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Abstract

As a typical metal selenide, CoSe is a kind of foreground anode material for lithium-ion batteries (LIBs) because of
its two-dimensional layer structure, good electrical conductivity, and high theoretical capacity. In this work, the
original CoSe/N-doped carbon (CoSe/NC) composites were synthesized using ZIF-67 as a precursor, in which the
CoSe nanoparticles are encapsulated in NC nanolayers and they are connected through C–Se bonds. The coating
structure and strong chemical coupling make the NC nanolayers could better effectively enhance the lithium
storage properties of CoSe/NC composites. As a consequence, the CoSe/NC composites deliver a reversible capacity
of 310.11 mAh g−1 after 500 cycles at 1.0 A g−1. Besides, the CoSe/NC composites show a distinct incremental behavior
of capacity.
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Background
With the depletion of fossil energy represented by petrol-
eum and the increasing environmental pollution caused
by the burning of fossil fuels, there is an urgent need for a
sustainable renewable energy source. Lithium-ion batteries
(LIBs) stand out from many new energy sources because
of their high energy density, long cycle life, and environ-
mental friendliness [1, 2]. They are widely used in mobile
electronic devices and electric vehicles. However, the
anode material of commercial LIBs is graphite, and the
theoretical capacity of graphite is only 372 mAh g−1,
which cannot meet the capacity requirements of large-
scale electronic equipment such as electric vehicles, and
limits the application and development of LIBs [3–6].
Therefore, scientists have developed a variety of anode
materials to increase the capacity and rate performance of
LIBs, such as carbon materials [7–9], transition metal ox-
ides [10–13], metal sulfides [14–17], metal phosphides
[18–21], and metal selenide [22–25].
Selenium has higher density and conductivity, so metal

selenide has higher energy density and rate performance

than transition metal oxides and sulfides [26]. Compared
with widely studied oxides and sulfides, selenide has
been relatively rare in the field of LIBs. Among selenides,
CoSe is regarded as an excellent anode material for LIBs
because of its two-dimensional layer structure, good
electrical conductivity, and high theoretical capacity [22].
However, as a negative electrode material for lithium
storage based on conversion reaction, like transition
metal oxides and sulfides, CoSe suffers serious volume
expansion during charge and discharge, resulting in the
breakage and pulverization of active materials and loss
the connection with the current collector, further caus-
ing the acute capacity attenuation [10]. According to
previous literature [25, 26], preparing nanostructures
and recombining with carbon materials can effectively
relieve the abovementioned problems. The porous nano-
structures are advantageous to the permeation of elec-
trolyte within electrode materials and shorten the
diffusion of lithium ions. Meanwhile, the porous struc-
ture could supply free space for volume expansion to
prevent the destruction of structure, which enhances the
cyclic stability. Besides, recombining metal compounds
with carbon materials could fully utilize the excellent
conductivity and mechanical property of carbon mate-
rials to improve the conductivity of metal compounds
and buffer the strain caused by volume expansion, which
is favorable to the rate and cycling performance.
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However, at present, metal compounds and carbon-
aceous matrix are connected through physical adsorp-
tion. Compared with strong coupling, such as chemical
bonds, the weak connection will make the metal com-
pounds nanoparticles fall off from carbonaceous matrix
under the condition of large current density and long-
term cycle [4, 22]. The construction of strong coupling
between metal compounds and carbonaceous matrix is
still a challenge.
Metal-organic frameworks (MOFs) are a class of porous

materials formed by the attachment of metal ions to or-
ganic compounds via coordinate bonds [27–30]. Because
of its porous structure, high specific surface area, and
structural controllability, it has broad application pros-
pects in gas storage separation, catalysis, sensors, and drug
transportation [31, 32]. ZIF-67 is a typical Co-based MOFs
material formed by Co2+ and 2-methylimidazole and has a
porous structure similar to zeolite. 2-Methylimidazole has
a nitrogen-containing functional group that carbonizes to
form N-doped carbon (NC) through pyrolysis [9, 33]. On
the one hand, NC can alleviate volume expansion and im-
prove cycle stability; on the other hand, doping of N
atoms can improve conductivity while reflecting the active
site and increasing its lithium storage capacity [8]. Besides,
the materials derived from MOFs could remain the por-
ous structure. Therefore, ZIF-67 is often used as a precur-
sor to prepare composite materials of cobalt-based
compounds such as Co3O4 [34, 35], CoS [36, 37], CoP
[38–40], and N-doped carbon.
Here, we report a facile method to prepare CoSe/N-

doped carbon (CoSe/NC) composites through the seleni-
zation of ZIF-67 with selenium powder at inert atmos-
phere. Figure 1 shows the synthesis process of CoSe/NC
composites. In the selenization process, the Co2+ within
ZIF-67 reacts with selenium to form CoSe nanoparticles,
which are enfolded by NC nanolayers that originate from
the carbonization of 2-methylimidazole. The NC nano-
layers could enhance the conductivity of CoSe and sup-
press the volume expansion, and offer additional lithium
storage as active sits. The porous structure from ZIF-67
could shorten the diffusion path of electrons and lithium
ions. More importantly, the C–Se bonds between CoSe

nanoparticles and NC nanolayers; the unique chemical
connection could not only better promote the electrical
active connection between CoSe and NC, but also better
mitigate the volume variation. As a result, the CoSe/NC
composites show superb lithium storage properties.

Methods
Preparation of ZIF-67
All chemicals are analytical grade and used without fur-
ther purification. In a typical synthesis, 1.436 g of Co(N-
O3)2·6H2O and 3.244 g of 2-methylimidazole were
dissolved in 100 ml of methanol solution, respectively.
Subsequently, the Co(NO3)2·6H2O solution was poured
into 2-methylimidazole solution with stirring for 12 min,
and then aged for 20 h. Finally, the resulting purple pre-
cipitates were collected by centrifugation, washed with
methanol several times, and dried in air at 60 °C.

Preparation of CoSe/NC
The CoSe/NC was prepared by the selenization of ZIF-
67 with selenium powder. In a typical synthesis, ZIF-67
and selenium powder were mixed with a mass ratio of 1:
1. Subsequently, the mixing powder was placed in a cer-
amic boat at the tube furnace under Ar atmosphere and
heated to 800 °C for 4 h with a heating speed of 2 °C
min−1. To compare, pure CoSe was prepared through
similar procedure except using cobalt powder as starting
materials.

Material Characterization
The powder XRD patterns of the samples were obtained
on a TD-3500X X-ray diffractometer with Cu Kα radi-
ation (λ = 1.5418 Å) at a scan rate of 0.05 s−1. The Ra-
man spectrums were recorded on a LabRAM HR800
Raman spectrometer with 532-nm laser light. TGA was
carried out on a STA 449 F3 thermoanalyser under am-
bient atmosphere and at a heating rate of 10 °C min−1

from ambient temperature to 900 °C. XPS measure-
ments were performed on a Thermo ESCALAB 250XI
X-ray photoelectron spectrometer with monochromatic
Al Kα radiation (hν = 1486.6 eV). Nitrogen adsorption/
desorption isotherms were collected at 77 K using a

Fig. 1 Schematic diagram for the synthesis of CoSe/NC composites
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BELSORP-Max instrument, which were used to evaluate
the specific surface area (BET) and pore size distribution
(BJH). FESEM images were collected through Quanta
250 scanning electron microscopy and SIGMA 500 scan-
ning electron microscopy, respectively. TEM images and
SAED were taken on a Tacnai G2 F20 transmission elec-
tron microscopy.

Electrochemical Measurements
All electrochemical behaviors of as-synthesized samples
were performed using CR2032 coin-type cell. The working
electrodes were prepared by mixing 80wt% of active mate-
rials, 10 wt% of acetylene black, and 10wt% of polyvinyli-
dene fluoride (PVDF) binder in an appropriate N-methyl-2-
pyrrolidone (NMP) to form a slurry. Subsequently, the
slurry was uniformly coated on Cu foil and dried at 80 °C
for 4 h in air and then punched in disks with a dimeter of
14 mm and dried at 120 °C for 12 h under vacuum. The
metallic lithium foil was used as both counter electrode and
reference electrode. The electrolyte was 1.00M LiPF6 in
ethylene carbonate and diethyl carbonate (EC: DEC = 1:1)
and the separator was Celgard 2500 film. The all cells were
assembled in an argon-filled glovebox with the content of
oxygen and moisture below 1 ppm. The galvanostatic
charge-discharge tests were conducted on a Neware CT-
3008W battery test system between 0.01 and 3.0 V at room
temperature. The cyclic voltammetry (CV) measurements
between 0.01 and 3.0 V at a scan rate of 0.2mV s−1 and
electrochemical impedance spectroscopy (EIS) with the fre-
quency range from 0.01 to 100 kHz were all performed on
a CHI 760E electrochemical workstation.

Results and Discussion
The crystal structure and morphology of as-synthesized
ZIF-67 were confirmed by XRD and SEM, respectively,
as shown in Fig. 2. The diffraction pattern of ZIF-67 is

identical with simulated pattern and previous reports
(Fig. 2a) [41, 42]. The ZIF-67 exhibits a decahedral
morphology with a size of 300 nm, which could be seen
from the SEM image (Fig. 2b and Additional file 1: Fig-
ure S1). Meanwhile, the ZIF-67 displays a purple appear-
ance that similar with previous synthesis. These results
show the successful synthesis of ZIF-67.
Figure 3a presents the XRD patterns of CoSe/NC and

pure CoSe, in which all peaks can be assigned to CoSe
(JCPDS 70-2870). Besides, the peaks are intense and no
other peaks can be observed, suggesting the high crystal-
line and purity. However, there is no hump or peak of
carbon materials in XRD pattern of CoSe/NC, which
could be related with graphitization degree and content
of carbon. To confirm the presence of carbon in CoSe/
NC, the Raman spectra were obtained. As can be seen
from Fig. 3b, two broad peaks at 1360 and 1590 cm−1

are severally attributed to the defects (D-band) and or-
dered graphitic carbon (G-band), indicating the presence
of carbon materials in CoSe/NC [8]. The value of ID/IG
is 1.05, suggesting the carbon materials with rich defects.
Besides, there is a sharp and strong peak at 675 cm−1,
which is related with C–Se bond [22, 43]. The presence
of C–Se bond indicates the connection between CoSe
and NC is not common physical adsorption; instead, it is
a kind of chemical connection through C–Se bond.
Compared with physical adsorption, the unique chemical
connection could not only better promote the electrical
active connection between CoSe and NC, but also better
mitigate the volume variation. The TGA was used to de-
termine the NC content in CoSe/NC. According to the
TGA curve and chemical equation (Fig. 3c), the mass
percent of NC in CoSe/NC is evaluated to be 11.7%. Fig-
ure 3d shows the N2 adsorption/desorption isotherm of
CoSe/NC with a typical type-IV isotherm and a type-H3
hysteresis loop, suggesting the mesoporous feature. The

Fig. 2 a XRD patterns of as-synthesized ZIF-67 and simulated XRD patterns of ZIF-67. b SEM image of as-synthesized ZIF-67
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CoSe/NC exhibits a large specific surface area (BET) of
49.958 m2 g−1. However, the specific surface area of CoSe/
NC is far less than that of the precursor ZIF-67, which
may be caused by the structure collapse of ZIF-67 during
calcination process and the volume expansion due to the
formation of CoSe. The pore size distribution (BJH) dis-
plays the primary pores in a range of 1 to 10 nm with an
average size of 7.238 nm. The large specific surface area
and mesoporous structure are advantageous to the pene-
tration of electrolyte and the fast transport of Li+.
XPS was introduced to characterize the elemental com-

ponent and valence state in CoSe/NC, as shown in Fig. 4.
The survey of CoSe/NC shows the presence of Co, Se, C,
N, and O elements (Fig. 4a). The characteristic peaks of
Co 2p1/2 and Co 2p3/2 could be observed at 796.92 and
780.94 eV in Co 2p spectrum, which could be assigned to
CoSe (Fig. 4b). The two peaks located at 785.55 and
802.53 eV are the shakeup satellites of Co2+ [22, 44, 45].
Besides, the other two peaks at 793.03 and 778 eV are
probably related with CoOx, which is caused by the oxi-
dized environment. The Se 3d spectrum displays two

peaks at 54.94 and 54.08 eV, which could be ascribed to
Se 3d3/2 and Se 3d5/2, respectively (Fig. 4c). The C 1s
spectrum (Additional file 1: Figure S2) exhibits three
peaks, which could be indexed to C 1s, Nsp2-C, and Nsp3-
C, respectively. The N 1s spectrum in Fig. 4d exhibits
graphitic N peak at 287.6 eV, pyrrole N peak at 286 eV,
and pyridine N peak at 284.7 eV, respectively, indicating
that the organic linker was converted to nitrogen-doped
carbon through calcination [8, 46]. The results are identi-
cal with C 1s spectrum. Besides, the quantitative analysis
of XPS was conducted. The results are shown in Table 1,
which suggests that the nitrogen content in CoSe/NC is
12.08% (atomic %) and the contents of graphitic N, pyrrole
N, and pyridine N are 35.02%, 37.46%, and 27.52% (atomic
%), respectively. Based on the previous reports, on the one
hand, the doped nitrogen is beneficial to enhance the con-
ductivity; on the other hand, the pyrrole N and pyridine N
can increase the storage of lithium as electrochemically
active site.
The morphology and microstructure of CoSe/NC were

characterized through SEM and TEM. As shown in

Fig. 3 a XRD patterns of CoSe/NC and pure CoSe. b Raman spectrums of CoSe/NC. c TGA curve of CoSe/NC. d Nitrogen adsorption-desorption
isotherm and diameter distribution profiles of CoSe/NC.
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Fig. 5a, the SEM image of CoSe/NC presents that the
CoSe nanoparticles are enfolded by NC with a size of
30–70 nm. However, the CoSe/NC cannot inherit the
decahedral morphology from the precursor ZIF-67 be-
cause of the structure collapse and volume expansion, as
previously mentioned. The energy dispersive spectrom-
eter (EDS) results suggest the presence of Se, Co, C, N,
and O in CoSe/NC, and the percentage of nitrogen is
0.27% (wt%) (Additional file 1: Figure S3 and Table S1).
Besides, the elemental mapping images are shown in
Fig. 5b, which suggest the uniform distribution of Se,
Co, C, and N. The TEM image further discloses the

structure, in which the coating structure of CoSe nano-
particles enwrapped with NC nanolayers could be clearly
observed (Fig. 5c, d). In the coating structure, the NC
nanolayers could preferably enhance the conductivity
and restrain the volume expansion during the lithium
insertion process. The HRTEM image exhibits a distinct
interlayer spacing of 2.69 Å, which could be well indexed
to the (101) lattice plane of CoSe (Fig. 5e). Meanwhile,
note that the peripheral NC nanolayers are amorphous,
which is consistent with the result of Raman. The SAED
pattern shows several diffraction rings not spots, indicat-
ing the as-synthesized CoSe/NC is polycrystalline. These
rings could match with the (101), (110), and (112) lattice
planes of CoSe, which is supported by XRD (Fig. 5f).
To explore the electrochemical behavior of CoSe/NC,

the CV curves were performed with a scan rate of 0.2
mV s−1 (Fig. 6a). As can be seen, there are a sharp reduc-
tion peak at 1.15 V and a weak hump at 0.64 V in the
initial cathodic sweep, corresponding to the conversion
of CoSe to Co and Li2Se and the constitution of SEI
layer [22, 44, 45, 47]. As for the anodic sweep, the

Fig. 4 XPS spectrums of CoSe/NC: a survey, b Co 2p, c Se 3d, and d N 1s

Table 1 Percentage of nitrogen in CoSe/NC and different types
of N in total nitrogen

Nitrogen
in CoSe/
NC
(atomic
%)

In total N (atomic %)

Graphitic N Pyrrolic N Pyridinic N

12.08 35.02 37.46 27.52
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oxidation peak locates at 2.15 V that is ascribed to the
formation of CoSe from Co and Li2Se, and overlaps well
with those in the consecutive sweeps, suggesting the ex-
cellent cyclic stability. In the second and third cathodic
sweeps, the reduction peaks shift to 1.37 from 1.15 V.
The CV curves of pure CoSe show the similar character-
istic with CoSe/NC (Additional file 1: Figure S4). To

evaluate the lithium storage performance of CoSe/NC,
the galvanostatic discharge/charge test was conducted.
As shown in the galvanostatic discharge/charge curves
of CoSe/NC at 0.1 A g−1, there are obvious discharge
and charge platforms at 1.4 and 2.0 V, which are in
agreement with the positions of reduction and oxidation
peaks in abovementioned CV curves (Fig. 6b). Besides,

Fig. 5 a SEM image of CoSe/NC. b Elemental mapping images of CoSe/NC. c, d TEM images of CoSe/NC. e HRTEM images of CoSe/NC. f SAED
pattern of CoSe/NC
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the initial discharge and charge capacities are 1049.42
and 535.18 mAh g−1, separately, with a CE of 50.99%.
The large irreversible capacity and low CE are ascribed
to the constitution of SEI layer in the initial discharge
process. It is noteworthy that the 100th discharge and
charge capacities reach to 1199.34 and 1158.88 mAh g−1,
which is larger than initial discharge capacity, and there
are no evident platforms.
Figure 6c displays the cyclic property of CoSe/NC at

0.1 A g−1. It could be observed that there is a distinct in-
cremental behavior of discharge capacity during the
whole cycle, combined with the aforementioned no plat-
forms in the 100th curves, which may be ascribed to
pseudocapacitance that is a kind of redox reaction hap-
pening in the exterior of electrode materials [45, 47]. In
the initial several cycles, the surface area for pseudoca-
pacitance is less. In the subsequent cycles, the CoSe
nanoparticles pulverized into small pieces caused by

volume expansion. Therefore, there are more active sites
for pseudocapacitance. Due to the CoSe nanoparticles
are coated by NC nanolayers, the integrity of total struc-
ture is maintained. The CoSe/NC shows a first discharge
capacity of 1049.42 mAh g−1. At 157th cycle, the specific
capacity reaches the maximum value of 1325 mAh g−1.
In the subsequent cycles, the specific capacity gradually
decreases. After 190 cycles, it remains 1244 mAh g−1.
The rate performance of CoSe/NC was evaluated at dis-
tinct current densities of 0.1, 0.2, 0.5, 1.0, and 2.0 A g−1

(Fig. 6d). After 10 cycles at above a series of current
densities, the corresponding capacities are 623.21,
609.72, 590.34, 603.77, and 551.33 mAh g−1, separately.
Notably, the current density rises from 0.1 to 2.0 A g−1,
and the capacity merely declines 11.5%, indicating that
CoSe/NC possesses exceptional rate performance. When
the current density returns back to 0.1 A g−1, the cap-
acity rapidly recovers to 880.09 mAh g−1 and gradually

Fig. 6 a The CV curves of CoSe/NC at 0.2mV s−1. b Galvanostatic discharge/charge voltage profiles of CoSe/NC at 0.1 A g−1. c Cycling performance of
CoSe/NC and pure CoSe at 0.1 A g−1. d Rate performance of CoSe/NC and pure CoSe at 0.1 to 1.0 A g−1. e Long-current cyclic performances of CoSe/
NC and pure CoSe at 1.0 A g−1. f EIS spectras of pure CoSe, and CoSe/NC before and after cycling
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rises to 1295.81 mAh g−1 after 50 cycles, suggesting that
the CoSe/NC still maintains the structural integrity even
at 2.0 A g−1.
The lithium storage property of CoSe/NC at a large

current density of 1.0 A g−1 was also performed, as
shown in Fig. 6e. To generate homogeneous and com-
pact SEI layer, CoSe/NC was cycle at 0.05 A g−1 for the
initial 5 cycles. Generally, on the one hand, the large
current density will lead to serious polarization behavior
that limits the release of capacity; on the other hand, it
will damage the structure of electrode materials that
causes the speedy capacity fading. However, when the
current density rises to 1.0 A g−1, the reversible capacity
is 509.09 mAh g−1. In the subsequent cycles, the revers-
ible capacity of CoSe/NC exhibits a growing behavior
similar with those at 0.1 A g−1 and rate performance. In
148th cycle, the reversible capacity reaches to the max-
imum of 950.27 mAh g−1. After 500 cycles, CoSe/NC re-
mains a relatively large reversible capacity of 310.11
mAh g−1. As for the pure CoSe, the reversible capacity is

only about 72.75 mAh g−1, which is much lower than
that of CoSe/NC. Such an outstanding lithium storage
performance of CoSe/NC could be ascribed to NC nano-
layers, which could provide additional capacity as active
sites and enhance the conductivity, and the C–Se bonds
between NC nanolayers and CoSe nanoparticles that
could help NC nanolayers better buffer the strain caused
by the volume change during cycling process.
Figure 6f shows the EIS of pure CoSe and CoSe/NC

(before and after 100 cycles at 0.1 A g−1). The three
Nyquist plots exhibit same features, a semicircle and an
inclined line. The diameter of semicircle is related to the
charge-transfer resistance and internal resistance. As can
be seen, the semicircle in CoSe/NC is clearly smaller
than that of CoSe, suggesting CoSe/NC possesses better
electrical conductivity, which should be assigned to the
NC nanolayers. Besides, after 100 cycles at 0.1 A g−1, the
diameter of CoSe/NC declines than before, which may
be associated with the constitution of SEI layer on the
appearance of electrode materials and the pulverization

Fig. 7 a CV curves of CoSe/NC after 100 cycles at 0.2 to 1.0 mV s−1. b Plots of log ν versus log |i| for the three peaks in CV curves. c Capacitive
and diffusion-controlled contribution to charge storage at 0.2 mV/s. d Contribution ratio of capacitive and diffusion-controlled capacities at 0.2
to 1.0 mV s−1
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of CoSe nanoparticles to increase the contact area be-
tween electrode and electrolyte.
To further investigate and analysis the capacity in-

crease behavior of CoSe/NC, the electrochemical kinet-
ics was conducted based on the CV measurements at
various scan rates of 0.2 to 1.0 mV s−1 after 100 cycles at
0.1 A g−1 (Fig. 7a). According to the generation mechan-
ism of capacity, the capacity could be divided into two
types, diffusion-controlled capacity that is a kind of
redox reaction in bulk phase (typical insertion/extraction
of lithium ions), and capacitive-controlled capacity that
includes double layer capacitance and pseudocapaci-
tance. On the contrary, the capacitive-controlled cap-
acity occurs on the surface of electrode materials, the
double layer capacitance is a physical adsorption process,
but the pseudocapacitance is a highly reversible redox
reaction. In CV curves, the relevance between current (i)
and scan rate (ν) could be represented through an equa-
tion, as follows [48–51]:

i ¼ aνb ð1Þ
logi ¼ blogνþ loga ð2Þ

where a and b are adjustable values. If b = 0.5, suggesting
a diffusion-controlled process. However, the value of b is
1.0, corresponding to the capacitive-controlled process.
To determine the value of b, Eq. (1) is transformed into
Eq. (2). The value of b could be gained by computing
the slope of log (ν) versus log (i). According to the
above-mentioned method, the b values of peaks I, II, and
III in CV curves are quantified to 0.71, 0.62, and 0.77,
separately, suggesting that the capacity is contributed by
a hybrid controlling process, as shown in Fig. 7b. The
specific capacity contribution of two controlling process
also could be obtained based on the following equation:

i Vð Þ ¼ k1νþ k2ν1=2 ð3Þ
i Vð Þ=ν1=2 ¼ k1ν1=2 þ k2 ð4Þ

where k1 and k2 are adjustable values. The current (i) is com-
posed of capacitive-controlled (k1ν) and diffusion-controlled
process (k2ν

1/2). In order to calculate the values of k1ν and
k2ν

1/2, Eq. (3) is converted into Eq. (4). The values of k1 and
k2 correspond to the slope and intercept of i(V)/ν1/2 versus
ν1/2, respectively. According to this method, k1ν and k2ν

1/2 at
various potential could be gained. As shown in Fig. 7c, the
area represents the contribution ratio; the contribution of
capacitive-controlled process is 37% at 0.2mV s−1. The con-
tribution ratios at other scan rates are also conducted
(Fig. 7d). The contribution ratios of capacitive-controlled
process are 43%, 48%, 50%, and 56% at 0.4, 0.6, 0.8, and 1.0
mV s−1, respectively. Above results demonstrate the electro-
chemical process of CoSe/NC is a hybrid controlling process.

Conclusions
In summary, the original CoSe/NC composites were pre-
pared by using ZIF-67 as precursor, in which the CoSe
nanoparticles are coated by NC nanolayers and they are
connected through C–Se bonds. In the as-prepared
composites, the NC nanolayers could improve the con-
ductivity of CoSe, buffer the volume expansion, and take
part into the lithium storage reaction as active sits. The
coating structure and C–Se bonds make the connection
between CoSe nanoparticles and NC nanolayers closer,
which are beneficial for the work of NC nanolayers to
improve the electrochemical properties. Therefore, the
CoSe/NC composites exhibit outstanding cyclic capabil-
ity and rate performance as anode materials for LIBs.
The CoSe/NC composites could deliver a reversible cap-
acity of 1244 mAh g−1 after 190 cycles at 0.1 A g−1. Even
at a large current density of 1.0 A g−1, it can remain
310.11 mAh g−1 after 500 cycles. Besides, according to
the results of electrochemical kinetics, the electrochem-
ical process of CoSe/NC is a hybrid controlling process.
These results indicate that preparing metal compounds/
carbonaceous composites by using MOFs, as precursor
is valid strategy to enhance the lithium storage proper-
ties of metal compounds.
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