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Abstract

Graphene, an innovated 2D material with atomic thickness, is a very promising candidate and has drawn great
attentions in various applications. Graphene metasurface enables dynamic control of various wavefronts, achieving
distinguished functionalities. The flexibility of graphene metasurface makes it possible to implement multifunctional
devices with ease. In this work, a novel design of multifunctional graphene metasurface, which can combine the
functionalities of generating and steering vortex waves, has been proposed. The multifunctional graphene
metasurface consists of a large array of graphene reflective unit cells. Each unit cell is controlled independently by its
size and external static gate voltage. By scrutinizing the reflective property of the graphene cell, the graphene
metasurface is designed to realize multi-functionalities. Simulation results show that vortex wave can be generated
and steered. This work can establish a methodology to design multifunctional graphene metasurfaces, and the
tunability of graphene opens the gate to the design and fabrication of reconfigurable graphene devices.
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Introduction
Graphene, an innovated 2D innovated material with
atomic thickness, is drawing more and more attention
in biology, optoelectronics, terahertz communication, etc
[1]. In terahertz regime, graphene has better performance
than conventional noble metal due to the support of sur-
face plasmon polaritons (SPPs) propagation [2], which
makes it a very promising candidate in terahertz tech-
nology. Therefore, in recent years, there emerged a great
number of graphene-based devices in terahertz and mid-
infrared regimes, such as modulators [3–6], detectors [7],
absorbers [8, 9], and lasers [10, 11].
It is of great importance to design and fabricate recon-

figurable metamaterials to control the behaviour of elec-
tromagnetic waves [12, 13]. Therefore, many tuning
mechanisms have been realized in various different fre-
quency ranges [14], such as electrically-reconfigurable
metamaterials [15], mechanically reconfigurable meta-
materials [16], non-linear materials [17], liquid crystals
[18], microfluids [19], semiconductor structures [20], and
graphene [21]. Graphene, as an innovated material, is a
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distinguished candidate among them, mainly due to its
electric/magnetic controlled conductivity, which enables
the design and fabrication of miniaturized controllable
devices [14, 22]. Therefore, it has great potential to design
reconfigurable metasurface, and many application based
on its tunability have been proposed in [23] and [24].
By applying generalized Snell’s law [25, 26], anomalous
reflection can be tuned and realized by graphene meta-
surfaces [27]. These works can pave the way of design and
fabrication of tunable terahertz devices.
In telecommunication, orbital angular momen-

tum (OAM) is important to enhance the channel
capacity since it can provide infinite state[28, 29]. Three-
dimensional metamaterial can be used to generate OAM
wave [30]. Metasurface, which can be considered as
two dimensional metamaterial, can bring outstanding
performance in sub-wavelength thickness. In microwave
regime, metasurface have been widely used to design and
fabricate devices of subwavelength sizes to generate waves
with various polarization and gain properties [31–34]. In
terahertz regime, a reflective graphene metasurface has
been reported to generate vortex waves with tunability
[35]. Graphene metasurface has the flexibility to control
the wavefront [36]; therefore, a feasible design, which
combines the functionalities of vortex wave generation
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and anomalous reflection, can be expected to tune the
directivity of vortex waves with high precisions.
In this work, based on our previous research on

metasurface in micro-nano optics [37–41], we study the
mechanism to combine the functionalities of two meta-
surfaces. A graphene cell is analysed to obtain the relation-
ship between the reflection coefficient and its chemical
potential along with its patch size. A full 360° reflec-
tion phase range is calibrated as reference to design a
graphene metasurface to combine the functionalities of
vortex wave generation and anomalous reflection. The
combined metasurface is realized by large array of reflec-
tive graphene cells. The simulated results show that vortex
waves can be generated and steered by a certain angle of
reflection.

Methods
The conductivity of graphene consists of interband and
intraband transition. The intraband transition dominates
the terahertz and infrared regime, while the interband
transition dominates visible optical regime. In terahertz
and infrared region, the conductivity can be modelled by
Drude model [24],

σ(ω) = 2e2

π�2
kBT · ln

[
2 cosh

( Ef
2kBT

)]
i

ω + iτ−1 ,

where kB is Boltzmann constant, T is the temperature, τ
is the relaxation time, and Ef is Fermi energy.
In this work, the device operates in the terahertz regime,

where Ef � kBT ; hence, the equation can be simplified as

σ(ω) = e2Ef
π�2

i
ω + iτ−1 ,

assuming the typical value of room temperature T =
300K , and the relaxation time of graphene τ = 1 ps. In
this work, the Fermi energy Ef is controlled by external
static gate voltage. In the simulation, graphene is not mod-
elled as 3Dmetamaterial blocks but 2D surface conductive
conditions due to the atomic thickness.
Graphene metasurface is composed of large array of

graphene cells, which results in collective plasmonic
behaviour excited on the surface, realizing extraordinary
electromagnetic properties. The frequency is 1.3 THz;
thus, due to the slow-wave propagation associated with
the plasmonic mode, the resonance can occur at very
small sizes, i. e., below λ/10 [23, 42]. In order to design
the metasurface of graphene cells, a calibration graph of
the reflective behaviour of a graphene cell is extracted to
study the detailed influence of each parameter in a single
graphene cell.
A typical unit graphene cell, as shown in Fig. 1, is

composed of multilayer structure with graphene patch of
atomic thickness mounted on the top. The graphene patch
with size of wx × wy is mounted at the center on top of

a stack of layered square substrates with side lengths p of
14 μm. A quartz substrate (εr = 3.75, tanδ = 0.0184) of
25-μm thickness is placed on top of the metallic ground
layer at the bottom. An external biasing DC voltage is
applied between the graphene patch and a polycrystalline
silicon layer of 50-nm thickness. A 10-nm-thick Al2O3
(Alumina, εr = 8.9, tan δ = 0.01) layer is inserted in
between as spacer. The chemical potential can be adjusted
from 0.01 to 1.0 eV, by controlling the by external bias-
ing DC voltage from 0 to 14.7 V [23, 35]. It should be
mentioned that the polycrystalline silicon layer and the
Alumina spacer is not modelled in the simulation in this
paper and the reasons are as follows. Firstly, a separate 2D
simulation, which is much less expensive, is carried out to
show that, since the thickness of the polycrystalline silicon
layer and the Alumina spacer is much less than the quartz
substrate, their influence on the reflective behaviour can
be neglected. On the other hand, in the finite element sim-
ulations, an extreme amount of elements is required when
dealing with adjacent objects with huge difference in sizes.
As a result, 3D simulations modelling these two layers will
be extremely expensive.
In order to study the reflective properties influenced

by μc and wx, periodic conditions are assigned in both x
and y directions. The wave impinges normally from top
with parallel polarization, i.e., electric field polarized in x-
direction. Since graphene is equivalent as complex surface
conductance condition, only wx can affect conductance in
x-direction significantly, while wy has negligible influence
and is fixed as 4 μm in all the simulations in this paper.
To scrutinize the influences of patch size and chem-

ical potential, we sweep wx from 0.2 to 13.8 μm by
step of 0.2 μm, and sweep μc from 0.01 to 1.00 eV by
step of 0.01 eV, and the frequency is fixed at 1.3 THz.
The phase and magnitude of S11 are plotted in Fig. 2,
which are called the calibration graphs since the value
of wx and μc can be calibrated from them. In order
to guarantee the efficiency of the metasurface, the
magnitude of the reflection coefficient should be lager
that 0.7; thus the unqualified regions are dug out as
blank. In the calibration graph, one obtains a full cov-
erage of 360◦ which is sufficient to construct graphene
metasurfaces.
The phase diagram should be smooth enough to con-

trol the phase precisely. In order to design the parameters
of graphene cells to achieve full phase coverage from 0◦
to 360◦, seven combinations of wx and μc are selected, as
shown in Fig. 3.

Results and discussions
To realize various functions, it would be very useful
to combine the functionalities of two metasurfaces, or
add new functions into another. This methodology will
provide versatile way to design new metasurfaces. We



Wang et al. Nanoscale Research Letters          (2019) 14:343 Page 3 of 7

Fig. 1 Illustration of graphene metasurface and cell configuration. a Schematic of a graphene metasurface, which can steering the incoming
electromagnetic waves by anomalous reflection. b Configuration of a graphene cell, which consists of multi-layered substrate and a mounted
graphene patch of size wx × wy . A static gate voltage is applied between the graphene patch and the silicon layer to control the chemical potential

combine the functionalities of vortex wave generation and
wave deflection by anomalous reflection in this paper.
A generalized methodology is proposed in the follow-

ing to combine two metasurfaces MS1 and MS2 into one
multifunctional metasurface MSt . To realize the com-
bination, we start with the generalized law of reflec-
tion [25]. As illustrated in Fig. 4, consider a planewave
with freespace wavelength λ impinges with incident angle
θi, the following equation describes the generalized law
of reflection,

sin θr − sin θi = λ

2πni
dφ
dx

, (1)

where θr is the angle of reflection, ni is the the refrac-
tive index in upper space, and φ(x) describes the phase
discontinuity along the interface.
Consider the simplified case that the wave impinges

normally, and the upper space is freespace (ni = 1), as

shown in Fig. 5, for the first two metasurfaces MS1 and
MS2, Eq. 1 can be further simplified as

dφm
dx

= 2π
λ

sin θrm(x) m = 1, 2. (2)

To obtain φt of MSt , we choose a segment Dx along the
interface, and the problem becomes the following: assume
in x ∈ Dx, holds −π/2 < θr1(x) + θr2(x) < π/2, find φt , s.
t. for ∀x ∈ Dx, that

dφt
dx

= 2π
λ

sin θrt , and

θrt(x) = θr1(x) + θr2(x).
(3)

Fig. 2 Calibration diagram of reflection coefficients of the graphene cell. The reflection coefficient of the graphene cell influenced by the graphene
patch size wx and the chemical potential μc , where the region where the magnitude of reflection is smaller than 0.7 is subtracted. a phase and b
magnitude diagram
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Fig. 3 Design diagram of graphene cell. A full 360◦ phase coverage achieved by seven groups of combinations of a chemical potential and b patch
size

It can be derived from Eqs. 2 and 3 that

dφt
dx

= 2π
λ

sin θrt = 2π
λ

sin(θr1 + θr2)

= 2π
λ

(cos θr2 sin θr1 + cos θr1 sin θr2)

= cos θr2
dφ1
dx

+ cos θr1
dφ2
dx

= d
dx

(cos θr2φ1 + cos θr1φ2)

−
(
sin θr2

dθr2
dx

φ1 + sin θr1
dθr1
dx

φ2

)
,

(4)

Fig. 4 Illustration of generalized law of reflection. An electromagnetic
wave impinges from the top with incident angel θi , while is reflected
by θr other than θi , due to phase discontinuity φ(x) along the interface

which leads to

φt(x) = cos θr2φ1(x) + cos θr1φ2(x)

−
∫
Dx

(
sin θr2

dθr2
dx

φ1 + sin θr1
dθr1
dx

φ2

)
dx,

(5)

where the integration term calculates the contribution
of the variance of θri(x) and can mostly be calculated
numerically. Equation 5 plays a vital role to combine the
functionalities of two metasurfaces.
Furthermore, if the steering angle is constant, the inte-

gration term in Eq. 6 vanishes. Equation 5 can be signifi-
cantly simplified as

φt(x) = cos θr2φ1(x) + cos θr1φ2(x) + C. (6)

This is the governing equation to combine metasur-
faces, and the phase distribution can be calculated to
combine vortex wave generation and anomalous reflec-
tion.
In this paper, MS1 is the metasurface that generates vor-

tex waves, while MS2 is the metasurface that steers the
waves.
As illustrated in [35], vortex waves with mode l can be

generated by a plate of N sectors with successive incre-
ment of phase shift. The phase shift of the nth sector φn
can be calculated as φn = φ0 + 2πnl/N , where φ0 is the
phase shift of the initial sector. Moreover, in order to gen-
erate vortex wave, it should be satisfied that −N/2 < l <

N/2. Therefore, N = 4 is sufficient to generate modes
l = 0, ±1.
To generate vortex wave with l = 1, the plate is sub-

divided into four sectors as shown in Fig. 6a. The phase
condition φ1(x, y) is a piece-wise constant function that
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Fig. 5 Illustration of combining two metasurfaces into one multifunctional metasurface. In the inset, the electromagnetic waves are impinging
normally from upper space with refractive index ni . aMetasruface 1 (MS1) with phase discontinuity φ1(x) and bmetasurface 2 (MS2) with phase
discontinuity φ2(x) are combined into c the desired multifunctional metasurface (MSt) with phase discontinuity φt(x). θr1(x), θr2(x) and θrt(x) are
the angles of anomalous reflection along the interfaces of the metasurfaces, respectively, and the relationship θrt(x) = θr1(x) + θr2(x) holds
everywhere in MSt

decreases by 90◦ through sectors, counterclockwisely.

φ1(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0◦ x ≥ 0, y ≥ 0
− 90◦ x < 0, y ≥ 0
− 180◦ x < 0, y < 0
− 270◦ x ≥ 0, y < 0

(7)

When x-polarized wave is impinging normally from
above, vortex wave with l = 1 will be reflected. It should
be noted that the wave is reflected vertically; therefore, the
deflection angle is 0◦, i.e., θr1(x) = 0◦.
To generate anomalous reflection with deflection angle

θr , Eq. 1 is applied. As illustrated in Fig. 4, when wave is
impinging normally in freespace, i.e., θi = 0◦ and ni = 1,
Eq. 1 is reduced to

φ2(x) = 2π sin θr
λ

x + C.

In this work, the deflection angle is set as θr = 30◦. From
the equation above, by knowing that the period of unit cell
is 14 μm, the difference of phase shift between adjacent
patches is calculated as 10.9◦. The phase distribution is
shown in Fig. 6b.
To combine MS1 and MS2, we take θr1(x) = 0◦ and

θr2(x) = 30◦ into Eq. 6 and obtain the design formula
of MSt ,

φt(x) =
√
3
2

φ1(x) + φ2(x) + C.

From this formula, one can calculate the phase distri-
bution, which is shown in Fig. 6c. According to Fig. 3, by
choosing the chemical potentials μc and the patch size wx
of each cell, a 32 × 32 graphene metasurface is config-
ured. Figure 1a shows the top view of the placement of the
graphene cells on the metasurface. One can see that each
sector is a 16×16 subdomain, consisting 16 columns ver-
tically. And each column consists of 16 identical graphene
patches, where a certain combination of wx and μc is
assigned.
The plate is excited by an x-polarized wave imping-

ing from top. The electric field of the incident wave
is normalized, i.e., �Einc = �x. The simulation was car-
ried out using commercial finite element solver COM-
SOL Multiphysics 5.2. Graphene has atomic thickness;
however, the thickness of the substrates is in micrometre
scale. Therefore, computational effort would be tremen-
dous if three-dimensional meshing is applied to graphene
patches. Therefore, the thickness of the graphene patches
is ignored, and an equivalent two dimensional surface
conductivity condition is applied as transition boundary
conditions in COMSOL Multiphysics. There are 32 × 32
patches on the plate, which is subdivided into four sectors.

Fig. 6 Illustration of combination of phase discontinuity functions. a φ1, phase discontinuity distribution of MS1, which generates vortex
electromagnetic wave with l = 1. b φ2, phase discontinuity distribution of MS2, which results in anomalous reflection. c Combined phase
discontinuity distribution of the MSt calculated by Eq. 6
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Fig. 7 Results of the multifunctional metasurface. a Configuration of the plate with graphene reflectarray consisting of 36 × 36 graphene patches.
The widths (wy) of all graphene patch are taken as 4 μm, and values of wx are selected to realize the phase discontinuity condition as shown in
Fig. 6. b The magnitude of the electric field of the reflected vortex wave of l = 1. The incident wave is an x-polarized electromagnetic wave with
normalized electric field, impinging normally from the top. The wave is deflected by 30◦ towards x-direction

On each sector, there are 16× 16 patches controlled inde-
pendently by their sizes and chemical potentials. The sim-
ulation consumed 7.1 million degrees of freedom, which
was carried out on a server of 40×2.1 GHz threads and
256 GB memory.
Figure 7b shows the magnitude of the electric

field of the reflected wave normalized by the inci-
dent wave. The graphene metasurface generates vor-
tex wave with l = 1 and deflects by 30° towards
x-axis.

Conclusions
In summary, we have studied the design principle of mul-
tifunctional graphene metasurfaces. The methodology of
combining two metasurfaces is proposed. As an exam-
ple, a graphene metasurface is designed to combine the
functionality of generating vortex wave and steering the
waves. Graphene is a two-dimensional atomic thick mate-
rial, which can dynamically tune the phase condition by
applying external gate voltages. Its parameters are scru-
tinized to calibrate the reflective behaviour of a single
graphene cell and obtain coverage of 360◦ phase shift.
A graphene metasurface consisting of 32 × 32 unit cells
is designed to realize anomalous reflection and gener-
ate vortex THz wave simultaneously. Simulation results
show that a vortex wave with l = 1 is generated and
steered. Graphene exhibits many extraordinary behaviour
in terahertz regime, such as supporting SPP, high effi-
ciency, and tunability; therefore, it is a promising candi-
date in terahertz technology. This research investigate the
approach to combine the functionalities of different meta-
surfaces implemented by graphene, which opens the gate
of dynamically controlled multifunctional metasurfaces in
terahertz regime.
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