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Abstract

Numerical simulation plays an important role for the prediction of optical trapping based on plasmonic nano-optical
tweezers. However, complicated structures and drastic local field enhancement of plasmonic effects bring great
challenges to traditional numerical methods. In this article, an accurate and efficient numerical simulation method
based on a dual-primal finite element tearing and interconnecting (FETI-DP) and Maxwell stress tensor is proposed, to
calculate the optical force and potential for trapping nanoparticles. A low-rank sparsification approach is introduced to
further improve the FETI-DP simulation performance. The proposed method can decompose a large-scale and
complex problem into small-scale and simple problems by using non-overlapping domain division and flexible mesh
discretization, which exhibits high efficiency and parallelizability. Numerical results show the effectiveness of the
proposed method for the prediction and analysis of optical trapping at nanoscale.
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Introduction
Plasmonic optical tweezers based on surface plasmons
(SPs) draw much attention and have been widely applied
to capture nanoparticles [1–6]. SP is a resonance
phenomenon caused by the coupling of incident light with
a specific wavelength and free electrons at the interface of
the metals and dielectrics [7]. SPs enable the optical twee-
zers to break through the diffraction limit. Moreover, the
drastic local field enhancement of the SPs can reduce the
demand of intensity of incident light [7, 8]. However, SPs
are closely related to the material and dimensions of
objects as well as the wavelength of incident light, which
requires a large number of experiments to determine the
optimal parameters of SP optical tweezers in practice.
Based on this, the simulation method plays an increasingly
important role as an auxiliary mean for the design and
optimization of SP optical tweezers [9]. In these simula-
tions, the calculation of optical force is required to predict
a stable trapping. For regular objects such as spheres, the
optical force can be analytically derived from generalized

Lorenz-Mie theory [10, 11]. However, for objects with
complicated configurations, numerical methods that solve
the governing Maxwell’s equations rigorously are
necessary for modeling the electromagnetic fields and the
subsequent optical force and potential.
These numerical methods can be mainly categorized into

differential equation methods (DEMs) and integral equa-
tion methods (IEMs) [12–15]. Compared with the IEMs,
differential equation methods (DEMs) show superior abil-
ities in dealing with complicated geometries and compo-
nents. DEMs also have the advantage of a straightforward
calculation of near-field distribution, which plays an im-
portant role in the analysis of SPs. As a representative
DEM, finite-difference time-domain (FDTD) method is
implemented in the time domain, which can easily get
broadband information and transient responses [16, 17].
However, the FDTD demands an accurate dispersive
model to describe the frequency-dependent material prop-
erties in SPs, while the FDTD solution accuracy highly de-
pends on the approximation accuracy of this dispersive
model [18]. Besides, the FDTD relies on structured meshes,
which often lead to staircase error for curved surfaces. As
another representative DEM, finite element method (FEM)
has been widely adopted since it can easily handle
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dispersive material in the frequency domain and eliminate
the staircase error by unstructured mesh [19–22]. Com-
pared with the FDTD, the FEM can directly adopt mea-
sured material parameters without any approximate
dispersive model. However, drastic local field enhance-
ments in the SPs require fine meshes in the FEM
discretization. Besides, objects with large dimensions and
multiple objects will dramatically increase the number of
unknowns. These factors will cause ill-conditioned matrix
systems and huge computational consumptions, which
bring great challenges to traditional FEM for the analysis
of SP-enhanced optical trapping.
In this article, an efficient dual-primal finite element tear-

ing and interconnecting (FETI-DP) method is introduced to
simulate the optical trapping at nanoscale. The FETI-DP
adopts a non-overlapping domain decomposition scheme,
which divides an original large-scale complex problem into
a series of small-scale simple problems to conquer them. It
enforces a transmission condition at the subdomain inter-
faces to ensure the filed continuity, and introduces a dual
variable to reduce original three-dimensional (3D) problem
to be a two-dimensional (2D) problem by Lagrange multi-
plier. Primal variables at the subdomain corners are ex-
tracted to accelerate the convergence rate of iterative
solution of the dual problem [23–26]. A low-rank sparsifica-
tion approach is developed to improve the performance of
the FETI-DP. It uses data-sparse algorithms to improve the
efficiency for solving the subdomain problems and the dual
problem [27, 28]. The proposed method provides fully
decoupled subdomains, which enable the parallel simulation
of optical force for trapping nanoparticles. The Maxwell
stress tensor (MST) that reveals the relationship between
the electromagnetic field and mechanical momentum is
adopted to evaluate the optical force [29]. Based on the ob-
tained optical force, the optical potential can be further cal-
culated for the analysis of a stable trapping. Compared with
the IEMs, the proposed method is more powerful in dealing
with compound materials and solving the near-field for the
SP-based optical trapping. Compared with the FDTD, the
proposed method can accurately handle dispersive metal

material in the SP-based optical trapping systems and
eliminate the staircase error for the objects with curve
boundary. Compared with the FEM, the proposed
method is suitable for large-scale computation of optical
trapping. Several examples are analyzed and numerical
results demonstrate the accuracy and efficiency of the
proposed method for the prediction and analysis of
optical trapping at nanoscale.

Methods
FETI-DP Formulations
For the FETI-DP implementation, the original compu-
tational domain Ω is first torn into a series of non-
overlapping subdomains Ωi (i = 1, 2, 3⋯,Ns), as shown
in Fig. 1. In each subdomain Ωi, a subdomain finite
element system can be derived from the vector wave
equation as

∇� μ−1r ∇� Ei−k20εrE
i ¼ jk0η0 J

i
imp inΩi ð1Þ

n̂� ∇� Ei þ jk0n̂� ðn̂� EiÞ ¼ 0 on ΓiABC ð2Þ

where Ei denotes the unknown electric field to be solved in
Ωi , k0 and η0 are the free-space wavenumber and intrinsic

impedance, respectively, and Jimp
i is the impressed current.

ΓiABC means the absorbing boundary condition (ABC) to
truncate the infinite open region. It should be noted that k0
should be replaced by the wave impedance in medium if
the surrounding medium is not free-space, which is com-
mon for the optical trapping. At the subdomain interface
Γi, an assumed boundary condition is required to generate
a complete boundary value problem in Ωi. Here, a Robin-
type transmission condition with an unknown auxiliary
variable Λi is imposed as

n̂i � μ−1r ∇� Ei
� �þ αin̂i � n̂i � Ei

� � ¼ Λi on Γi ð3Þ

where n̂i denotes unit normal outward vector at the sub-
domain interface Γi, and αi is a complex parameter
which can often be chosen as jk0. All subdomains are

(a) (b)

Fig. 1 A domain division scheme with non-overlapping subdomains in the FETI-DP method. a Original domain. b Divided subdomains and
discretized meshes
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then discretized by tetrahedral elements. In each elem-
ent, we expand E with vector basis functions N and
unknown electric field coefficient E as

E ¼
Xs

p¼1

EpNp ð4Þ

where s denotes the number of vector basis functions in
each tetrahedral element. s is chosen to be 6 for trad-
itional low-order basis function based on the edge, while
it is larger for high-order vector basis function, since
additional basis functions based on face or volume are
introduced.
Applying Galerkin’s method, the FEM matrix equation

in Ωi about the unknown electric field coefficient Ei can
be obtained as

Ki
rr Ki

rc
Ki

cr Ki
cc

� �
Ei
r

Ei
c

� �
¼ f ir−B

iT
r λ

i

f ic

� �
ð5Þ

where the subscript notations c and r distinguish the
corner degrees of freedom (DOFs) and the remaining
DOFs, which extracts the corner DOFs as a primal vari-
able to construct the dual-primal (DP) scheme. Here, K
is the FEM system matrix and f is the excitation vector.
B is a Boolean matrix that extracts the interface DOFs
of a subdomain. λ is a dual variable generated from
expanding Λi, which is also called the Lagrange
multiplier.
Then, the adjacent subdomains can be interconnected

by enforcing tangential electric field and magnetic field
continuity at the interfaces. We assemble all subdomain
interfaces and eliminate all the subdomain internal un-
knowns Ei. A reduced global interface equation about
the dual variable λ can be obtained as

~Krr þ ~Krc ~K
−1
cc
~Kcr

h i
λ ¼ ~f r−~Krc ~K

−1
cc
~f c ð6Þ

Equation (6) can be solved by iterative methods, such
as the generalized minimal residual (GMRES) method.
~Kcc is the global corner system, which can accelerate the
iterative convergence in primal space. Suitable precondi-
tioner can be employed to improve iterative convergence
rate, such as approximate inverse and incomplete LU de-
composition. Once the dual variable λ is solved, the elec-
tric field inside each subdomain can be independently
evaluated by (5). For the construction of the global
matrix ~Krr , one needs to construct the subdomain nu-
merical Green’s function Zi

rr with a form of

Zi
rr ¼ Bi

r Ki
rr

� �−1
Bi
r
T ð7Þ

where the inverse of the subdomain FEM matrix ðKi
rrÞ−1

is included. Besides, for matrices ~Krc , ~Kcr , and ~Kcc and

vectors ~f r and ~f c , the ðKi
rrÞ−1 is required to be com-

puted. The constructions of ðKi
rrÞ−1 at pre-processing

stage as well as their matrix-vector products (MVPs) at
iterative solution stage are computationally expensive.

Although Ki
rr is sparse, ðKi

rrÞ−1 are dense, which means
high computational costs. Next, a low-rank sparsification
method is introduced to accelerate the computation of

ðKi
rrÞ−1 . Since some sub-matrices in the global interface

system can be represented in low-rank matrix form,
their computation can be performed with low-rank algo-
rithm, which improves the performance of the FETI-DP.
It can be seen that the FETI-DP provides independent
subdomain operations, so that it can exploit parallel
computation to improve efficiency. For an efficient par-
allel scheme, a principle of domain division is to make
the number of DOFs in each subdomain as balanced as
possible. Hence, the size of subdomains should relate to
the mesh discretization density. Usually, small subdo-
mains are adopted in finely meshed areas, while large
subdomains are adopted in coarsely meshed areas.

Low-Rank Sparsification
A low-rank sparsification approach is proposed to pro-
vide a data-sparse way to improve the FETI-DP effi-
ciency. Here, data-sparse means these matrices are
actually not sparse but they are sparse in the sense that
certain sub-blocks of them can be represented by low-
rank decomposition matrix forms as

M ¼ XYT M∈ℂm�n;X∈ℂm�k ;Y∈ℂn�k
� � ð8Þ

where X and Y are in full matrix forms, and the rank k
is much smaller than m and n. The matrix ðKi

rrÞ−1 can
be represented by data-sparse matrix forms since it pos-
sesses the matrix property of an integral operator.

Hence, provided ðKi
rrÞ−1 possess low-rank property in

given subdomain, it can be efficiently computed and
stored in data-sparse forms with the low-rank sparsifica-
tion approach, which accelerates the MVPs in the itera-
tive solution.
The processes of the low-rank sparsification approach

can be divided into the following steps: (1) construct a
cluster tree by subdividing the basis function set in each
subdomain, (2) construct a block cluster tree by inter-
action of two cluster trees, (3) generate a data-sparse
form of Ki

rr by an admissibility condition, (4) perform
low-rank formatted algorithms to get the data-sparse

representation of ðKi
rrÞ−1DS , and (5) enter the solution of

FETI-DP systems by data-sparse algorithm. Suitable pre-
conditioner can be employed to speed up the solution. It
should be noted that the data-sparse LU factorization
ðKi

rrÞDS ¼ ðLi
rrÞDSðUi

rrÞDS is adopted to replace the matrix
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inversion ðKi
rrÞ−1DS . A nested dissection technique is

employed to further improve the efficiency of the low-
rank sparsification. The nested dissection uses separators
to yield large off-diagonal zero sub-blocks, which will
keep zero during the LU factorization so that it can sig-
nificantly reduce the fill-ins.
To generate ðKi

rrÞDS , we first construct a cluster tree
TI by recursive subdivision of the subdomain edge-
based basis function set I = {1,2,……N} using bounding
box. With the nested dissection, a cluster t within the
corresponding bounding box is divided into three suc-
cessors {s1, ssep, s2}, where s1 and s2 are the index sets of
the two disconnected bounding boxes and ssep is the
index set of the separator. Figure 2 a shows a simple ex-
ample of this process. Then, a block cluster tree TI × I

can be constructed by interacting two cluster tree TI, as
shown in Fig. 2 b, which can be chosen as the cluster
tree of the original edge-based basis function set and
that of the testing basis function set in Galerkin’s
method. Next, we need to introduce an admissibility
condition based on the nested dissection to distinguish
full blocks, low-rank decomposition blocks and off-di-
agonal zero blocks in TI × I [23]. Thus, ðKi

rrÞDS can be
produced by filling the corresponding blocks with the
non-zero entries of Ki

rr . Finally, the data-sparse LU
factorization of ðKi

rrÞDS ¼ ðLi
rrÞDSðUi

rrÞDS can be calcu-
lated recursively from

Ki
rr ¼

K11 K13

K22 K23

K31 K32 K33

2
4

3
5

¼
L11

L22

L31 L32 L33

2
4

3
5 U11 U13

U22 U23

U33

2
4

3
5 ð9Þ

where conventional full matrix arithmetics are re-
placed by their data-sparse counterparts [28]. An adap-
tive truncation error εt is employed to control the
accuracy of low-rank approximations. The obtained LU
factors ðLi

rrÞDS and ðUi
rrÞDS are stored and used to con-

struct Zi
rr by

Zi
rr ¼ Bi

r Ui
rr

� �−1
DS Li

rr

� �−1
DSB

i
r ð10Þ

where Bi
rðUi

rrÞ−1DS and ðLi
rrÞ−1DSBi

r can be computed by
data-sparse upper and lower triangular solver. The
ðLi

rrÞDS , ðUi
rrÞDS , and Zi

rr enter the FETI-DP calculation
with data-sparse forward and backward substitutions
(FBSs) and data-sparse MVPs.

Optical Force and Potential
According to electrodynamics theory, the optical force
can be evaluated by the Maxwell stress tensor (MST)
that reveals the relationship between electromagnetic
field and mechanical momentum [29]. Once the electro-
magnetic field distribution around the object is obtained,
the optical force can be calculated by integrating MST
over a closed surface surrounding the object. Based on
the obtained electric field distribution, the MST at any
coordinates can be constructed by

T
$¼ 1

2
Re εEE� þ μHH�−

1
2

ε Ej j2 þ μ Hj j2� �
I
$

� �
ð11Þ

where the superscript asterisk denotes the conjugate of elec-
tric field or magnetic field, ε are μ are the permittivity and
permeability, and I

$
is a 3 × 3 identity matrix. By the outer

product of vectors, the tensor form of T
$

can be written as

(a) (b)

Fig. 2 Constructions of a cluster tree and a block cluster tree of 4 levels based on nested dissection. a Construction of a cluster tree by recursive
subdivision of edge-based basis function set I = {1,2,…18}. b Construction of a block cluster tree where white blocks are zero matrices and green
blocks can be full matrices or low-rank decomposition matrices
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where the subscript x, y, z denotes the components in
three directions. According to the expanding of E de-
scribed in (4), the entries of MST Tmn (m, n = x, y, z)
can be converted into expanded forms in the FETI-
DP calculation as

Tmn ¼
Xs

p;q¼1

EpEq ε Np
� �

m N�
q

� 	
n
−

1
ω2μ

∇�Np
� �

m ∇�N�
q

� 	
n




−
1
2

ε Np
� �

N�
q

� 	
−

1
ω2μ

∇�Np
� �

∇�N�
q

� 	� ��
if m ¼ n:

ð13Þ

Tmn ¼
Xs

p;q¼1

EpEq ε Np
� �

m N�
q

� 	
n
−

1
ω2μ

∇�Np
� �

m ∇�N�
q

� 	
n


 �
if m≠n:

ð14Þ
where ω is the angular frequency; N and s have been de-
scribed in Eq. (4).
Finally, the optical force exerted on the object can be

calculated by integrating the MST over any closed sur-
face surrounding it by

F ¼ ∮S T
$ �n̂

� 	
dS: ð15Þ

Note that the calculation of optical force can also be
implemented in parallel, since the integral of the MST is
assigned to corresponding subdomains. For a stable op-
tical trapping, one of the main conditions is that the gra-
dient force should be greater than the scattering force.
In other words, the direction of the total force should be
identical with that of the gradient force, which always
points to the position where the electric field intensity is
strongest.
The optical potential is another attractive parameter

revealing the stability of the optical trapping. Based on
the obtained optical force, the optical potential depth U
at position r0 can be calculated by

U r0ð Þ ¼ −
Z r0

∞
F rð Þ � r; ð16Þ

where the subscript ∞ denotes infinity defined as the ref-
erence point with zero potential. The value of U can be
represented by kBT, where kB denotes the Boltzmann
constant of 1.3806488 × 10−23J/K and T is the ambient
temperature. Generally, the particle can overcome the

Brownian motion in solution and be stably trapped when
U > 1 kBT is satisfied. Otherwise, the particle cannot be
stably trapped. Since the total optical force includes the
conservative gradient force component and the non-con-
servative scattering force component, the total optical
force F from (15) is non-conservative [30, 31]. However,
provided the motion of the nanoparticle is restricted to
one dimension, this yields an unambiguous definition of
an optical potential from (16), even though the total op-
tical force is non-conservative.

Results and Discussion
Three examples are presented to demonstrate the effect-
iveness of the proposed method. Since noble metals are
commonly used to excite the surface plasmon, we select
representative gold and silver materials for the analyses.
The first example calculates the optical force of silver
nanoparticle to verify the accuracy of the proposed
method. The second and third examples simulate and
discuss the optical trapping of gold nanoparticles. For all
the examples, the infinite domain is truncated with
ABC, and the distances between the ABC and the ob-
jects are set to be one wavelength, which is sufficient to
achieve an acceptable accuracy. All calculations are per-
formed on a Dell workstation equipped with 3.6 GHz
Intel Xeon processors.

Silver Nanocapsule
A silver nanocapsule object is first considered to test the
accuracy and efficiency of the proposed FETI-DP method
in predicting optical force. Figure 3 a and b presents its
configuration and dimensions. The constitutive parame-
ters of silver are all measured values taken from [32]. To
implement the FETI-DP scheme, the whole analysis
domain is first divided into 24 subdomains. Denser
meshes are required near the metal surface in order to
model the plasmonic local field enhancement effect.
Tetrahedral elements are adopted for the discretization,
which leads to totally 6.9 × 105 unknowns, including 4.1 ×
104 dual unknowns and 313 corner unknowns. The inci-
dent light illuminates along the direction of +z, while the
direction of polarization of electric field is −x.
First, we change the wavelength of incident light λ

from 200 nm to 400 nm to simulate the optical forces

T
$¼

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

2
4

3
5 ¼

εExE
�
x þ μHxH

�
x−

ε Ej j2 þ μ Hj j2
2

εExE
�
y þ μHxH

�
y εExE

�
z þ μHxH

�
z

εEyE
�
x þ μHyH

�
x εEyE

�
y þ μHyH

�
y−

ε Ej j2 þ μ Hj j2
2

εEyE
�
z þ μHyH

�
z

εEzE
�
x þ μHzH

�
x εEzE

�
y þ μHzH

�
y εEzE

�
z þ μHzH

�
z−

ε Ej j2 þ μ Hj j2
2

2
6666664

3
7777775

ð12Þ
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exerted on the nanocapsule. Since the FETI-DP works in
frequency domain, the optical forces are calculated at 15
sampling frequency points. Figure 4 shows the calculated
curve of optical forces exerted on the silver nanocapsule.
To indicate the accuracy of the FETI-DP, the optical
force results of the FETI-DP are compared with those of
the commercial software Lumerical FDTD Solutions
[33], and good agreement can be observed.
Then, the performance of FETI-DP is tested for dif-

ferent numbers of subdomains. We increase the num-
ber of subdomains from 4 to 24 by keeping the
discretization density. We assign each processor to
deal with one subdomain. Table 1 reports the time
used for the construction of global interface Eq. (6)
and the total solution time. It can be seen that the
FETI-DP can fully exploit parallel computing re-
sources and significantly improve the solution effi-
ciency. Besides, the accuracy of the FETI-DP with the
number of subdomains increasing is also examined
and reported in Table 1. Here, the accuracy is defined
by the 2-norm relative error of the optical force as
δOF = ‖OFi −OFref‖/‖OFref‖, where OFi is the optical
force using i subdomains and OFref denotes the

reference optical force using two subdomains. It can
be seen that the accuracy keeps almost constant with
the number of subdomains increasing.

Gold Nanosphere Dimer
The second example analyzes the optical trapping of a
gold nanosphere by using a gold nanosphere dimer. The
plasmonic effects at the dimer gap can effectively enhance
the optical force for trapping nanoparticle. Figure 5 a and
b gives the configuration and dimensions of this system.
The constitutive parameters of gold are all measured
values taken from [32]. The surrounding medium is water
with a relative refractive index of n = 1.33. The incident
light is a plane wave with the power of 10 mW/μm2, the
electric field polarization direction is +x, and the incident
direction is −z. The optical force exerted on the object
nanosphere is calculated by the FETI-DP method. For the
FETI-DP implementation, the whole computational do-
main is divided into 32 subdomains and discretized by
tetrahedral meshes, which results in 3.5 × 106 unknowns,
including 1.6 × 105 dual unknowns and 1738 corner
unknowns.

Fig. 4 Results of the optical forces exerted on the silver nanocapsule, varying with the wavelength λ of incident light, including the results of the
FETI-DP and the commercial software FDTD solutions

Fig. 3 Configuration of a silver nanocapsule structure. a 3D view. b Front view and dimensions, where R = 30 nm and h = 60 nm
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First, we test the parallel performance of the pro-
posed FETI-DP by using various numbers of proces-
sors. Table 2 reports the solution time for Eq. (6) as
well as the total solution time. Besides, the speedups
for the parallel computation are also provided in
Table 2. Here, the speedup is defined by

Speed up ¼ T1
.
TNp

ð17Þ

where TNp denotes the total wall-clock time using Np

processors. It can be seen that the FETI-DP significantly
improves the solution efficiency and exhibits good paral-
lel speedup. For this large number of unknowns, the
total memory usage of all the processors is only 57.2 GB.
Then, the effectiveness of the low-rank sparsification

approach is examined. With the low-rank sparsification,
the subdomain matrix can be factorized by data-sparse
algorithm and stored as data-sparse matrices. The con-
struction time and memory usage are only 18 s and 0.5
GB, while they are 67 s and 1.7 GB by conventional
matrix algorithm. It can be seen that we get 72% time
saving and 70% memory compression. Related to the
memory usage, the subsequent MVPs can also get 70%
time-saving.
Next, the FETI-DP is tested for the optical force

calculation with the wavelength λ varying from 277
nm to 818 nm. In practice, the analyses of optical
force under incident light of different wavelengths are
often necessary for searching the plasmonic resonance
wavelength, where drastic field enhancement occurs

and the strongest optical force can be obtained. Two
cases are considered with the nanosphere located at
(0, 0, 20 nm) and (0, 0, − 20 nm). Figure 6 a and b
plots the calculated optical forces exerted on the
nanosphere for different λ. It can be seen that the
maximum optical force occurs at λ = 472 nm, which is
the plasmonic resonance wavelength. The optical
force at this resonance wavelength enhanced by nearly
40 times as against that at non-resonance wavelength.
Moreover, the optical force always points to the
dimer gap, as shown in Fig. 6, where the electric field
intensity is strongest. It is also the direction of gradi-
ent force to trap the object. Figure 7 a and b shows
the calculated electric field enhancement distributions
at the non-resonance wavelength of λ = 300 nm and
the resonance wavelength of λ = 472 nm, respectively.
It can be seen that the electric field intensity has
been increased by almost 250 times due to the plas-
monic resonance effect.
Besides, the optical force and optical potential are

calculated with the nanosphere moving from (0, 0, −
30 nm) to (0, 0, − 17 nm) along the z-axis. Since the
most typical and interesting behavior of trapping
forces and potentials are those acting along z-direc-
tion, we here consider the axial trapping potential by
integration along the z-axis. Because the motion of
the nanoparticle is restricted to one dimension, the
definition of an optical potential is unambiguous from
(16), even though the total optical force from (15) is
non-conservative. As shown in Fig. 8 a, b, with the
nanosphere moving to the dimer gap, the optical
force and optical potential depth obviously increase.
At the position of (0, 0, − 17 nm), an optical potential
depth of 4.6 kBT is produced, which is sufficient to
overcome the Brownian motion in water to achieve
stable optical trapping.
Finally, we test the effects of the dielectric substrate

for this example. The optical forces are calculated
with and without a substrate, respectively. For both
two cases, the nanosphere is located at (0, 0, − 20 nm)
and the incident wavelength is chosen as the reson-
ance wavelength. For the case without substrate, the

Table 1 Performance of the FETI-DP for calculating the optical
force exerted on the silver nanocapsule with different number
of subdomains

Number of
subdomains

Construction time
(s)

Total time
(s)

Relative error
δOF

4 265.6 436.6 5.2 × 10−4

8 130.8 215.0 7.0 × 10−4

16 57.4 101.4 3.3 × 10−4

24 27.9 57.8 7.8 × 10−4

(a) (b)

z

yx

Fig. 5 Configuration of an optical trapping system of a gold nansphere dimer in water. a 3D view. b Front view and dimensions, where R = 25
nm, r = 5 nm, and g = 2 nm
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calculated result of the optical force is |F0| =
0.769 pN. For the case with a substrate, the gold
nanosphere dimer is put on a dielectric substrate with
a thickness of 60 nm and a relative permittivity of εr =
2.25. The calculated result of the optical force is
|F1| = 0.761 pN. The relative error between these two

results of optical forces is about 1.0 × 10−2, which is
defined as |F1 − F0|/|F0|.

Gold Truncated Cone Dimer
The third example deals with the optical trapping of a
gold nanosphere by using a gold truncated cone dimer.
Figure 9 gives the configuration and dimensions of this
system. The constitutive parameters of gold are taken
from [32]. The dielectric substrate has a relative permit-
tivity of εr = 2.25. The surrounding medium is water with
a relative refractive index of n = 1.33. The incident light
is plane wave with the power of 10 mW/μm2, the elec-
tric field polarization direction is +x, and the incident
direction is −z. The whole computational domain is di-
vided into 32 subdomains and discretized by tetrahedral
meshes, which leads to 3.1 × 106 unknowns, including
1.3 × 105 dual unknowns and 1227 corner unknowns.

Table 2 Time used for the FETI-DP and parallel speedup for
calculating the optical force of the nanosphere dimer system
with 32 subdomains and 3.5 million unknowns

Number of processors Interface time (s) Total time (s) Speed up

1 1869 6672 1.0

4 595 1853 3.6

8 320 967 6.9

16 169 520 12.8

32 88 272 24.5

(a) 

(b) 
Fig. 6 Calculated results of optical forces exerted on the nanosphere in the system of gold nanosphere dimer, varying with the wavelength λ of
incident light. a The object nanosphere is located at (0, 0, 20 nm). b The object nanosphere is located at (0, 0, − 20 nm)
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First, we analyze the optical forces by changing λ from
277 nm to 818 nm. Figure 10 plots the calculated optical
forces exerted on the nanosphere for different λ. The
nanosphere is located at (0, 0, 35 nm). It can be seen that
the maximum optical force occurs at λ = 464 nm, which
is the plasmonic resonance wavelength, and the optical
force here is enhanced by nearly 30 times at non-reson-
ance wavelength. Moreover, the total optical force al-
ways points to −z, as shown in Fig. 10, which is the
direction of the gradient force. This confirms that the
gradient force is greater than the scattering force, which
is one of the conditions that the nanosphere can be sta-
bly trapped. Figure 11 a and b presents the calculated
electric field distributions at the non-resonance wave-
length of λ=300 nm and the resonance wavelength of
λ = 464 nm, respectively. It can be seen that electric field
intensity has been increased by almost 500 times due to
the localized surface plasmon resonance.
Then, the location of the nanosphere is changed to 0,

5, and 35 nm to observe the optical force. Figure 12 gives

the calculated optical forces exerted on the nanosphere,
where obvious y-component of optical force can be ob-
served, while greater z-component of optical force exists.
The total optical force still points to the position with
the strongest electric field to trap the nanosphere.
Furthermore, we analyze the optical potential with the

nanosphere moving from (0, 0, 50 nm) to (0, 0, 20 nm)
along the z-axis. Here, we consider the axial trapping
potential along z-direction, which restricts the motion of
the nanoparticle to one dimension and leads to an un-
ambiguous definition of optical potential. Both the op-
tical force and potential are calculated. As can be
observed from Fig. 13 a, b, with the nanosphere moving
to the dimer gap, the optical force and the optical poten-
tial depth obviously increase. At (0, 0, 20 nm), an optical
potential depth of 3.8 kBT is obtained, which is sufficient
to overcome the Brownian motion in water to achieve
stable optical trapping.
Finally, we test the computational costs of the FETI-

DP by changing the number of unknowns from 1.0

(a) 

(b) 
Fig. 7 The electric field enhancement distributions on the xoz plane for the system of gold nanosphere dimer. a λ = 300 nm (non-resonance
wavelength). b λ = 472 nm (resonance wavelength)
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Fig. 8 The optical forces and optical potentials exerted on the nanosphere in the system of gold nanosphere dimer, when the nanosphere
moves from (0, 0, − 30 nm) to (0, 0, − 17 nm). a The optical forces. b The optical potentials

(a) (b)

z

yx

Fig. 9 Configuration of an optical trapping system of a gold truncated cone dimer based on a dielectric substrate in water. a 3D view. b Front
view and dimensions, where UR = 20 nm, LR = 30 nm, h = 35 nm, and g = 2 nm
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Fig. 10 Calculated results of optical forces exerted on the nanosphere in the system of gold truncated cone dimer, varying with λ. The
nanosphere is located at (0, 0, 35 nm)

(a) 

(b) 
Fig. 11 The electric field enhancement distributions on the xoz plane for the system of gold truncated cone dimer. a λ= 300 nm (non-resonance
wavelength). b λ= 464 nm (resonance wavelength)
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Fig. 12 Calculated results of optical forces exerted on the nanosphere in the system of gold truncated cone dimer varying λ. The nanosphere is
located at (0, 5 nm, 35 nm)
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Fig. 13 The optical forces and optical potentials exerted on the nanosphere in the system of gold truncated cone dimer, when the nanosphere
moves from (0, 0, 50 nm) to (0, 0, 20 nm). a The optical forces. b The optical potentials
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million to 3.2 million based on different mesh size. In
practice, the tests under different mesh density are usu-
ally necessary to meet different accuracy requirements.
Such a large-scale complex problem brings great chal-
lenges to conventional numerical methods. However, the
FETI-DP can easily handle this problem. Thirty-two pro-
cessors are employed for the FETI-DP simulation, while
each processor deals with a subdomain. Table 3 reports
the computational costs of the FETI-DP. It can be seen
that the FETI-DP exhibits high simulation efficiency and
low memory requirement.

Conclusion
An FETI-DP method combined with low-rank sparsifica-
tion is proposed for the prediction and analysis of op-
tical trapping of metal nanoparticles. The proposed
method provides fully decoupled subdomain problems,
which converts a large-scale complex problem into a
series of small-scale simple problems. It is well-suited
for parallel computation and can significantly improve
the efficiency of numerical simulation. Examples demon-
strate that the proposed method exhibits excellent per-
formance of large-scale computation and is well-suited
for the fast and accurate simulation of optical trapping
at nanoscale.
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