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Abstract

The constructive interference of bright and dark plasmonic modes results in plasmon-induced absorption (PIA)
effect. Here, we theoretically investigate PIA effect, which is realized by the constructive interference between a
Fabry-Perot (F-P) resonance mode and a graphene quasi-guided mode. Numerical simulation reveals at least three
advantages of our structure over previous ones. First, the extinction ratio can reach ~ 99.999%, resulting in the ultra-
high figure of merit* (FOM*) as high as 106. Second, the intensity of this pronounced PIA effect can be optimized
by adjusting the coupling distance. Third, the resonance frequency can be easily tunable by tuning the graphene
Fermi level. This system may have potential applications in dynamically optical switching and biochemical sensing.
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Background
Plasmonics has attracted wide attention due to its
extraordinary properties [1–15] and huge potential in
many fields, including integrated photonics, bio-sensing,
energy capture, photodetection. Recently, a novel
plasmonic phenomenon, known as the spoof surface
plasmons (SSPs), has been observed, which can propa-
gate through perforated metals and overcome the
diffraction limit [16]. SSPs were then explored in the
THz, microwave, and lower frequency range [17–19],
and a number of deep-subwavelength devices based on
SSPs have been proposed demonstrated [20, 21].
However, the application of such devices is seriously
hampered by SPPs’ high damping rate. One solution to
this issue is the artificial plasmon-induced transparency
(PIT) medium [22], which features a sharp transparency
window within a broad absorption spectrum. The PIT
effect mainly relies on the coupling of a radiative elem-
ent and a subradiant element, which has been widely
studied [23–25]. A similar phenomenon, plasmon-
induced absorption (PIA), has also been demonstrated
recently, which results from the constructive interfer-
ence of bright and dark plasmonic modes [26]. The PIA
resonance [27, 28] can exhibit remarkably fast-light

effect, which has potential applications in optical switch-
ing and processing.
However, traditional devices based on the PIA effect of

the metallic structure are hard or impossible to obtain
tunability, which seriously restricts its applications.
Graphene [29, 30], known for its semi-metallicity, high
mobility, and high tunability, can be an excellent candi-
date material for tunable infrared plasmonic devices. In
this paper, we investigated a tunable PIA effect, which is
achieved by the constructive interference of an F-P
resonance mode and a quasi-guided mode supported by
a periodic silver groove and monolayer graphene re-
spectively. It is found that the resonance strength and
linewidth are strongly dependent on coupling distance.
It is also shown that the extinction ratio can reach ~
99.999%. The extinction ratio is defined as 1-R-T, where
R and T are the reflectance and transmittance, respect-
ively. It is simply 1-R in our system since the transmit-
tance here is 0. As a result, an ultra-high FOM* as high
as 106 in the graphene/metal system can be achieved
and the resonance frequency can be dynamically tunable
by adjusting the gate voltage of graphene. These promin-
ent properties can be applied in biochemical sensing and
dynamically optical switching.

Methods
The schematic of our structure is shown in Fig. 1, con-
sisting of a monolayer graphene and an Al2O3 isolated
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Fig. 1 Schematic diagram of the graphene-silver groove structure. a Oblique view. b The cross-section diagram of a unit cell

Fig. 2 Optical response of the single modes. a The reflectance spectra of the structure of silver groove only (red line) and graphene only (blue
line) in normal incidence, respectively. b The reflectance spectra of the structure of graphene-Si groove for different period P of unit cell. c The
numerical modeling and analytical results of the resonant frequency f, respectively. d The electric field Ex distributions of F-P mode (left) and
graphene quasi-guided resonance mode (right).
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layer on top of a grooved silver. The thickness of the
Al2O3 is g. The system is illuminated by a normal-incident
plane wave of transverse magnetic (TM) polarization. The
other structural parameters are expressed as follows: d is
the depth of the silver groove; w is the width of the silver
groove; P is the period of the unit cell. In the mid-infrared
region, intraband scattering dominates in highly doped
graphene, and its conductivity takes on a Drude-like form
σg = ie2EF/[πħ

2(ω+iτ-1)]. The electron relaxation time is
expressed as τ = μEF/eυF

2, where υF = c/300 is the Fermi
velocity, EF is the Fermi energy and μ = 10 m2/Vs is the
DC mobility of graphene [25, 31, 32]. In the finite-differ-
ence time-domain (FDTD) simulations, the optical con-
stants for silver, and Al2O3 are from ref. [33] and ref. [34].
The periodic boundary conditions are used to simulate in-
finite periodic cell structures. For simplicity, we assume
the material of the region above the graphene layer is
vacuum (ε0 = 1).

Results and Discussion
We simulated the reflection spectrum of the silver
groove with w = 100 nm, P = 250 nm, d = 2000 nm, and
the result is shown in Fig. 2a (red curve). A wide dip can
be observed at ~ 28 THz, with an extinction ratio ~ 44%
and Q factor ~ 0.8, which is due to an F-P resonance in-
duced by the SSP excited by incident light [19]. This
resonance has a wide range of resonance bands and thus
the resonance mode can serve as the superradiant mode

in our PIA system. Then, we calculated the reflection
spectrum of the graphene sheet with metal boundary
conditions in the bottom of the simulation area, with a
Fermi level EF = 0.3 eV, as shown in Fig. 2a (blue curve).
The reflection spectrum shows that the graphene
plasmon resonance can not be directly excited by the in-
cidence at this frequency. To visualize and optimize the
plasmon mode supported by the graphene, we first
simulate the resonance modes supported by the gra-
phene. To eliminate the potential impact of the silver
groove’s F-P resonance, we assume the groove is made
of silicon instead of silver. The reflectance spectra of the
structure were calculated for EF = 0.3 eV and different
unit cell P and is shown in Fig. 2b. A reflectance dip at
resonant frequency f = 32.84 THz can be observed for P
= 250 nm with a Q factor ~ 304. The high Q resonance
with a narrow resonance band can serve as the subradi-
ant (dark) mode in our PIA system. The reflectance dip
is due to the resonance of plasmonic quasi-guided mode
in graphene with the normal incidence [35] since the
groove can compensate the wavevector mismatch based
on the mth order phase-matching condition [36, 37]

k0 Re neffð Þ ¼ kx þmGxj j; ; ð1Þ

where kx = k0sinθ, k0 = 2π/λ is the wavevector in free
space, θ is the angle between the incident light and y-
direction, neff is the effective refractive index of TM

Fig. 3 The optical response varies with the coupling distance. a The reflection. b Absorption spectra of the structure of graphene-silver groove in
normal incidence for different distance g between the graphene and the silver groove. The black curve/the blue balls are calculated by FDTD
method and the red curve is analytical fit by Eq. (3) of the PIA device
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waveguide mode in the graphene, and Gx is the recipro-
cal lattice vector of the grating (Gx = 2π/P). In the fol-
lowing discussion, the incident light angle of y-direction
is zero (θ = 0°). The situation for other incident angles is
discussed in Additional file 1. The positions of these
reflectance dips correspond to the resonance frequency
of the quasi-guided mode in the graphene, as shown in
Fig. 2b. The simulation results agree well with the Eq.
(1), where m = 1 and the effective refractive index, ~ 33,
is obtained by FDTD solutions, as shown in Fig. 2c. The
electric field Ex distributions of F-P mode and graphene
quasi-guided mode have been shown in Fig. 2d. It is
noted that the energy confinement of the SSP modes
sustained by the Si grooved surface can be negligible
compared with the graphene quasi-guided mode.
In the coupling situation, the two eigenmodes will be

strongly coupled when they get close to each other, and
hence the reflection spectrum will be dramatically chan-
ged. A narrow, sub-linewidth dip of enhanced absorbance
with an extinction ratio ~ 99.97% is observed on top of

the broader reflectance dip, as shown in Fig. 3a. When in-
creasing the vertical distance g, the near-field coupling
and the quasi-guided mode become weaker, as the modu-
lation of the reflectance dip becomes smaller. There are
two possible ways caused the reflectance dip smaller what
are the weaker coupling and the weaker quasi-guided
mode excitation. Therefore, we used the coupled oscillator
model to quantitatively understand the PIA system [38].
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Where ~a1;2 ¼ a1;2ðωÞeiωt , ω1,2 and γ1,2 are the time-
harmonic amplitudes, resonant frequencies, and damp-
ing constants of the bright mode and the dark mode, re-
spectively. b is the coupling coefficient measuring how

Fig. 4 Quantitative analysis of optical responses in coupled systems. Extracted numerical (a) coupling, (b) phase, and (c) damping coefficients as
a function of gap g. Values of κ, φ, and γ1, γ2 were extracted by fitting the numerical absorption spectra
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strong the bright mode couples with the incident electric
field. ~κ ¼ κeiφ is a complex coupling parameter, which is
introduced to express the phase retardation effect. φ is a
phase shift, which is a key coefficient to determine the
form of the interference between the two coherent path-
ways. When φ = 0 is a real parameter and the typical
behavior of the PIT effect can be observed, and the inter-
ference between the two coherent pathways is destructive.
For φ = π/2 is a pure imaginary parameter and the inter-
ference between the two coherent pathways is converted
from destructive to constructive [26]. The absorption of
the system can be calculated as the dissipated energy on
the basis of formula (2), which is

A ωð Þ ¼ ℑ

b ω−ω2 þ iγ2
2

� �
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Then, we fit the numerical absorption spectra with the
Eq. (3) for different g, which have been shown in Fig. 3b
(red curves). The simulation results are in good agree-
ment with the analytical modeling results based on the
coupled oscillator model, which strongly confirms the
design principle of our PIA device. The fitting parame-
ters κ, φ, γ1, and γ2 have been shown in Fig. 4a–c. The

Fig. 5 Time-domain evolution of coupled modes. a Calculated time evolution of the magnetic field strength at the graphene (red line) and silver
groove (blue line). Calculated z component of the magnetic field distributions for g = 90 nm. Maximum field strength at silver groove and
graphene are observed at different time b ωqt1 ~ 2.00π and c ωqt2 ~ 2.50π, respectively
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increasing g yields a decrease in the coupling parameter
κ, as shown in Fig. 4a. When gradually decreasing the
coupling (increasing g), the phase φ is unchanged, and
γ2 gradually decreases while γ1 changes slightly shown in
Fig. 4b, c. The coupling parameter κ exceed the damping
constants of dark mode γ2 for the minimum gap dis-
tance, which confirms that the coupling from the bright
mode to the dark mode is stronger than the dissipation
processes in the graphene sheet.
To visualize the constructive interference between the

bright and dark modes, we investigated the structure’s
magnetic field evolution with the time, and two Hz moni-
tors have been placed 3 nm away from the center of
graphene and 1000 nm away from the bottom of the silver
groove, respectively. The oscillating phase difference
between the two modes is 0.5π, as indicated in Fig. 5a.
The magnetic field distribution at a different time was
calculated in the PIA resonance frequency fq = 32.5 THz,
where ωqt1 ~ 2.00 π and ωqt2 ~ 2.50π, as indicated in Fig.
5b, c. The maximum of the magnetic field in the silver
groove can be observed for 2.00π while the magnetic field
in graphene reaches its maximum for 2.50π, indicating the
out-of-phase coupling between the two structures. There-
fore, the evolution and formation of the resonance are
determined by constructive interference [39].
In practical application, a narrow reflection band and

high extinction ratio are highly desired. To achieve these
two conditions, we can adjust period of unit P and depth
of silver groove d to optimize our structural parameters.
After calculating the reflection spectrum of different
structure parameters P from 1900 to 2100 nm and d
from 245 to 265 nm by FDTD, we earn a very high ex-
tinction ratio ~ 99.999% in P = 254 nm and d = 1980
nm. The reflectance spectrum of the PIA device under

different refractive index environments is shown in Fig.
6a. The sensing capabilities are defined as [39]:

S ¼ Δ f THzð Þ=Δn; FOM ¼ S=FWHM THzð Þ;
S� ¼ ΔI=Δn; FOM� ¼ S�=I; ð4Þ

where f and I are the resonance frequency and the
spectral intensity, respectively. When measuring the
reflection intensity of a sensor, the sensitivity capability
of the sensor can be quantified by the FOM* value. The
higher the value means the higher the sensitivity of the
sensor. From Fig. 6 a, we can get S = 11.2 THz/RIU and
the associated FOM~94.1, with the full width at half
maximum (FWHM) ~ 30 nm (0.12 THz). This FOM is
larger than the value in metamaterial absorbers based on
surface lattice resonance. Also, our PIA sensor can lead
to an ultra-high FOM* value 3.5 × 106, as indicated in
Fig. 6b. We compared the performance of the recently
studied sensors in Additional file 1: Table S1.
In the PIA system, graphene plays another key role.

The modulation of the resonant frequency can be
achieved by tuning the gating voltage to adjust the Fermi
level of graphene. The simulated spectra are shown in
Additional files 2: Figure S1 and 3: Figure S2. The fre-
quency-shift active control of the PIA resonance is
meaningful for sensor or absorber.

Conclusions
In summary, we have numerically demonstrated the
perfect absorption induced by constructive interference
between F-P resonance mode and graphene plasmonic
quasi-guided mode. Through the introduction of gra-
phene plasmonic quasi-guided mode, we obtain the

Fig. 6 The sensing performance of the system. a The sensing response of the PIA sensor for varied dielectric environment. b The related FOM*
curve and the reflectance spectra
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spectral line with a narrower linewidth of the silver
groove F-P resonance mode. When the distance g is
gradually increased, the resonance strength and line-
width will decrease. For the application, the FOM* in
our system can achieve 106. Furthermore, the absorption
window can be tuned by varying the geometrical param-
eter and the graphene Fermi level. These results could
provide a new way toward the realization of nanoscale
mid-infrared dynamical spectral control and ultrasensi-
tive optical sensors.

Additional files

Additional file 1: Table S1. The compare of the recent relevant works.
(DOCX 19 kb)

Additional file 2: Figure S1. The reflectance spectra of the graphene-
silver groove structure at different incident angle θ. (PNG 236 kb)

Additional file 3: Figure S2.The reflectance spectra of the structure of
graphene-silver groove in normal incidence for different Fermi energy of
the graphene sheet. (PNG 523 kb)
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