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Abstract

Gadolinium-based nanomaterials can not only serve as contrast agents but also contribute to sensitization in the
radiotherapy of cancers. Among radiotherapies, carbon ion irradiation is considered one of the superior approaches
with unique physical and biological advantages. However, only a few metallic nanoparticles have been used to
improve carbon ion irradiation. In this study, gadolinium oxide nanocrystals (GONs) were synthesized using a polyol
method to decipher the radiosensitizing mechanisms in non-small cell lung cancer (NSCLC) cell lines irradiated by
carbon ions. The sensitizer enhancement ratio at the 10% survival level was correlated with the concentration of Gd
in NSCLC cells. GONs elicited an increase in hydroxyl radical production in a concentration-dependent manner, and
the yield of reactive oxygen species increased obviously in irradiated cells, which led to DNA damage and cell cycle
arrest. Apoptosis and cytostatic autophagy were also significantly induced by GONs under carbon ion irradiation.
The GONs may serve as an effective theranostic material in carbon ion radiotherapy for NSCLC.

Keywords: Radiosensitizing effect, Gadolinium oxide nanocrystals, DNA damage, Apoptosis, Cytotoxic autophagy,
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Introduction
Non-small cell lung cancer (NSCLC) is the most com-
mon lung cancer, accounting for approximately 18.4% of
the total cancer-related deaths per year and 11.6% of the
newly diagnosed cases [1]. However, NSCLC patients are
always diagnosed at an advanced phase or with metasta-
sis and therefore are ineligible for surgery and have a
poor prognosis; namely, the 5-year survival rate is only
16.1% [2]. Aside from surgery and chemotherapy, radi-
ation therapy is an effective treatment, especially for pa-
tients with locally or regionally advanced NSCLC [3].
Currently, more advanced radiotherapy technologies
have been developed, such as imaging-guided radiother-
apy (IGRT), intensity-modulated radiotherapy (IMRT),
and charged-particle therapy (protons and carbon ions),

to achieve more precise and sufficient dose delivery to a
tumor while sparing the surrounding healthy tissues.
With regard to carbon ions, their physical proper-

ties contribute a maximum dose deposition at the
end of the particle trajectory followed by a sharp en-
ergy fall-off (named the Bragg peak), which permits
precise dose delivery to tumors in complex anatom-
ical locations. The use of carbon ions contributes to a
higher probability of damage to tumors as well as a
lower risk to surrounding health tissue than does
conventional radiotherapy [4]. Compared to X-rays,
carbon ion irradiation possesses the potential advan-
tages including a better physical dose distribution, a
greater reduction in lateral scattering [5], higher rela-
tive biological effectiveness (RBE), and a lower oxygen
enhancement ratio (OER), all of which are desirable
features for killing radioresistant, hypoxic tumors [6].
Consequently, carbon ion therapy is considered one
of the superior noninvasive approaches for the treat-
ment of tumors located in highly sensitive tissues
such as lung and for tumors that are resistant to
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conventional radiotherapy [7]. However, a significant
dose is administered to healthy tissues in front of the
tumor (i.e., at the entrance of the track). It is thus
challenging to enhance the biological effect of treat-
ment in the tumor while lowering the dose adminis-
tered to healthy tissues.
Many efforts have been made to improve the biological ef-

fect of heavy ion irradiation, including the use of cellular
pathway inhibitors [8], small chemical drugs [9, 10], and me-
tallic nanomaterials [11–13]. Among them, high-Z metal-
based nanoparticles possess a high X-ray photon capture
cross-section, intensify the production of secondary and
Auger electrons, and enhance the reactive oxygen species
(ROS). Although they can be used as radiation enhancers
for hadron therapy [14, 15], only a few metallic nanoparti-
cles have been used to improve carbon ion irradiation. Kaur
found that the presence of glucose-capped gold nanoparti-
cles in HeLa cells led to an enhancement of 41% in the RBE
value of carbon ion irradiation [16], and Liu demonstrated
that the radiosensitizing effect of gold nanoparticles for car-
bon ion irradiation was concentration-dependent [11]. Por-
cel reported that platinum nanoparticles enhanced the DSB
damage induced by carbon ion irradiation [12]. In relation
to gadolinium-based nanoparticles, only a few studies have
been reported concerning carbon ion radiotherapy. Wozny
found that AGuIX enhanced the effectiveness of carbon ions
to radioresistant head and neck tumor cells [13]. Porcel also
found that gadolinium-based nanoparticles (GBNPs) en-
hanced the sensitivity of Chinese hamster ovary cells to C6+

and He2+ irradiation [17]. More efforts are needed to expand
the utility and to explore the biological mechanisms of
metal-based nanoparticles, especially for theranostic re-
agents such as gadolinium, in carbon ion therapy.
Ultrasmall gadolinium oxide nanocrystals (GONs) have

been demonstrated as an advanced T1-weighted magnetic
resonance imaging (MRI) contrast due to their high longi-
tudinal relaxivity and small r2/r1 ratios [18, 19]. Our inter-
est has been focused on the radiosensitizing effect and
mechanisms of theranostic metal-based nanoparticles for
carbon ion irradiation [11, 20]. The aim of this work is to
investigate the radiosensitizing effect of GONs on carbon
ion irradiation and to unravel the possible mechanisms.
Using GONs synthesized by a polyol method, we first eval-
uated the radiation enhancement of GONs on hydroxyl
radical production. After checking the cytotoxicity and
cellular uptake, we studied the effect of GONs on
the survival fraction of NSCLC cells under carbon
ion irradiation using a clonogenic survival assay.
Furthermore, we examined cellular ROS production,
DNA double-strand breakage (DSB), and cell cycle
distribution as well as apoptosis and autophagy in-
duction to unravel the potential mechanisms of the
radiosensitizing effect of GONs in NSCLC cells
under carbon ion irradiation.

Results
Characterization of GONs
Using a polyol method, the gadolinium oxide nanocrystals
(GONs) were synthesized with a size of approximately
2~5 nm (Fig. 1a). As shown in Fig. 1a, the high-resolution
transmission electron microscope (HRTEM) image of par-
ticles exhibited a regular crystalline lattice with (222)
planes (d ≈ 3.1 Å). The energy-dispersive X-ray spectra
(EDS) of the GONs presented in Fig. 1b indicated the ex-
istence of Gd and O in the purified GONs sample. The
Cu peak is attributed to the copper grid used for HRTEM.
These are consistent with the literature results [19, 21]. In
addition, the average hydrodynamic diameter of the
GONs was 8.71 ± 2.78 nm (Additional file 1: Figure S1).
The synthesized GONs can be concentrated to a stable
and clear brownish dispersion and have good compatibil-
ity (Additional file 1: Figure S2a).

GONs Enhance Hydroxyl Radical Production and Cell
Damage Under Carbon Ion Irradiation
Carbon ions characteristic of high energy can deposit en-
ergy in the medium to produce secondary electrons, which
results in water radiolysis and contributes to hydroxyl rad-
ical production. We examined the radiation enhancement
ratio of GONs on hydroxyl radical production in aqueous
solution under carbon ion irradiation using 3-coumarin
carboxylic acid (3-CCA) as a probe following the reported
procedure [11]. The dependence of the radiation enhance-
ment ratios (ERs) of GONs on the radiation dose is shown

Fig. 1 The characteristics of the GONs. a HRTEM images of GONs. b
EDS of GONs
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in Fig. 2a. The ER for GONs ranged from 1.10~3.32 and
0.93~2.05 for a radiation dose of 0.5 Gy and 2.0 Gy, respect-
ively, and the maximum ER was 3.32 at a Gd concentration
of 5.0 μg/mL.
Then, we investigated the survival fractions of the three

studied NSCLC cells under carbon ion irradiation with or
without GONs, of which the Gd concentration in the
medium was 0.5, 5.0, and 10.0 μg/mL. The survival data in
each case were fitted with the linear-quadratic model [11].
The clonogenic survival curves are presented in Fig. 2b–d.
Compared with carbon ion irradiation alone, the cotreat-
ment caused a more abrupt decrease in survival at a Gd
concentration of 10.0 μg/mL in A549 cells and 5.0 μg/mL
for NH1299 and NH1650 cells. Using a reported method
[11], the sensitizer enhancement ratio (SER) was calcu-
lated. As shown in Table 1, the maximum SERs of GONs
at the 10% cell survival fraction (SF10) were 1.10, 1.11, and
1.20 for A549, NH1299, and NH1650 cells under carbon
ion irradiation, respectively. The difference in the SER for

the three studied cells might be related to the cellular up-
take of GONs (Additional file 1: Figure S2b). These results
indicated that GONs can sensitize these three NSCLC
cells to carbon ion irradiation in a cell- and
concentration-dependent manner, so the optimum radio-
sensitizing Gd concentrations were used as stated above
in our subsequent experiments.

GONs Reinforce ROS Production During Radiation
As mentioned above, many nanomaterials can serve as radi-
ation enhancers because of the increased production of
ROS [22, 23]. Therefore, the influence of GONs on the sur-
vival fraction of the studied NSCLC cells could be related
to the level of reactive oxygen species in vitro. We investi-
gated the ROS levels using the 2,7-dichlorodihydrofluores-
cein diacetate (DCFH-DA) probe after incubation with
GONs. As shown in Fig. 3a and Additional file 1: Figure S3,
the cotreatment led to stronger fluorescence emission in all
three cells compared to that with carbon ion irradiation

Fig. 2 The influence of GONs on hydroxyl radical production and cell survival fractions. a The dependence of hydroxyl radical production on the
concentration of Gd after carbon ion irradiation. b–d The survival curve of GONs-pretreated A549 (b), NH1299 (c), and NH1650 (d) cells under
carbon ion irradiation
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alone. In addition, statistical analyses of over 200 cells
showed that the relative fluorescence intensities increased
1.16, 1.81, and 1.52 times for A549, NH1299, and NH1650
cells after preincubation with GONs, respectively. Further-
more, the relative fluorescence intensities for A549,
NH1299, and NH1650 cells after cotreatment were ap-
proximately 1.36-, 2.0-, and 1.19-fold higher than those
after radiation alone, indicating that cotreatment signifi-
cantly enhanced ROS production compared with radiation
alone (Fig. 3b). The results indicated that GONs induced
an increase in ROS levels in the studied cells exposed to ra-
diation, which may contribute to the radiosensitizing effect
stimulated by GONs.

GONs Strengthen DNA Double-Strand Breaks (DSBs) and
Cause Cell Cycle Arrest
In general, radiation usually leads to nuclear DNA damage,
such as DSBs. Phosphorylation of γ-H2AX on Ser139 is
considered to be a key marker of DSB [24]. Therefore, the
numbers of γ-H2AX foci (red fluorescence point in Fig. 4a)
were investigated in the three studied cell lines. The results
showed that carbon ion irradiation distinctly increased
DNA damage, which was obviously increased in cells

Table 1 Summary of fitting parameters, DSF10, and SERSF10 in
the absence or presence of GONs

Carbon-ion irradiation α (Gy-1) β (Gy-2) R2 DSF10 (Gy) SERSF10

A549 Control 0.665 0.993 3.46

0.5 μg/mL Gd 0.575 0.996 3.99 0.847

5.0 μg/mL Gd 0.625 0.96 3.68 0.954

10.0 μg/mL Gd 0.738 0.996 3.11 1.10

NH1299 Control 0.393 0.084 0.999 3.39

0.5 μg/mL Gd 0.73 0 0.95 3.15 1.07

5.0 μg/mL Gd 0.76 0 0.98 3.01 1.11

10.0 μg/mL Gd 0.247 0.09 0.987 3.65 0.933

NH1650 Control 1.06 0.073 0.999 1.99

0.5 μg/mL Gd 1.24 0.991 1.93 1.03

5.0 μg/mL Gd 1.44 0.999 1.60 1.20

10.0 μg/mL Gd 1.45 0.996 1.60 1.20

Coefficients α, β, and R2 are fitting parameters using the linear-quadratic
model; DSF10 means the dosage of carbon ion irradiation at 10% cell survival
fraction; SERSF10 means sensitizer enhancement ratios of irradiated NSCLC cells
at 10% cell fraction

Fig. 3 GONs promoted ROS production. a The fluorescence images of ROS production observed after radiation by DCFH-DA, “CO” means the
cotreatment with GONs and carbon ion radiation; scale bar represents 200 μm. b The relative fluorescence intensity of cells with or without GONs
was analyzed using ImageJ software. *p < 0.05 or **p < 0.01 represent statistically significant or extremely significant differences, respectively
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pretreated with GONs at several time points after radiation
during the dynamic changing process (Fig. 4b).
Cell cycle progression is closely linked to DNA synthe-

sis and damage repair, which activates the cell cycle
checkpoints, either allowing enough time for the repair
of damaged DNA before moving to the next stage of cell
cycle progression or inducing apoptosis in cells carrying
unrepaired DNA [25]. As depicted in Fig. 4c and Add-
itional file 1: Figure S4, GONs promoted the relative
ratio of cells in G2/M phase in three NSCLC cell lines,
especially in NH1650 cells. In addition, GONs treat-
ments increased the level of arrested cells with statistical

significance. The time point of cell cycle arrest after
radiation varied in three studied cells, which may be re-
lated to cell-specific characteristics and to the sequence
when the DSBs occurred. For example, serious DSBs
caused by cotreatment were observed 2 h post-radiation,
and G2/M arrest was detected 8 h after exposure to car-
bon ions in A549 cell lines, which was earlier than the
observed arrest in the other two cell lines. Hence, we de-
duced that cotreatment with GONs and carbon ion irra-
diations induced more severe DNA damage and
subsequently led to more obvious cell cycle arrest than
did radiation alone.

Fig. 4 GONs enhanced the number of DNA double-strand breaks and extent of cell cycle arrest. a Fluorescent images of γ-H2AX foci in A549
cells were captured with a fluorescence microscope 2 h after radiation; scale bar is 20 μm; the nuclei stained with Hochest33342 are blue; the γ-
H2AX foci visualized by incubating with fluorescent antibodies are red. b The numbers of foci per cell were counted over at least 50 cells. c The
relative percentage of cells distributed in G2/M phase of cell cycle progression. *p < 0.05 or **p < 0.01 represent statistically significant or
extremely significant differences, respectively
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Apoptosis May Be One of the Radiosensitizing
Mechanisms of GONs
To reveal the influence of GONs on the apoptotic rate,
an Annexin V-FITC and PI apoptosis kit was used in
our study. Figure 5 and Additional file 1: Figure S5 show
that cotreatment induced more obvious enhancement in
the apoptotic rates than did radiation alone in A549 and
NH1650 cells. Although carbon ion radiation elicits ob-
vious apoptosis in NH1299 cells after radiation, there
was no significant change in the apoptotic rate of cells
preincubated with GONs (Fig. 5b). Moreover, we found
that the response to radiation and/or GONs-induced
apoptosis was cell-dependent. For instance, GONs in-
duced apoptosis in the NH1650 cell line, and neither
carbon ion radiation nor isolated treatment with GONs
caused a significant difference in apoptotic GONs in-
duced apoptosis in the NH1650 cell line, and neither
carbon ion radiation nor isolated treatment with GONs
caused a significant difference in apoptotic incidence at
24 h post treatment; increased the apoptotic rate with
extreme significance at both 24 and 48 h after radiation.
These results support the notion that apoptosis may be
one of the mechanisms responsible for the sensitization
of A549 and NH1650 cells to carbon ion radiation.

GONs Enhanced Cytostatic Autophagy in Response to
Carbon Ion Irradiation
Our previous studies demonstrated that autophagy can be
induced by carbon ion radiation in a dose- and LET-

dependent manner in various tumor cell lines [26]. To
determine whether GONs could induce autophagy and fur-
ther correlate with the radiosensitivity of the studied cells,
we set out to detect the amount of acidic vesicular organ-
elles (AVOs) in the studied NSCLC cells by staining with ac-
ridine orange (AO) and using flow cytometry. The flow
cytometry images depicted that the autophagic levels of cells
preincubated with GONs seemed higher than the levels in
the control cells, with significant differences (Fig. 6a, b and
Additional file 1: Figure S6a-c). Obviously, cotreatment not-
ably reinforced this tendency in the three NSCLC cell lines
compared with radiation alone. Consistent with the flow cy-
tometry results, the expression of LC3-II, the key marker of
autophagy, which is the phosphatidylethanolamine (PE)-
conjugated form of LC3-I [27], was also enhanced by
cotreatment with GONs and carbon ion irradiation in the
three studied cell lines (Fig. 6c). Therefore, GONs can pro-
mote the occurrence of autophagy in carbon ion-irradiated
NSCLC cells.
Although autophagy has elicited extensive attention as a

novel target to improve cancer therapy, whether autophagy
is responsible for recycling the cellular components and pro-
tecting cells from damage or for promoting cell death under
severe conditions remains controversial [28, 29]. 3-
Methyladenine (3-MA), an inhibitor of autophagic seques-
tration during the early stage of autophagosome formation
[30], was used to elaborate the role of GONs-induced au-
tophagy in irradiated NSCLC cells. By comparing the groups
of irradiated cells pretreated with 3-MA with or without

Fig. 5 Marked apoptosis was induced by GONs in A549 and NH1650 cells but not in NH1299 cells. a The flow cytometry images indicating the
apoptotic rates of A549 cells at 48 h after carbon ion radiation. b The relative incidence of apoptosis induced by GONs treatment and irradiation.
*p < 0.05 or **p < 0.01 represent statistically significant or extremely significant differences, respectively, induced by GONs. Similarly, #p < 0.05 or
##p < 0.01 indicated significant or extremely significant differences, respectively, owing to radiation
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GONs (Fig. 6d and Additional file 1: Figure S6d-f), we found
that GONs induced a notable enhancement of the autopha-
gic rate. In addition, the flow cytometry results showed that
autophagic incidence was significantly reduced in cells
incubated with 3-MA (Fig. 6d and Additional file 1: Figure
S6d-f). Then, we conducted a clonogenic survival assay
(Fig. 6e, f) and found that the survival fraction of cells
cotreated with GONs and radiation markedly declined in
comparison with cells subjected to radiation alone. However,
3-MA treatment helped to relieve this tendency and pro-
mote cell survival. Collectively, these results demonstrate
that GONs treatment promoted the radiosensitivity of
NSCLC cells to carbon ions through autophagy-induced
death.

Discussion
Currently, more attention has been given to metal-based
nanomaterials that serve as either radiosensitizers or syner-
gistic cell-killing effectors in a diverse number of tumor
cells [20, 31]. Regarding the study of GBNPs, most of them
have been used as MRI contrast agents [32–34]. Recently,
there have been efforts to study the radiosensitizing proper-
ties of GBNPs, opening the door for GBNPs to be used as

potential theranostic agents [35, 36], while the biological
radiosensitizing mechanisms of GONs under carbon ion
irradiation still need further study.
In this study, we observed the radiosensitizing effect of

GONs in NSCLC cells by clonogenic assay, which was
related to the Gd concentration in A549 and NH1650
cells; namely, a lower Gd concentration in the medium
had no effect, while an obvious radiosensitizing effect of
GONs was detected with an increase in the Gd concen-
tration. However, in NH1299 cells, the higher Gd
concentration (10.0 μg/mL) showed a protective effect,
which may be due to the hydroxyl radical quenching
caused by higher Gd cell uptake (Additional file 1: Fig-
ure S2b). The difference in cell uptake of GONs might
stem from the cells’ essential status [37]. In addition, the
production of hydroxyl radicals and ROS increased
significantly after incubation with GONs in our study,
which was consistent with our perception that Gd, one
of the high-Z numbered metal-based nanoparticles, can
intensify the production of secondary or Auger electrons
and enhance ROS production through the radiolysis of
water molecules [14, 15, 38]. Similarly, Seo also found
that core–inner-valence ionization of GONs can

Fig. 6 Autophagy-induced death was promoted by GONs in NSCLC cells exposed to carbon ion irradiation. a Images of autophagic rates in A549
cells at 12 h post-radiation as measured by flow cytometry (Sysmex CyFlow Cube 6, German). b The relative incidence of autophagy in the three
studied cell lines. c Western blot results of LC3II expression in the three studied cell lines. d The relative incidence of GONs-induced autophagy in
the presence or absence of 3-MA. e The surviving A549 cells were dyed with crystal violet in the clonogenic survival assay. f Surviving fraction of
NSCLC cells after treatment with 2 Gy carbon ion radiation and/ or GONs with or without 3-MA. *p < 0.05 or **p < 0.01 represent statistically
significant or extremely significant differences, respectively, induced by GONs. Similarly, #p < 0.05 or ##p < 0.01 indicated the differences owing to
3-MA treatment
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deexcite electrons via potent Gd-Gd interatomic deexci-
tation processes, which contributed to the enhancement
of GONs in the production of ROS under photon and
proton irradiation [19]. We hypothesized that the in-
creased ROS may further trigger catalyzing oxidation re-
actions [39].
It has been demonstrated without doubt that severe ROS

may lead to DNA damage because of its active unpaired
electron [38]. DNA damage can mainly be divided into
endogenous damages caused by ROS produced from
normal metabolism and exogenous damage induced by
ionization, manmade chemical materials, and other external
stresses [40]. In this study, obvious DSB induction was
observed after cotreatment with GONs and carbon ion ir-
radiation compared with that observed with irradiation
alone, as shown in Fig. 4a. Consistent with our findings,
AGuIX gadolinium nanoparticles also intensified DSB oc-
currence in head and neck tumor cells exposed to carbon
ion irradiation [13]. In contrast, Gd-, Pt-, and Au-based
nanoparticles approximately 2–3 nm in size all made no
difference to the DSB occurrence under γ-rays, as newly re-
ported by Pagáčová [41]. In our previous study, we also
found that cotreatment with GONs and X-ray irradiation
failed to induce more serious DSBs than that observed with
irradiation alone [42]. The differences may be attributed to
the predominance of carbon ion beams and the high Z
property of Gd, namely, in contrast with conventional X-
rays or γ-rays, carbon ion irradiation can instinctively lead
to complex DSBs that are difficult to repair [43, 44]. More-
over, similar to Porcel’s study [12], Gd could emit showers
of secondary and Auger electrons, as well as ROS under
carbon ion irradiation, and finally amplifies the efficiency of
severe DNA damage. When faced with serious DNA dam-
age, cells often initiate DNA damage responses, such as cell
cycle arrest and DNA repair [45, 46]. In our study, cell cycle
arrest was also found after GONs treatment besides DSBs,
which is consistent with Kansara’s results [47]. After evolv-
ing signaling cascades, cells with repaired DNA could re-
sume normal cell cycle progression [45]. Once the lesions
of DNA were beyond repair, cells executed cell death pro-
grams such as apoptosis [48].
In depth, apoptosis was induced in the three studied cell

lines in our work; moreover, the apoptotic incidence sig-
nificantly increased with GONs treatment in A549 and
NH1650 cells. With regard to NH1299 cells, which has a
deletion of the p53 gene, apoptosis can be induced by car-
bon ion irradiation, and GONs made no contribution in
promoting this tendency. Hence, we hypothesized that
carbon ion radiation induced p53-independent apoptosis
in NH1299 cells. Emerging studies showed that p53 may
be one, but not the sole element that correlated with
apoptosis in NSCLC. Similarly, the specific BCL-2 inhibi-
tor ABT-263 can enhance cisplatin-induced apoptosis re-
gardless of the presence or absence of p53 in NSCLC cells

[49]. Genistein also induced p53-independent apoptosis in
NSCLC cell lines [50]. Similar with the results of cellular
studies, Lai et al. found that the expression of p53 had
nothing to do with pathological staging and had no correl-
ation with the prognosis of NSCLC by investigating 114
NSCLC cases with different clinical stages [51]. Moreover,
p21, which can be activated in a p53-dependent or p53-
independent manner, plays a pivotal role in the regulation
of the cell cycle and apoptosis after DNA damage [52].
Collectively, p53 may not contribute to apoptosis as a de-
cisive factor in carbon ion-irradiated NSCLC cell lines.
Furthermore, other mechanisms may contribute to the
radiosensitization of GONs in NH1299 cells.
In addition to apoptosis, autophagy may also be elicited

when DNA damage occurs. Autophagy plays a role in
DNA repair as a double-edged sword. Autophagy can regu-
late some of the proteins involved in DNA repair and can
also be specifically initiated by several DNA repair mole-
cules. Autophagy may function as a cell death program to
eliminate abnormal cells with irreparable DNA damage
[53]. Studies have demonstrated that gold [54], silver [55],
zinc [56], titanium [57], and other metal-based nanoparti-
cles can induce autophagy. Consistent with these studies,
GONs induced autophagy in our studied NSCLC cells as
well. Hence, we hypothesize that autophagy, but not apop-
tosis, may mainly account for the radiosensitizing effect of
GONs in NH1299 cells. We used the autophagy inhibitor
3-MA to explore whether GON-induced autophagy plays a
pro-survival role or acts as a cell death mechanism. As
shown in Fig. 6d and Additional file 1: Figure S6d-f, the re-
sults of flow cytometry indicated that autophagy was obvi-
ously inhibited by 3-MA; then, autophagy-induced cell
death was verified by a clonogenic survival assay. Conse-
quently, cytostatic autophagy played an important role in
sensitizing NSCLC cells pretreated with GONs under car-
bon ion irradiation.

Conclusions
In summary, pretreatment with GONs led to the en-
hancement of hydroxyl radical and ROS production,
which contributes to cell cycle arrest at G2/M phase to
allow for repair of damaged DNA with DSBs. Then,
apoptosis and cytostatic autophagy were induced to re-
lieve severe DNA damage and finally sensitize NSCLC
cell lines to carbon ion radiation. Moreover, although
both autophagy and apoptosis were elicited in the stud-
ied NSCLC cells, cytostatic autophagy induced by GONs
may play a pivotal role in NH1299 cells. Based on the
good biocompatibility, the instinctive advantage of Gd as
an MRI contrast agent, and the sensitization effect stated
above, GONs may be a potential theranostic sensitizer in
NSCLC patients under carbon ion radiotherapy after
further in vivo preclinical studies.
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Although the physical and chemical mechanisms concern-
ing GBNP-mediated radiotherapy have been well elaborated,
the clinical applications of GBNPs remain challenging due
to the shortage of specific biomechanisms. In future work,
high-throughput proteomic methods based on liquid
chromatography-mass spectrometry will be used to decipher
the specific biomarkers that respond to GONs treatment
and regulate radiosensitivity under carbon ion irradiation. In
addition, it is well known that the radiosensitizing effect of
GONs is related to its surface modification as well as to the
size of the core. Therefore, whether enhanced radiosensitiv-
ity toward carbon ion irradiation is induced by other types
of GONs will also be examined in our future work.

Materials and Methods
Synthesis and Characterization of GONs
The synthesis and characterization of GONs are detailed
in our previous study using a reported polyol method [19].
Approximately 1.0 μL of diluted GONs was dropped onto
a copper grid and dried at room temperature before ob-
servation. The HRTEM images, as well as EDS data, were
performed on a JEOL-2100 (JEOL, Japan) instrument with
an operating voltage of 200 kV.

Cell Culture
The human NSCLC cell lines A549, NH1299, and
NH1650 were purchased from the Type Culture Collec-
tion of the Chinese Academy of Sciences (Shanghai,
China). These three well-known NSCLC cells were
grown in RPMI 1640 medium (Thermo Fisher Scientific
Inc., Waltham, MA) with 10% heat-inactivated fetal bo-
vine serum (FBS; Bailing Bio, Lanzhou, China) at 37 °C
in a humidified 5% CO2 atmosphere. 3-MA (Selleck.cn,
USA) was used as an inhibitor of autophagy 4 h before
radiation.

Carbon Ion Irradiation
Cells were plated into 35-mm Petri dishes overnight and
then preincubated with GONs, of which the specific con-
centrations of Gd were 0.5, 5.0, and 10.0 μg/mL in the
medium. After 24 h of treatment with GONs, cells were
subjected to carbon ion irradiation at the heavy ion re-
search facility in Lanzhou (HIRFL) at room temperature.
The energy of the carbon ion was 100MeV/u with a linear
energy transfer (LET) of 50 keV/μm. The dose rate was
approximately 2.0 Gy/min.

Measurement of Hydroxyl Radical Production
Hydroxyl radical production was evaluated using 3-CCA
(J&K Chemical Co. Ltd., China) as a probe. The solution of
3-CCA was prepared following the reported procedure
[58]. The diluted solutions, of which the Gd concentrations
were 0, 0.1, 0.5, 1.0, 5.0, and 10.0 μg/mL, were equally
added into the wells of 96-well black-bottom plates with or

without radiation and measured at an excitation wavelength
at 395 nm and emission wavelength at 442 nm with a
microplate reader (Infinite F200/M200, TECAN Co.,
Switzerland) protected from light.

Clonogenic Survival Assay
After being irradiated with 0, 1, 2, 3, and 4 Gy carbon ions,
the trypsin-dispersed cell suspensions were counted, di-
luted, and finally seeded into Φ60 dishes in 5mL of
complete media. Then, colonies were stained with crystal
violet for 30min and carefully washed after 14 days of in-
cubation. Colonies with more than 50 cells were recorded
as survivors and counted manually under an inverted
microscope. Measured survival data were fitted using the
linear-quadratic (LQ) model.

Reactive Oxygen Species (ROS) Detection
ROS were evaluated using DCFH-DA (Solarbio Life Sci-
ences, China), which is a fluorogenic dye that measures
hydroxyl, peroxyl, and other ROS activities within the cells
[59]. Cells with or without preincubation of GONs were
treated with DCFH-DA in serum-free medium and then
exposed to 2.0 Gy carbon ion irradiation. After coincuba-
tion with DCFH-DA for 30min at 37 °C, the fluorescence
of the cells was detected with a fluorescence microscope
(Olympus Optical Co., Japan). Afterward, the mean cellu-
lar fluorescence was calculated using ImageJ software by
analyzing more than 200 cells.

Immunofluorescence Assay
To explore whether cotreatment with GONs and carbon
ion radiation enhanced the number of DNA double-
strand breaks (DSBs), γ-H2AX, one of the key factors in
the DNA damage response [48], was used at 4 °C over-
night in our study after cells were fixed with 4% parafor-
maldehyde, permeabilized with 0.3% Triton X-100, and
blocked with 5% BSA. Then, the cells were washed and
incubated with donkey anti-mouse secondary antibody
for 1.5 h at room temperature. Before the foci were ob-
served with a fluorescence microscope (Olympus Optical
Co., Japan), Hoechst 33342 was used for staining the nu-
clei. The mean values of the foci were counted based on
the presence of at least 50 cells.

Flow Cytometry
The influence of GONs and/or 2Gy carbon ion irradiation
on cell cycle progression was analyzed with flow cytometry
(Sysmex CyFlow Cube 6, German). After being harvested
and fixed in 70% ice-cold ethanol at − 20 °C for at least 48 h,
the cells were stained with PBS containing 100 μg/mL
RNase, 0.2% Triton X100, and 50 μg/mL propidium iodide
(PI; Sigma-Aldrich Co., US) for 20min on ice. Next, apop-
tosis was detected with flow cytometry using an Annexin V-
FITC and PI apoptosis kit (Roche Diagnostics, Indianapolis,
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IN) according to the manufacturer’s protocol. With regard
to autophagy incidence, cells were incubated with a 1.0 μg/
mL solution of acridine orange (AO) for 15min, washed,
collected, and then quantified by flow cytometry at the indi-
cated time points after irradiation. The contribution of
GONs to the relative autophagic incidence of irradiated cells
pretreated with 3-MA was also measured by flow cytometry
(Amnis, Seattle, WA).

Western Blot Analysis
Cellular extracts were obtained after they were
washed with PBS twice and treated with cell lysis
buffers. After sonication at 3 s/8 s intervals for a total
of 3 min, centrifugation at 12,000 rpm for 20 min at
4 °C, and then quantitative determination of the con-
centrations by the Bradford assay, the proteins were
separated by SDS–PAGE and transferred to PVDF
membranes. Blots were incubated with the LC3-II and
GAPDH primary antibodies (all purchased from Cell
Signaling Technology®, Danvers, MA) and the corre-
sponding secondary antibody and visualized by en-
hanced chemiluminescence.

Statistical Analysis
Quantitative data of independent trials repeated three
times are expressed as the mean ± standard deviation
(SD). Comparisons of the data derived from the controls
and treatments were performed using one-way ANOVA
with SPSS v. 16.0 (SPSS/IBM Corp., Armonk, NY). Differ-
ences were considered statistically significant and statisti-
cally extremely significant when p < 0.05 and p < 0.01,
respectively.
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1186/s11671-019-3152-2.
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