

trained, and the training volume was still set to 50
epochs. The result is shown in the right figure of Fig. 4.
When the number of FC layers is 7 and the number of

Fig. 3 Schematic diagram of the network structure. The above figure shows the reverse network. The reverse network consists of an input layer, a
feature extraction layer, a fully connected layer, and an output layer. The following figure shows the forward network, which consists of an input
layer, a hidden layer, and an output layer
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FE layers is 3, the network reaches the lowest MSE,
which is about 0.1756.
We found that a larger number of network layers will

produce a gradient explosion phenomenon, which will
cause the network to fail to converge, and the loss is in-
finite, so it is not listed in the figure.

Data preprocessing
In order to train a more reliable forward network, the
reflectance data is re-divided, and it is stitched with the
refractivity of Au and SiO2 corresponding to each fre-
quency. The collated data is then normalized and input
to the forward network, which can greatly improve the
accuracy of the forward network.
In order to ensure that the data with larger values will

not have a higher impact on the network than the data
with smaller values, the input data needs to be normal-
ized to make each column of data conforms with the
standard normal distribution (the mean value is 0, the
variance is 1), and then the processed data x can be
expressed as follows:

x ¼ x0‐μð Þ
σ

ð1Þ

In the expression, x0 is the sample’s original data, μ
the sample’s mean, and σ the sample’s standard devi-
ation. If the input data is not re-divided, the reflectance
will be distorted after normalization, which will reduce
the accuracy of the network. The re-divided data will
not affect its distribution due to normalization.

Neural network method
The principle of the neural network is to build a lot of
neurons (nodes) by imitating the way the human brain
works and learns [27]. Neurons are connected with each
other, and the output is adjusted by adjusting the

connection weight. The output of the jth node of a layer
can be expressed as follows:

y j ¼

Xn

i¼1

f wixi þ bj
� �

n
ð2Þ

f is the activation function, wi is the connection weight
of the previous layer’s ith node connected to the jth node,
xi is the output of the ith node of the previous layer, bj is
the bias term of this node, and n is the number of nodes
in the previous layer connected to the jth node.

Choice of an activation function
In order to meet the high nonlinearity of the inverse prob-
lem, the ELU function [28] is used as the activation function
of each layer of neurons [28]. The output f(x) of the ELU
function can be expressed as piecewise form as follows:

f xð Þ ¼ x
α ex−1ð Þ

�
;
;
x≥0
x < 0

ð3Þ

In this function, x is the original input, and the param-
eter value for α ranges from 0 to 1.
The reason for using the activation function is that the

activation function changes the nonlinear expression
ability of each layer of the network, thereby improving
the overall nonlinear fitting ability of the network. As
shown in Fig. 5, the ELU function combines the advan-
tages of Sigmoid and rectified linear unit (ReLU) activa-
tion functions. When x < 0, it has better soft saturation,
which makes the network more robust to input changes
and noise. When x > 0, there is no saturation, which is
helpful to alleviate the disappearance of the gradient of
the network. The feature that the mean value of ELU is
close to 1 can make the network easier to fit. The result
proves that using ELU as the activation function of the

Fig. 4 Comparison of network structures. In the figure on the left, the horizontal axis represents the number of nodes in each layer, the vertical
axis represents MSE, and the black, red, blue, and green represent the situation when the hidden layer contains 5, 6, 7, and 8 layers, respectively.
In the figure on the right, the horizontal axis indicates the number of layers in the fully connected layer, the vertical axis indicates MSE, and the
black, red, and blue lines indicate the situation when the FE layer includes 3, 4, and 5, respectively
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deep learning, neural network improves the robustness
of the network significantly.

Weight initialization scheme
The initialization method of the network weight of each
layer determines the speed of the network fitting and even
determines whether the network can fit or not. Variance
scaling initialization is based on the amount of input data
at each layer and extracts weights from a truncated nor-
mal distribution centered on 0, so that the variance can be
reduced to a certain range, then the data can be spread
deeper across the network [29]. On this network structure,
using variance scaling initialization can make the net-
work’s convergence speed significantly faster.

Overfitting solution
Because of insufficient data, the network will produce some
overfitting. With reduced overfitting, the network can have

good generalization performance on data outside the train-
ing set. L2 regularization (also called weight-decay in re-
gression problems) is used to process the weight w. The
regularized output L can be expressed as follows:

L ¼ L0 þ λ
2n

X
w2 ð4Þ

In Eq. (4), L0 represents the original loss function, and
a regularization term λ

2n

P
w2 is added on this basis,

where λ represents the regularization coefficient, n the
data throughput, and w the weight. After the
regularization term is added, the value of the weight w
tends to decrease overall, and the occurrence of exces-
sive values can be avoided, so w is also called weight at-
tenuation. L2 regularization can reduce the weight to
avoid a large slope of the fitted curve, thereby effectively
alleviating the overfitting phenomenon of the network
and helping to converge.
On this basis, the dropout method is also used. This

method can be visually regarded as “hiding” a certain scale
of network nodes for each training, and hiding different
nodes during each training, to achieve the goal of training
multiple “partial networks”. And through training, most of
the “partial networks” can accurately represent the targets,
and the results of all the “partial networks” can be sorted
to obtain the solution of the targets.
Using the L2 regularization and dropout methods

mentioned above can not only effectively alleviate the
low generalization caused by insufficient data, but also
reduce the impact of a small amount of erroneous data
in the data set on the training results.
On this network structure and data set, with dropout =

0.2 and L2 regularization coefficient λ = 0.0001, the network
can obtain similar accuracy on the training set and test set,
thereby achieving a high generalization performance.

Fig. 5 Exponential linear units (ELU) function curve. In the figure, x
represents the original input, and f(x) represents the function output

Fig. 6 Results of forward network training. The corresponding structural parameters are θ = 50°, r = 60 nm, and d = 10 nm. In the figure, the
horizontal axis represents the incident light wavelength, the vertical axis represents the reflectivity, the red line represents the COMSOL simulation
result, and the blue line represents the network training result. The left figure shows the reflectivity curve corresponding to the x-polarized input,
and the right figure shows the reflectivity curve corresponding to the y-polarized input
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Result and discussion
After training, our forward network can achieve a high
degree of fitting, with an MSE of 0.0015, which shows
the output is very similar to the simulation results, as
shown in Fig. 6. This also ensures that when training the
reverse network, the results of the reverse network can
be reliably verified.
Finally, we will generate two models from the learned

network and connect the two models to achieve the pre-
diction function.
The prediction function can choose the combination

shown in Fig. 2a. The reverse network predicts the
corresponding structure according to the required
wavelength-reflectance curve, and the forward network
verifies the optical response of the structure. As shown
in Fig. 7, by comparing the verified reflectance to the in-
put reflectance, the reflectance characteristics of the in-
cident light in the two polarization directions are
basically consistent. Although minor reflectance mis-
matching is observable for certain wavelength values, the
overall matching trend is clearly irrefutable, since the er-
rors are well within an acceptable range.

Conclusion
In this article, we have presented our designed deep learn-
ing network, capable of creating various effects through
employing flexible combinations of network configura-
tions. Our reverse network designed can predict the re-
quired structure using the input wavelength-refractive
curve, which can greatly reduce the time required in solv-
ing the reverse problem and meet different needs through
utilizing flexible combinations. The results indicate that

the network has achieved a higher accuracy in predictions,
which further implies that on-demand design can be
solved through our method. Using deep learning to guide
the design of metamaterials can automatically obtain more
accurate metamaterial structures, a result unattainable by
traditional design methods.
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