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Abstract

Designing powerful electromagnetic wave modulators is required for the advancement of optical communication
technology. In this work, we study how to efficiently modulate the amplitude of electromagnetic waves in near-
infrared region, by the interactions between the interband transition of graphene and the magnetic dipole
resonance in metamaterials. The reflection spectra of metamaterials could be significantly reduced in the
wavelength range below the interband transition, because the enhanced electromagnetic fields from the magnetic
dipole resonance greatly increase the light absorption in graphene. The maximum modulation depth of reflection
spectra can reach to about 40% near the resonance wavelength of magnetic dipole, for the interband transition to
approach the magnetic dipole resonance, when an external voltage is applied to change the Fermi energy of
graphene.
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Background
Dynamically controlling the spectral properties of
electromagnetic waves by external stimuli such as
mechanical force, temperature change, electrical
voltage, and laser beam [1–4] has been drawing
increasing interest, because of many applications in
the fields of holographic display technology, high-
performance sensing, and optical communications.
In the past few years, much effort has been made
to actively manipulate the transmission, reflection,
or absorption spectra of electromagnetic waves,
which is based on electrically tunable surface
conductivity of graphene, in a very wide frequency
range including microwave [5, 6], terahertz (THz)
[7–33], infrared [34–65], and visible regime
[66–69]. Such graphene-based active manipulation
of electromagnetic waves is under external electrical

stimulus without re-building-related structures,
which aims to efficiently modulate the amplitude
[5, 7–21, 34–57, 66–72], phase [6, 22–28, 58–62],
and polarization [29–33, 63–65] of electromagnetic
waves. The three kinds of electromagnetic wave
modulators are the most important for signal pro-
cessing in free-space optical communications [1–4].
In the far-infrared and THz regime, the surface
conductivity of graphene only comprises the contri-
bution of intraband, and graphene has an effective
dielectric function that can be described with the
standard Drude model [27]. Therefore, at lower fre-
quencies, very similar to noble metals (e.g., Ag and
Au), nanostructured graphene is also able to sup-
port localized or delocalized surface plasmon reso-
nances [73] with great electromagnetic field
enhancement, which has been widely employed to
strengthen light-mater interactions for efficient
modulation of electromagnetic waves. For example,
in 2012, Sensale-Rodriguez et al. theoretically pre-
sented reflectance modulators with an excellent
performance at THz frequency, by taking advantage
of plasmonic effects in graphene micro-ribbons [9].
In the visible and near-infrared regime, interband
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contribution dominates the surface conductivity of
graphene, whose complex permittivity has a real
part of positive value. So, at higher frequencies,
graphene itself no longer supports surface plasmon
resonances, but behaves more like an ultra-thin di-
electric film when it interacts with light. In this
situation, various high-quality resonance modes
supported in other nanostructured materials are
often explored to electrically modulate electromag-
netic waves, with the help of the gate-controlled
Fermi energy of graphene. For example, Yu et al.
studied in theory the amplitude modulation of vis-
ible light with graphene, by utilizing Fabry-Perot
interference, Mie modes in dielectric nanospheres
with a high refractive index, and surface lattice res-
onances in a periodic array of metal nanoparticles
[67]. In past decade, magnetic resonance in meta-
materials has been studied extensively and inten-
sively to achieve perfect absorbers of
electromagnetic waves [74–78]. However, up to
now, there are only a few studies on optical
modulators that are based on magnetic resonance
in metamaterials with an inserted graphene mono-
layer [34].
We will propose an efficient method to modulate

the reflection spectra of electromagnetic waves in
near-infrared region, by coupling the interband transi-
tion of graphene to the magnetic dipole resonance in
metamaterials. It is found that the reflection spectra
of metamaterials can be largely reduced in the wave-
length range below the interband transition of gra-
phene, because the enhanced electromagnetic fields
from the magnetic dipole resonance greatly increase
the light absorption in graphene. The maximum
modulation depth of reflection amplitude can reach
to about 40% near the resonance wavelength of mag-
netic dipole, for the interband transition to be close
to the magnetic dipole resonance, when an external
voltage is applied to change the Fermi energy of
graphene.

Methods
We schematically show in Fig. 1 the building block of in-
vestigated metamaterials for efficient reflection modula-
tion in near-infrared region, through the interactions
between the magnetic dipole resonance and the inter-
band transition of graphene. We carry out numerical
calculations by the commercial software package
“EastFDTD” [79, 80]. The silica layer has a refractive
index of 1.45, and the silver nanostrips and substrate
have an experimental dielectric function [81]. The gra-
phene has a relative permittivity calculated by the fol-
lowing formula [82]:

σ intra ¼ ie2kBT
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where σintra and σinter are the intraband and interband
terms of the surface conductivity of graphene, τ is the
electron-phonon relaxation time, Ef is the Fermi energy,
and tg is the graphene thickness. The studied metamate-
rials could be realized in experiment with the help of ad-
vanced nanofabrication technology [83]. Firstly, the
silver substrate and the silica layer are prepared by ther-
mal evaporation. Then, the monolayer graphene is
coated on the silica surface through chemical vapor de-
position. Finally, the periodic array of silver nanostrips is
fabricated by electron beam lithography.

Results and Discussion
We first discuss the reflection spectra of metamaterials
without graphene, as shown by the black line and
squares in Fig. 2a. A broad reflection dip at 1210 nm is
observed, which is related to a magnetic dipole. When
graphene is inserted into metamaterials, the reflection is
largely reduced for the wavelengths smaller than 1150
nm (the position of interband transition in graphene), as
shown by the red line and circles in Fig. 2a. The reason
is that the enhanced electromagnetic fields from the res-
onance excitation of magnetic dipole hugely increase the
light absorption of graphene. Correspondingly, the
graphene-induced modulation depth of reflection spectra
will gradually increase from about 11 to 28%, when the
light wavelength is increased from 1000 nm to the

Fig. 1 Schematic of the building block of metamaterials.
Geometrical parameters: the period px along the x-axis direction, the
thickness t of the silica spacer, the width w, and the height h of the
silver nanostrips
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interband transition position, as exhibited in Fig. 2b.
The modulation depth is generally defined as (R-R0)/R0,
where R and R0 are the reflection spectra with and with-
out graphene inserted in metamaterials [34].
To demonstrate that the broad reflection dip is rele-

vant to a magnetic dipole, in Fig. 3, we plot the electro-
magnetic fields on the xoz plane at the wavelength of
1210 nm. The electric fields are mainly distributed
around the edges of silver nanostrips, and the magnetic
fields are largely localized into the silica region under
the silver nanostrips. The field distribution is the typical
property of a magnetic dipole resonance [84]. Between
the silver substrate and individual nanostrip, the plas-
monic near-field hybridization produces anti-parallel
currents, as indicated by two black arrows in Fig. 3b.
The anti-parallel currents can induce a magnetic mo-
ment M counteracting the incident magnetic field to
form the magnetic dipole resonance. The resonant wave-
length depends strongly on the width w of the silver
nanostrips, which will have an obvious red-shift when w
is increased.
The position of interband transition can be conveni-

ently tuned when an external voltage is applied to
change Fermi energy Ef. The position tunability of inter-
band transition is very helpful to efficiently control the
reflection spectra. For Ef to increase from 0.46 to 0.58
eV, the interband transition blue-shifts quickly, as exhib-
ited by the opened circles in Fig. 4a. Simultaneously, the
reflection is reduced noticeably in the wavelength range

Fig. 2 a Numerically calculated refection spectra of metamaterials
with and without an inserted graphene monolayer, under normal
incidence. b Modulation depth. Parameters: px = 400 nm, w = 200
nm, h = 50 nm, t = 30 nm, tg = 0.35 nm, T = 300 K, τ = 0.50 ps, Ef
= 0.54 eV

Fig. 3 Electric (a) and magnetic (b) field distributions on the xoz
plane at the magnetic dipole resonance

Fig. 4 Refection spectra (a) and modulation depth (b) for
different Ef

Ji et al. Nanoscale Research Letters          (2019) 14:391 Page 3 of 6



blow the interband transition. Near the resonance wave-
length of magnetic dipole, the reflection is reduced to a
minimum of about 0.55, when the interband transition
is tuned gradually to be across the broadband magnetic
dipole. Figure 4b shows the graphene-induced reflection
modulation effect for different Ef. With decreasing Ef,
the modulation depth of reflection spectra becomes lar-
ger and has a maximum of nearly 40% when Ef = 0.46
eV. Furthermore, the tunable wavelength range also
becomes much broader, because of the continuous red-
shift of interband transition when Ef is decreased.
However, in the wavelength range over the interband
transition, the reflection spectra are not modulated as
compared with the case of no graphene, and so, the
modulation depth is almost zero.
The interband transition is closely related to Fermi en-

ergy Ef, which can be fully manifested as a sharp spectral
feature in the permittivity εg of graphene. In Fig. 5, we give
the real and imaginary parts of εg for different Ef. For each
Ef, there exists a narrow peak in the real part of εg, and
correspondingly an abrupt drop appears in the imaginary
part of εg. With decreasing Ef, such a sharp spectral feature
red-shifts obviously. In the wavelength range on the right
side of the abrupt drop, the imaginary part of εg is very
small. This is why the reflection spectra are not modulated
for the wavelengths over the interband transition. The
position dependence of interband transition on Fermi en-
ergy Ef is shown in Fig. 6. We can clearly see that the peak
positions of the real part of εg are in excellent agreement
with those indicated by the opened circles in Fig. 4a.

Conclusion
We have numerically demonstrated a method to effi-
ciently modulate the reflection spectra of electromagnetic

waves in near-infrared region, by coupling the interband
transition of graphene to the magnetic dipole resonance
in metamaterials. It is found that the reflection spectra
can be largely reduced in the wavelength range below the
interband transition of graphene, because the enhanced
electromagnetic fields from the magnetic dipole resonance
greatly increase the light absorption in graphene. The
maximum modulation depth of reflection spectra can
reach to about 40% near the resonance wavelength of
magnetic dipole, for the interband transition to be near
the magnetic dipole resonance, when an external voltage
is applied to change the Fermi energy of graphene. The re-
flection modulation effect presented in this work may find
potential applications in optical communication systems.
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