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Abstract

Electronic structures of monolayer InSe with a perpendicular electric field are investigated. Indirect-direct-indirect
band gap transition is found in monolayer InSe as the electric field strength is increased continuously. Meanwhile, the
global band gap is suppressed gradually to zero, indicating that semiconductor-metal transformation happens. The
underlying mechanisms are revealed by analyzing both the orbital contributions to energy band and evolution of
band edges. These findings may not only facilitate our further understanding of electronic characteristics of layered
group III-VI semiconductors, but also provide useful guidance for designing optoelectronic devices.
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Introduction
Since the pioneering work on the experimental real-
ization of a single-layer graphite, namely graphene [1,
2], atomically thin two-dimensional (2D) materials have
been paid lots of attentions [3, 4]. Various monolayer
2D materials have been theoretically predicted or exper-
imentally discovered including silicene [5–7], germanane
[8], black phosphorus [9, 10], transition metal dichalco-
genides (TMDs) [11–13], and hexagonal boron nitride
[14–16]. Although these atomically thin 2Dmaterials have
the similar honeycomb lattice structures, their electronic
structures and conductivity properties are quite differ-
ent including metal [1, 2, 5–8], semiconductor [9–13],
and insulator [14–16]. Therefore, according to their elec-
tronic characters, these single layer 2D materials may find
applications in the design of multifunctional electronic
and optical devices [3, 4]. For example, tunable optical
devices with high-quality factor based on Si-graphene
metamaterials [17], Cu-graphene metamaterials [18], and
MoS2-SiO2-Si waveguide structures [19] are proposed.
Perfect valley or/and spin polarization devices based on
the ferromagnetic graphene [20], strained graphene with
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Rashba spin-orbit coupling and magnetic barrier [21],
and strained silicene with an electric field are suggested
[22, 23]. Moreover, the interaction effects between the
decomposition components of SF6 and different materi-
als including N-doped single-wall carbon nanotubes [24],
Pt3-TiO2(1 0 1) surface [25], Ni-doped MoS2 monolayer
[26], and Pd (1 1 1) surface [27] are investigated by using
the density functional theory (DFT).
Group III–VI compounds MXs (M = Ga, In and X =

S, Se, Te) are another family of layered 2D materials.
Due to their unique electrical characters, these materials
have drawn many researchers’ attentions [28]. DFT [29–
33] and tight-binding model [34] calculations show that
energy band gap of layered MXs is thickness dependent,
increasing from 1.3 to 3.0 eV as the number of layers
is decreased. At the same time, direct-indirect band gap
transition is observed, which is opposite to the behav-
iors of layered black phosphorus [9, 10] and TMDs [11–
13]. This sizable energy band gap modulation of layered
MXs may be used to design optoelectronic devices [35,
36]. In addition, the stability of InSe doped with oxy-
gen defects is investigated and found that it is more
stable than black phosphorus in the air [37]. The mag-
netism of InSe monolayer can be tuned by adsorbing As
[38], C, and F [39]. Huge spin-charge conversion effect is
found in bilayer InSe due to the broken mirror symmetry
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[40]. Moreover, the electronic structure and the current-
voltage characteristics of monolayer InSe nanoribbons
strongly depend on the edge states [41]. On the other
hand, experimental researches verify the layer-dependent
electronic structures of MXs and they can responds to the
light spanning the visible and near-infrared regions [42–
45]. Also, the carrier mobilities of MXs are found to be
high, enabling that they may be used to design field effect
transistors. For bulk GaS and GaSe, the carrier mobili-
ties are about 80 and 215 cm2 V−1 S−1 [46], respectively.
For the monolayer InSe, the carrier mobility is even up to
almost 103 cm2 V−1 S−1 [47]. Moreover, band gap of lay-
ered InSe can be manipulated by uniaxial tensile strain,
which is identified by the photoluminescence spectra [48].
From the viewpoint of the optoelectronic device design-

ment, the efficiency of the devices based on direct band
gap semiconductors are better than those based on indi-
rect band gap ones. Therefore, transforming indirect band
gap few-layer MXs to direct band gap type is a challenge
for scientific community. Very recently, band gap manipu-
lation and indirect-direct band gap transition are found in
monolayer InSe by uniaxial strain [49]. Also, direct band
gap semiconductors have been obtained by stacking 2D
n-InSe and p-GeSe(SnS). And the band gap values and
band offset of these van der Waals heterojunctions can
be tuned by the interlayer coupling and external electric
field [50]. In addition, the possible stacking configurations
of bilayer InSe and the influence of the perpendicular
electric field on their electronic structures are studied.
Indirect band gap bilayer InSe can be transformed to
the metallic type by varying the electric field strength
[51]. Similarly, in other buckled 2D materials like silicene
[52], germanene [53], transition metal dichalcogenides

[54, 55], and black phosphorus [56], a perpendicular elec-
tric field is also proposed to tune their band gap and
electronic characteristics. In light of these previous stud-
ies, a natural question may be inquired what are the
electric field effects on the electronic structures of the
monolayer InSe.
In this letter, the effects of a perpendicular electric field

on the electronic structures of the monolayer InSe are
investigated by using the tight-binding model Hamilto-
nian. Indirect-direct-indirect band gap transition can be
achieved in the considered system with increasing electric
field strength. At the same time, band gap of the mono-
layer InSe is decreased gradually, eventually rendering
it metallic. The underlying physics mechanisms of these
effects are unraveled by analyzing the orbital decomposi-
tion for the energy band and the electric field-modulated
energy position shift of the band edges. Our studies may
benefit to fundamentally understand the electronic prop-
erties of few-layer InSe as well as provide theoretical bases
for 2D optoelectronic devices.

Methods
The top view of InSe monolayer is sketched in Fig. 1a,
where the big purple spheres represent indium ions while
the small green ones depict selenium ions. This two types
of ions form graphene-like hexagonal structure in the xy
plane with lattice constant a, the distance between the
nearest In or Se ions. Figure 1b shows the schematic of
side view of InSe monolayer. Differing from graphene,
two sublayers with mirror symmetry in the xz plane are
observed. The vertical distance between In (Se) ions of
different sublayers is set at d (D). Therefore, a unit cell of
monolayer InSe consists of four ions Se1, In1, Se2, and In2,

Fig. 1 (Color online) Top (a) and side (b) view of the monolayer InSe in the xy and xz planes, respectively. The lattice constant between the nearest
In or Se ions in the xy plane is a, and the distance between the nearest In (Se) ions in different sublayers is d (D). A perpendicular electric field along
z-axis Ez is applied to the monolayer InSe. c Energy band of monolayer InSe



Xiao et al. Nanoscale Research Letters          (2019) 14:322 Page 3 of 8

as shown by the red ellipse in Fig. 1b, in which number 1
(2) indicates the sublayer index.
The tight-binding Hamiltonian up to second-nearest

neighbor interactions including all possible hoppings
between the s and p orbitals of In and Se ions reads [34]

H =
∑

l
H0l + Hll + Hll′ , (1)

in which the sum runs over the sublayers l = 1 and 2,
and l′ = 2(1) as l = 1(2). H0l, Hll, and Hll′ consist of
terms coming from the on-site energies, hopping energies
within and between the two sublayers, respectively. And
the explicit expressions of them are given as [34]

H0l =
∑

i
[ εInsa

†
lisalis +

∑

α

εInpα a
†
lipα

alipα
+

εSesb
†
lisblis +

∑

α

εSepα b
†
lipα

blipα
] , (2)

where the sum runs over all unit cells in sublayer l. εIn(Se)s
is the on-site energy for the s orbital of In (Se) ions, while
εIn(Se)pα is that for orbital pα (α = x, y, z). a†lis (alis) is
the creation (annihilation) operator for an electron in s
orbital on In ions in unit cell i and sublayer l, but a†lipα

(alipα
) for an electron in pα orbital. Similarly, b† (b) is

the creation (annihilation) operator for an electron in the
relevant orbital on Se ions.

Hll = H(In−Se)1
ll + HIn−In

ll + HSe−Se
ll + H(In−Se)2

ll , (3)

in which [34]

H(In−Se)1
ll =

∑

<Inli ,Selj>
{T (In−Se)1

ss b†ljsalis + T (In−Se)1
sp

∑

α

RInliSelj
α

b†ljpα
alis + T (In−Se)1

ps
∑

α

RInliSelj
α b†ljsalipα

+
∑

α,β
{[ δαβT (In−Se)1

π −

(T (In−Se)1
π + T (In−Se)1

σ )RInliSelj
α RInliSelj

β ] b†ljpβ
alipα

}} + H.c.,

(4)

HIn−In
ll =

∑

<Inli ,Inlj>
{T In−In

ss a†ljsalis + T In−In
sp

∑

α

RInliInlj
α a†ljpα

alis+
∑

α,β
{[ δαβT In−In

π − (T In−In
π + T In−In

σ )RInliInlj
α RInliInlj

β ] a†ljpβ
alipα

}}

+H.c.,
(5)

HSe−Se
ll =

∑

<Seli ,Selj>
{TSe−Se

ss b†ljsblis + TSe−Se
sp

∑

α

RSeliSelj
α b†ljpα

blis+

∑

α,β
{[ δαβTSe−Se

π − (TSe−Se
π + TSe−Se

σ )RSeliSelj
α RSeliSelj

β ] b†ljpβ
blipα

}}

+H.c.,
(6)

and

H(In−Se)2
ll =

∑

<Inli ,Selj′>
{T (In−Se)2

ss b†lj′salis + T (In−Se)2
sp

∑

α

R
InliSelj′
α

b†lj′pα
alis + T (In−Se)2

ps
∑

α

R
InliSelj′
α b†lj′salipα

+
∑

α,β
{[ δαβT (In−Se)2

π −

(T (In−Se)2
π + T (In−Se)2

σ )R
InliSelj′
α R

InliSelj′
β ] b†lj′pβ

alipα
}} + H.c.

(7)

include the hopping terms between the nearest-neighbor
In-Se, In-In, Se-Se, and next-nearest In-Se pairs within the
same sublayer l, respectively. TX

ss/sp/ps is the hopping inte-
gral for the ss/sp/ps orbitals between the corresponding
pair X, while TX

π(σ) is that for the parallel p and p orbitals
perpendicular to (lying along) the hopping vector RX

α [57].
For example

R(In−Se)1
α = RSelj − RInli

|RSelj − RInli |
· α̂, (8)

where RInli/Selj is the position vector for Inli/Selj, α̂ is a
unit vector along α.

Hll′ = H(In−In)1
ll′ + HIn−Se

ll′ + H(In−In)2
ll′ , (9)

in which [34]

H(In−In)1
ll′ =

∑

i
{T (In−In)1

ss a†l′isalis + T (In−In)1
sp

∑

α

RInliInl′ i
α a†l′ipα

alis+
∑

α,β
{[ δαβT (In−In)1

π − (T (In−In)1
π + T (In−In)1

σ )RInliInl′ i
α RInliInl′ i

β ]

a†l′ipβ
alipα

}} + H.c.,

(10)

HIn−Se
ll′ =

∑

<Inli ,Sel′ j>
{T In−Se

ss b†l′jsalis + T In−Se
sp

∑

α

R
InliSel′ j
α

b†l′jpα
alis + T In−Se

ps
∑

α

R
InliSel′ j
α b†l′jsalipα

+
∑

α,β
{[ δαβT In−Se

π −

(T In−Se
π + T In−Se

σ )R
InliSel′ j
α R

InliSel′ j
β ] b†l′jpβ

alipα
}} + H.c.,

(11)

and

H(In−In)2
ll′ =

∑

i
{T (In−In)2

ss a†l′jsalis + T (In−In)2
sp

∑

α

R
InliInl′ j
α a†l′jpα

alis+
∑

α,β
{[ δαβT (In−In)2

π − (T (In−In)2
π + T (In−In)2

σ )R
InliInl′ j
α R

InliInl′ j
β ]

a†l′jpβ
alipα

}} + H.c.

(12)

include the hopping terms between the nearest-neighbor
In-In, In-Se, and next-nearest In-In pairs between sublay-
ers l and l′, respectively. If a perpendicular electric field
along z-axis is applied to the monolayer InSe, its effects
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can be introduced by a modification of the on-site orbtial
energies of In and Se ions, that is,

ε′ = ε + eEzz, (13)

where e is the electron charge and Ez is the strength of
the perpendicular electric field. The perpendicular elec-
tric field can be achieved by adding top and bottom gates
to the monolayer InSe. Moreover, two insulating layers are
inserted between the monolayer InSe and gates to elim-
inate the electric current along z-axis. As a result, the
electric field strength can be tuned by varying the gating
voltage.
By transforming the tight-binding Hamiltonian in Eq.

(1) into the k space and then diagonalizing it, energy bands
E(k) of monolayer InSe without or with a perpendicu-
lar electric field can be obtained conveniently, where k is
wave vector. At the same time, the coefficient of eigenvec-
tor Cnk(o) at band n, orbital o, and wave vector k can also
be achieved.

Numerical Results and Discussions
The lattice parameters of monolayer InSe in Fig. 1a and
b are taken as a = 3.953 Å, d = 2.741 Å, and D =
5.298 Å, which are obtained by the local density approx-
imation [30]. The on-site and hopping energies in the
tight-binding Hamiltonian Eq. (1) are given in Table 1,
which are fitted by the density functional theory data
with scissor correction [34]. Although only the numerical

Table 1 Parameters (eV) of the tight-binding Hamiltonian in
Eq. (1)

εIns − 7.174 εInpx = εInpy − 2.302

εInpz 1.248 εSes − 14.935

εSepx = εSepy − 7.792 εSepz − 7.362

T (In−Se)1
ss 0.168 T (In−Se)1

sp 2.873

T (In−Se)1
ps − 2.144 T (In−Se)1

π 1.041

T (In−Se)1
σ 1.691 T In−In

ss − 0.200

T In−In
sp − 0.137 T In−In

π − 0.433

T In−In
σ − 1.034 TSe−Se

ss − 1.345

TSe−Se
sp − 0.800 TSe−Se

π − 0.148

TSe−Se
σ − 0.554 T (In−Se)2

ss 0.821

T (In−Se)2
sp 0.156 T (In−Se)2

ps − 0.294

T (In−Se)2
π 0.003 T (In−Se)2

σ − 0.455

T (In−In)1
ss − 0.780 T (In−In)1

sp − 4.964

T (In−In)1
π − 0.681 T (In−In)1

σ − 4.028

T In−Se
ss 0.574 T In−Se

sp − 0.651

T In−Se
ps − 0.148 T In−Se

π 0.100

T In−Se
σ 0.343 T (In−In)2

ss − 0.238

T (In−In)2
sp − 0.048 T (In−In)2

π − 0.020

T (In−In)2
σ − 0.151

results of the monolayer InSe are given here, qualitatively
similar results have also been found in the bilayer InSe and
the bulk InSe. For conciseness, they are not presented in
this letter.
Figure 1c shows the energy band of the monolayer InSe.

The conduction bands around point � display parabola-
like energy dispersion, which are similar to that of other
normal semiconductors. However, the band structure
along �−K is slightly asymmetrical with that along �−M.
And the lowest two conduction bands crossing each other
along both these two directions, as indicated by the red
cycles. In contrast to the conduction bands, the highest
valence band is flat but slightly inverted around point �,
forming an interesting Mexican hat-like structure. There-
fore, monolayer InSe is an indirect band gap semiconduc-
tor, which is quite different from that of bulk InSe since
it is a direct band gap semiconductor. The energy gap of
monolayer InSe can be obtained by Eidg = EC − EA =
2.715 eV, which is much enlarged by comparing with that
of bulk InSe Edg = 1.27 eV [34]. However, the other valence
bands show normal parabola-like energy dispersion.
In order to comprehend the energy band of monolayer

InSe shown in Fig. 1c, the orbital decomposition |Cnk(o)|2
for the energy band is given in Fig. 2. As the two sublay-
ers of the monolayer InSe is symmetrical along z-axis, the
ions in different sublayers have the same orbital contribu-
tions to the energy band. Here, In and Se ions in sublayer
2, as shown in Fig. 1b, are taken as examples. The upper
panels indicate orbital contributions from In ions while
the down panels represent those of Se ions. The thickness
of lines is proportional to normalized orbital contribution.
It can be seen that the lowest conduction band around
point � is contributed firstly from pz orbital of Se ion
and then s orbital of In ion. The second conduction band
around K point dominantly originates from px orbital of
In ion and then pz orbital of Se ion. However, the highest
valence band is principally contributed from pz orbital of
Se ion. The other valence bands result from both px and py
orbitals of Se ion. These results are consistent with those
results obtained by the DFT calculations [34].
Energy band of the monolayer InSe with a perpendic-

ular electric field along z-axis is shown in Fig. 3a. The
electric field strength is taken as Ez = 2.0 V/nm. By com-
paring with the energy band in Fig. 1c, each conduction
and valence band is lifted to the higher energy region as
a whole. However, the energy shift of each band is differ-
ent since its orbital decomposition from the pz orbital of
In and Se ions is different. Position of the maximum value
of the highest valence band is changed to point � while
that of the minimum value of conduction band keeps
unchanged. Therefore, the monolayer InSe is transformed
into a direct band gap semiconductor. And the energy gap
is decreased to Edg = 2.61 eV. Furthermore, the crossings
along both � −K and � −Mdirections are opened so that
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Fig. 2 (Color online) Orbital decompositions for the energy band of monolayer InSe. Thicker lines indicate a more dominant contribution. Only In
and Se ions in sublayer 2 are selected as examples since the two sublayers of the monolayer InSe with mirror symmetry along z-axis (a–h)

energy gaps are generated, as displayed by the red cycles,
since the symmetry along z-axis is broken by the perpen-
dicular electric field. When the electric field strength is
increased to Ez = 6.0 V/nm, the energy gap at point � is
decreased but those at the crossings is increased further,

as shown in Fig. 3b. Interestingly, position of theminimum
value of conduction band is altered from point � to that
around point K, while that of the maximum value of the
highest valence band stay at point �. This phenomenon
means that the monolayer InSe is transited into indirect

Fig. 3 (Color online) Energy bands of the perpendicular electric field-modulated monolayer InSe at different strengths Ez = 2.0 V/nm(a) and
6.0 V/nm (b), respectively. Red circles in a and bmean the opened energy gaps around the crossing points shown in Fig. 1c. c Energies at points A
(the black solid line), B (the magenta dashed line), C (the blue dotted line), and D (the green dash-dotted line) shown in Fig. 1c as a function of the
electric field strength. d Global band gap as a function of the strength of the electric field. The yellow line means the direct band gap while the red
and blue lines indicate the indirect band gaps
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band gap semiconductor again and the indirect energy gap
of the whole band Eidg = 1.30 eV. Similarly, the band gap
of monolayer InSe can be controlled by biaxial strain. The
band gap ranges from 1.466 to 1.040 eV when the strain
is varied from 1 to 4%. In addition, indirect-direct band
gap transition is also observed when the monolayer InSe
is under uniaxial strain [49]. For the bilayer InSe with a
perpendicular electric field, its band gap decreases as the
electric field strength increases and it will be closed when
the electric field strength is increased to 2.9 V/nm [51] .
For the sake of understanding the changing process of

electronic structure of monolayer InSe in the presence
of a perpendicular electric field more clearly, energies at
the wave vectors corresponding to points A, B, C, and
D at the band edges shown in Fig. 1c as a function of
the strength of electric field are depicted in Fig. 3c. Ener-
gies with respect to all these points move upward as the
increasing electric field strength, confirming the evolution
of the energy bands in Fig. 3a and b. When the electric
field strength Ez < 1.6 V/nm, energy at point A in the
valence band is higher than that of point B while the bot-
tom of conduction band locates at point C. Therefore,
the electric field-modulated monolayer InSe within this
strength range is an indirect band gap semiconductor, as
shown by the red area. However, energies with respect to
points A and B will cross at TP1, and then energy at point
B will be higher than that of point A as the electric field
strength is increased further. Simultaneously, the bottom
of conduction band keeps unchange until the electric field
strength is increased to 4.0 V/nm. As a result, the elec-
tric field-modulated monolayer InSe within this strength
range is a direct band gap semiconductor, as shown by
the yellow area. Similar to the energy crossover between
points A and B in the valence band, transit point is also
observed in the energies at points C and D in the con-
duction bands, as indicated by TP2. Energy at point D is
lower than that of point C while the top of valence band

still stay at point B if only the electric field strength is
smaller than 9.23 V/nm. Consequently, the electric field-
modulated monolayer InSe is turned into an indirect band
gap semiconductor again, as shown by the blue area. Inter-
estingly, energies at point B in the highest valence band
and point D in the lowest conduction band will cross at
TP3 too, which means that the energy band gap is closed.
Moreover, energy at point B will be higher than that of
point D when the electric field strength is larger than
9.23 V/nm. Therefore, the lowest conduction band and
highest valence band will overlap so that the electric field-
modulated monolayer InSe becomes a metal in this case,
as shown by the cyan area. The global band gap corre-
sponding to different colored areas in Fig. 3c is plotted
in Fig. 3d. The band gap corresponding to the red area is
almost independent of the varied electric field strength,
as shown by the red line. However, the band gap of the
yellow area is decreased linearly with increasing electric
field strength. Similar band gap behavior is also found
in the blue area but with a larger slope. The band gap
is decreased to zero as long as the electric field strength
is larger than that at point TP3, as shown by the cyan
line. The electric field-modulated band gap behaviors
indicate that layered III–VI semiconductors have poten-
tial applications in designing novel optical detector and
absorbers. Moreover, the spectral response frequency of
these devices ranges continuously from the violet light
(ν ≈ 6.57 × 1014 Hz as Ez = 1.6 V/nm) to the infrared
light (ν < 3.97 × 1014 Hz as Ez > 5.18 V/nm).
As well known, electronic characteristics of materials

are mainly determined by energy band edges. According
to the orbital decomposition for the energy band in Fig. 2,
both the conduction and valence band edges of mono-
layer InSe are dominantly contributed from pz orbital of
Se ion. Therefore, only pz orbital decompositions of Se ion
in sublayer 2 for energy bands shown in Fig. 3a and b are
displayed in Fig. 4a and b, respectively. By comparing with

Fig. 4 (Color online) a and b show pz orbital decomposition of the Se ion in sublayer 2 for the energy bands of the monolayer InSe with a
perpendicular electric field shown in Fig. 3a and b, respectively. Thicker lines represent a more important contribution
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Fig. 2h, pz orbital contribution to the conduction bands is
slightly changed. Therefore, the shape of these band struc-
tures undergoes little affection. However, the pz orbital
contribution to the valence bands is strongly modified,
resulting in the change of shape of these band structures.
Moreover, according to the pz orbital decomposition for
the energy band of monolayer InSe with a perpendicu-
lar electric field, the relative position of each conduction
band keeps unchanged although gaps are opened at band
crossings, as indicated by the red cycles. On the con-
trary, the relative position of each valence band is changed.
The energies of the lower valence bands around � point
increase and surpass those of the highest valence band
finally, leading to indirect-direct band gap transition.

Conclusions
Electronic structures of monolayer InSe under the mod-
ulation of a perpendicular electric field are investigated.
Indirect-direct-indirect band gap transition is found
for the monolayer InSe by tuning the electric field
strength. Simultaneously, global band gap of this system
is decreased monotonously to zero with increasing elec-
tric field strength, whichmeans that semiconductor-metal
transition is achieved. The evolution of energy band of
monolayer InSe in the presence of the perpendicular elec-
tric field is clarified by analyzing the energy change of
band edge and orbital decomposition for energy band.
These results may be helpful in further understanding
of the electronic structures of monolayer InSe as well
as the designment of monolayer-InSe-based photoelectric
devices responding from violet to far-infrared light.
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