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Abstract

Flexible pressure sensors have attracted increasing attention due to their potential applications in wearable human
health monitoring and care systems. Herein, we present a facile approach for fabricating all-textile-based piezoresistive
pressure sensor with integrated Ag nanowire-coated fabrics. It fully takes advantage of the synergistic effect of the fiber/
yarn/fabric multi-level contacts, leading to the ultrahigh sensitivity of 3.24 × 105 kPa−1 at 0–10 kPa and 2.16 × 104 kPa−1 at
10–100 kPa, respectively. Furthermore, the device achieved a fast response/relaxation time (32/24ms) and a high stability
(> 1000 loading/unloading cycles). Thus, such all-textile pressure sensor with high performance is expected to
be applicable in the fields of smart cloths, activity monitoring, and healthcare device.
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Introduction
With the recent development of wearable electronics,
there is an increasing demand for flexible pressure
sensors in a multitude of applications including e-skin
devices, health monitoring systems, and smart robots
[1–8]. In order to be viably employed in these applica-
tions, pressure sensors must exhibit excellent sensitivity
performance, thus, providing exhaustive information for
accurate diagnosis or analysis.
To date, numerous methods have been developed to

improve the sensor performance by optimizing the
nanomaterials, including carbon nanotubes (CNTs) [1],
graphene nanosheets [9], metal nanowires [10–19], con-
ductive polymers [20], and their composite materials
[21–26]. Particularly, Ag nanowire (AgNW) has been
widely explored as the sensing materials or conductive
fillers in pressure sensors because of its excellent elec-
trical properties. For example, Wang et al. fabricated a
flexible pressure sensor based on the AgNW-filled PU
film, rendering a sensitivity of 5.54 kPa−1 at the pressure
range of below 30 Pa [27]. Ho et al. reported a

transparent crack-enhanced pressure sensor consisting
of two laminated PDMS films bearing AgNW-embedded
microfluidic channels [28]. However, most of these sen-
sors were fabricated using airproof elastic substrates,
which are unbreathable and uncomfortable to wear, thus
limiting their practical applications.
More recently, textile-based pressure sensors have

attracted increasing attention because of its softness,
breathable, and biocompatibility, which makes it durable
and wearable for long term. AgNWs have been widely
used in the textile-based pressure sensors as sensitive
layer. For textile-based sensors, a typical structure con-
sists of flexible circuits covered with a conduction fabric,
and they exploit a change in contact resistance between
the circuits and the fabrics. When a pressure is applied,
the two films contact, and a significant current is gener-
ated. For instance, Wei et al. demonstrated a wearable
pressure sensor with the structure of two conductive
AgNWs-coated cotton sheets [29]. Zhou et al. designed
a pressure sensor with a printed textile electrode and
AgNW-coated cotton fabric [30]. However, the pressure
range is limited for the structure of these sensors. Thus,
various structure designs have been proposed to improve
the performance of pressure sensors. Zhong et al. devel-
oped an ultrasensitive piezoresistive sensor with high
flexible, which is composed of POE nanofibers and
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AgNWs by a facile filtration method. The nanofibers are
replicated on patterned nylon textiles with different fiber
spacing [12]. Despite this progress, an all textile-based
pressure sensor with ultrahigh sensitivity and structure
design is seldom reported by far.
Here, we proposed a novel strategy for fabricating all-

textile-based pressure sensors. The AgNWs solution was
synthesized, and then the conductive fabric can be fabri-
cated using a dip-coating method, which was done by
dipping cotton pieces into the AgNW dispersion. The
active sensing element contained double-layered AgNW-
coated cottons with a cotton mesh spacer to secure the
initial contact between them. The pressure sensing is
based on changes in the electrical current due to the
contact between the facing layers upon external pres-
sure. This all-textile-based piezoresistive pressure sensor
fully takes advantage of the synergistic effect of the
fiber/yarn/fabric multi-level contacts, leading to the ul-
trahigh sensitivity of 3.24 × 105 kPa−1 at 0–10 kPa and
2.16 × 104 kPa−1 at 10–100 kPa, respectively. Meanwhile,
the pressure sensor achieved a fast response/relaxation
time (32/24 ms), and high stability (> 1000 loading/
unloading cycles). Such devices have wide applications
in smart clothes, activity monitoring, and healthcare
device.

Experimental Section
Materials and Methods
The AgNWs solution was synthesized by hydrothermal
method. First, the solution of PVP was added into EG;
then, the mixture was stirring for 20 min to fabricate the
solution of PVP/EG. Subsequently, the solutions of
AgNO3/EG and NaCl/EG were prepared with a similar

method. Second, the solutions of AgNO3/EG and NaCl/
EG were added into PVP/EG, and the mixture was
stirred and transferred into a reaction kettle. Third, the
kettle was heated to 140 °C for 2 h and then to 160 °C
for 30 min. Subsequently, the kettle was naturally cooled
down to room temperature. The obtained precipitates
were washed and centrifugal filtered with acetone and
deionized water several times to form a white powder.
Lastly, the obtained AgNWs were ultrasonically dis-
persed in ethanol.

Fabrication of Pressure Sensor
The all-textile-based pressure sensor was fabricated
using the “dipping and drying” process [31] (Fig. 1).
First, the cotton fabrics were cleaned with DI and an-
hydrous ethanol each for 15 min. Second, the fabrics
were dipped into the obtained solution of AgNWs for
20 min and followed by drying at 90 °C for 10 min (Fig.
1a). Then, the copper electrodes were attached to the
surface of the AgNW-coated fabrics with silver paste
and dried at 90 °C for 1 h. Meanwhile, the cotton mesh
spacers with different hole diameters were fabricated by
a laser etcher process (Fig. 1b). Finally, the double-
layered sensing fabric with an inserted cotton mesh spa-
cer was assembled by a face-to-face package process
(Fig. 1c).

Characterization
The scanning electron microscopy (SEM) images of the
AgNW-coated fabric surfaces were taken via a Gemini-
SEM 500 (ZEISS, New York, America) at 5 kV. The
current response of the pressure sensors was recorded
using a digital source meter (Keithley 4200, America)

Fig. 1 Fabrication process of the all-textile-based pressure sensor. a The preparation process of AgNW-coated cotton. b The fabrication process of
mesh spacer cotton. c The assembling process of pressure sensor
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and measured using a digital force gauge (SJS-500V,
China).

Results and Discussion
Figure 2 shows SEM images of the morphology of the
AgNWs-coated fabric with different magnification. As
shown in Fig. 2a, the yarns of the cotton were layered
naturally with porous structure. The outmost surface of
the fabric is covered by AgNWs (Fig. 2b), on which
nanowires are uniformly wrapped on the fibers. Particu-
larly, between the neighboring yarns, there are empty
spacings that are bridged by the attached AgNW conduct-
ive networks (Fig. 2c). To be noticed, long and uniform
wires were observed between adjacent yarns, and the aver-
age diameter of AgNW is around 55 nm. In Fig. 2d, the
AgNWs are homogenously formed at main area of the
yarn surface, while disconnected at some point due to the
poor adhesion. Furthermore, the distant between nano-
wires adhered on the individual yarn is relatively larger
than that of the nanowires between neighboring yarns.
Also, the density of the AgNWs on the surface of the

fabrics was adjusted by the times of dip-coating cycles.
The AgNWs-coated fabric with 1 dip cycle and 5 dip
cycles was shown in Fig. S1 and Fig. 2d, respectively.
Compared with the high density one, the nanowire mesh
spacings of 1 dip cycle were increased from below 1 to
2–4 μm.
The composition of the AgNWs-coated fabric was also

investigated by the energy dispersive X-ray spectroscopy

(EDS), as illustrated in the inset of Fig. S2. In addition to
the C and O contents which mainly attributed from cot-
ton, Ag element was also observed, indicating the distri-
bution of AgNWs on the cotton.
The sensing principle of the pressure sensor is shown

in Fig. 3a, and the cross-section SEM images of the
sensor with different pressures are shown in Fig. 3b–e.
In the unloading state, the initial resistance is large,
which is caused by the non-contact AgNWs on the
fabrics (Fig. 3b). Once the pressure was applied, the in-
creasing fiber-scale contacts of nanowires on the adja-
cent fabrics contributed to a decrease in the resistance
(Fig. 3c). Furthermore, when the nanowires on the fab-
rics were contacted completely, the continued pressure
loaded on the fibers then increased the yarn-scale con-
tacts. As Fig. 3d shown, the yarns length in Y direction
are reduced from about 200 to 160 μm, confirming the
compression between the yarns. According to the cross-
section SEM images, the AgNWs were formed both on
the yarn surface and inside the adjacent yarns (Fig. S3).
When the pressure was applied and the yarns were com-
pressed, the AgNWs inside the yarns could contact and
further reduced the resistance of the sensor. With load-
ing pressure increasing, the neighboring fabrics were
compressed (Fig. 3e); fabric-scale contacts further re-
duced the resistance of the sensor due to the increased
contact area between the facing fabrics. At this point,
the total thickness of the double-layered fabrics was re-
duced from 600 to 350 μm. Therefore, the pressure

Fig. 2 The morphology of the AgNWs-coated fabrics. a–d The SEM images of the surface morphology of AgNWs-coated fabric with different
position of AgNWs and different magnification, in which c is the SEM image of the AgNWs between the yarns and d the AgNWs coated on the
single fiber
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sensing of the sensors was determined by the synergistic
effect of the fiber/yarn/fabric multi-scale contact. These
cross-section SEM images further confirmed the pres-
sure sensing mechanism.
The influence of bending on the surface morphology

of the AgNWs-coated fabrics was investigated by cross-
section SEM images shown in Fig. S4. With the little
bending deformation, there is no obvious crack and
peeling off problem of AgNWs network on the fabrics
(Fig. S4b) compared with initial state (Fig. S4a). In order
to further investigate the influence of bending deform-
ation, the SEM images of AgNWs-coated fabrics with 500
times bending cycles were taken and shown in Fig. S5. Fig
S5 shows many delaminated spots which potentially occur
device degradation. This result indicates that the stability
of the AgNWs-coated fabric need to be further improved
in the future.
Fig. 4a shows the current-voltage curves of the pres-

sure sensor under different pressures. When the applied
pressure increased from 0 to 100 kPa, the resistance of
the sensor was decreased. Furthermore, the response of
sensor was steady and fell in line under Ohm’s law [32].
The current of pressure sensor is shown in Fig. 4b,

which is relatively constant under different applied pres-
sure, revealing that the response of the sensor is stable
for different pressures. Therefore, the results provide ex-
cellent electrical stability for the potential application of
the pressure sensor.
To investigate the performance of pressure sensors,

the relative current changes (ΔI/I0) versus pressure with
the different AgNWs dip-coating cycles and mesh hole
diameters were shown in Fig. 4c, d. Here, the sensitivity
of the pressure sensor was defined as S = (ΔI/I0)/P,
where P denotes the applied pressure. At a mesh hole
diameter of 0.25 mm, the sensitivity of the pressure sen-
sor was strongly dependent on the AgNWs dip-coating
cycles. The sensitivity of the sensors was improved from
2.12 × 103 kPa−1 to 1.98 × 105 kPa−1 within the range of
0–10 kPa when the dip-coating cycles increased from 1
to 5. In addition, the sensitivity improved from 764 to
1.12 × 103 kPa–1 at 10–100 kPa. The improvement of
sensitivity with high dip-coating cycles is mainly attrib-
uted to the increase of the AgNWs densities.
Furthermore, the dependence of hole diameter was

subsequently characterized. The pressure sensors with 5
dip-coating cycles exhibited enhancing sensitivities with

Fig. 3 The sensing principle of pressure sensor. a Schematic illustration of pressure sensing. b–e The cross-section SEM images of the AgNWs-
coated fabric under different pressure
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increasing diameters, which were increased from 1.12 ×
103, 9.88 × 103, to 2.16 × 104 kPa–1 within the pressure
range of 10–100 kPa, respectively. The enhancement in
the sensitivity was mainly attributed to the increased
contact area through the larger holes. However, once the
diameter exceeded 1 mm with 4 cycles, the initial inter-
face of the facing fabrics resulted in more contact in the
unloading state, thus, significantly lowering the contact
resistance between the fabrics (Fig. S6). Furthermore,
when the thickness of the spacer cotton is changed, the
performances of the sensors get worse (Fig. S7). The
sensor with lower thickness shows a decrease of ΔI/I0
due to the contacting of the facing fabrics in the initial
state (Fig. S7a). In addition, higher thickness reduces the
contact of the fabrics. When the thickness of spacer cot-
ton increased to 1 mm, the AgNWs on the fabrics were
not contact until the pressure exceed 10 kPa (Fig. S7c).
Notably, the pressure sensor clearly exhibited two lin-

ear current segments; the sensitivity increases sharply in
the low-pressure range and increases gradually in the
high-pressure range. According to the sensing principle
as we mentioned above, in the low-pressure range, the
adjacent AgNWs contact plays an important role in in-
creased current. Furthermore, when the pressure is in-
creased to 10–15 kPa, the AgNWs on the interface were
contact completely. The current changes were mainly

determined by the contact resistance between the yarns
and fabrics, which was relatively stable. Contact between
the yarn and fabric scales played a more significant role
in the sensing mechanism at dip-coating cycles of 5
times and diameter of 0.75 mm by enhancing the sensi-
tivity and linear range. Therefore, the diameter of 0.75
mm (Fig. 4d) exhibited a higher sensitivity and larger lin-
ear range due to increased contact [33, 34].
The dynamic response of the device was studied under

loading/unloading pressure cycles. The sensor exhibited
an immediate response to the cyclic pressures. The
time-resolved response was analyzed to quantify the
response and relaxation times (Fig. 5a). The measured
response and relaxation times were 32 and 24 ms, re-
spectively. The performance of the sensor under differ-
ence pressure is also investigated and shown in Fig. S8.
The sensor clearly distinguished a subtle pressure of 50
Pa, indicating the excellent performance of the sensor.
The ΔI/I0 with an applied pressure of 10 kPa with 1000
loading cycles was used to verify the repeatability of the
device (Fig. 5b). The results show the excellent stability
of the pressure sensors. Furthermore, the air permeabil-
ity of both normal cotton and AgNW-coated cotton was
investigated. Despite the air permeability was reduced
from 787.3 to 252.6 mm/s, this value is still much higher
than the recently reported ones [35, 36]. This result

Fig. 4 Performances of the pressure sensors. a I-V curves of the pressure sensor with different applied pressures. b The current response of the
sensor under different pressures. c, d The performance comparison of the pressure sensors with different dip-coating cycles and mesh
hole diameters
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demonstrated that the wearable pressure sensors based
on silver nanowire-coated fabrics remain good air per-
meability because of its high porosity.
Due to the natural flexibility of fabrics and high sensitiv-

ity of sensors, the pressure sensor was wearable and able
to detect mechanical signals such as physiological pulse
and respiratory rate. First, the device was attached at the
wrist using an adhesive bandage to monitor the pulse
pressure. Fig. 5c presents the real-time recorded data, in
which the pulse rates were measured to be ≈ 72 beats
min–1. In addition, the sensor was also attached to a mask
to detect respiration states. Fig. 5d indicates that the nor-
mal respiratory rate of 10 breaths per minute of an adult
and a square-like wave for normal breathing. Furthermore,
the width of the waveband indicated the maintained time
of breathing. These results suggest that the pressure sen-
sor with high sensitivity and superiority has great potential
in wearable healthcare device applications.

Conclusion
In this work, the AgNWs were fabricated by hydrothermal
method, and the morphology was characterized and ana-
lyzed. An all-textile-based pressure sensor was fabricated
by inserting a cotton mesh spacer between the double-
layered AgNW-coated cottons. Owing to the collective
effect of the fiber/yarn/fabric multi-scale contacts, the
sensor has extremely high sensitivity (3.24 × 105 kPa−1 at

0–10 kPa and 2.16 × 104 kPa−1 at 10–100 kPa, respect-
ively), fast response/recovery time (32/24ms), high stabil-
ity (1000 cycles), and wide pressure range (0–100 kPa).
The physiological signals monitoring such as pulse pres-
sure has been successfully demonstrated. With a facile
and efficient method for fabrication, such an ultrasensitive
pressure sensor will promote a wide application in next
generation development of smart clothes, activity moni-
toring, and healthcare device.
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