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Abstract

We have studied the characteristics of frequency response at 850-nm GaAs high-speed vertical-cavity surface-
emitting lasers (VCSELs) with different kinds of oxide aperture sizes and cavity length using the PICS3D simulation
program. Using 5-μm oxide aperture sizes, the frequency response behavior can be improved from 18.4 GHz and
15.5 GHz to 21.2 GHz and 19 GHz in a maximum of 3 dB at 25 °C and 85 °C, respectively. Numerical simulation
results also suggest that the frequency response performances improved from 21.2 GHz and 19 GHz to 30.5 GHz
and 24.5 GHz in a maximum of 3 dB at 25 °C and 85 °C due to the reduction of cavity length from 3λ/2 to λ/2.
Consequently, the high-speed VCSEL devices were fabricated on a modified structure and exhibited 50-Gb/s data
rate at 85 °C.
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Introduction
In a few years, the vertical-cavity surface-emitting laser
diodes (VCSELs) have become favorite transmitters for
optical data links [1, 2]. Meanwhile, GaAs VCSEL de-
vices have some advantages like low threshold current,
power consumption, and small divergence angle, as well
as top side illumination easily to make an array. Its de-
mand has grown rapidly along with huge requirements
for 5G Internet, 3D sensing, LiDAR, high-speed photo-
detectors, etc. [3–14].
PICS3D (Photonic Integrated Circuit Simulator in 3D)

is a state-of-the-art 3D simulator for laser diodes and
related active photonic devices. PISC3D is a 3D compre-
hensive numerical solver offering rigorous and self-con-
sistent treatment on thermal, electrical, and optical
properties by solving the related equations based on the
nonlinear Newton-Raphson method. Its primary goal is
to provide a 3D simulator for edge- and surface-emitting
laser diodes. It has also been expanded to include

models for other components integrated with or related
to the laser emitter. In this study, we simulated GaAs
VCSEL; of course, it also expanded easily to GaN
VCSEL, LED, etc. [15, 16].
The first oxidation process in III–V compound mater-

ial was discovered at the University of Illinois at Urbana-
Champaign by Dallesasse and Holonyak in 1989 [17].
Through an oxidation process, the VCSEL devices can
narrow down the size of oxide aperture diameter. Thus,
it can not only promote a single transverse mode oper-
ation but also high-speed operation and single-mode
performance.
To achieve a high modulation bandwidth, most de-

signers would seek a large D-factor and reasonable low
K-factor, typically a high differential gain by using strain
QWs. A low photon lifetime by tuning the phase of the
top distributed Bragg reflector (DBR) [18], a high con-
finement factor by employing a short cavity, and a small
cavity oxide are necessary. On the other hand, reducing
electrical parasitics can also improve modulation speed.
These include parasitic capacitance from bond pads, in-
trinsic diode junction, and the area of out of aperture
below metal contact pads which connects DBRs, oxida-
tion layers, etc., and also include parasitic resistance
from DBRs, junction resistance. However, parasitic
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resistance is not better as low as possible; it needs to
match 50 Ohm impedance. Regarding the high-speed
VCSEL device development for data communication,
there are several papers that record the progress [19, 20].
Today, the state-of-the-art 50-Gb/s 850-nm VCSEL de-
vices have been demonstrated successfully at Chalmers
University of Technology (CUT) by Westbergh et al. and
University of Illinois Urbana-Champaign (UIUC) by Feng
et al. [21–23]. We compared our experiments’ result in
this study with other labs, and our data is much close to
their results.
However, the most effective way to increase the differ-

ential gain is the use of strain multiple quantum well
(MQW), such as replacing the GaAs/AlGaAs MQW by
the InGaAs/AlGaAs MQW [24, 25]. In the GaAs-based
material, the hole effective mass is much larger than the
electron effective mass, which causes the quasi-Fermi level
to separate toward the valance band [26]. Hence, if we im-
plement the strain on an active layer, the effective hole
mass can be reduced significantly because the separation
of the quasi-Fermi level is more balanced between the
conduction and valance band. The differential gain can be
considered as the growth of gain with carrier density once
the quasi-Fermi level separation becomes more symmet-
ric, and in the meanwhile, the differential gain will become
more compressive in the strained MQW. Furthermore,
the strain will also release the valance band mixing effect
by increasing the energy difference between the heavy hole
and light hole band. In this study, the numerical simula-
tion was optimized to the VCSEL device structure through
Crosslight PICS3D software [27].

Methods/experimental
Figure 1 shows the schematic of the 850-nm GaAs
VCSEL device for simulation structure in this study. For
this oxide VCSEL, the epitaxial layer structure from bot-
tom to top includes a GaAs substrate, n-DBR of 34 pairs
of Al0.9Ga0.1As/Al0.12Ga0.88As, an InGaAs MQW active

layer with five In0.08Ga0.92As-strained QWs separated by
six Al0.37Ga0.63As quantum barrier layers, p-DBR, and a
heavily doped p-GaAs as a contact layer. However, p-
DBR layers include two Al0.98Ga0.02As oxidation layers
and four Al0.96Ga0.04As oxidation layers and 13 pairs of
Al0.9Ga0.1As/Al0.12Ga0.88As layers. There are two kinds
of oxide aperture sizes, 5 μm and 7 μm in our design.
The two Al0.98Ga0.02As oxidation layers would get an
aperture confinement for the functions of electrical and
optical, and the four Al0.96Ga0.04As layers would reduce
parasitic capacitance and further improve the optical re-
sponse. Thus, we calculate the electrical potential and
charge distribution via Poisson’s equation, calculate car-
rier transport from the current continuity equations, use
effective index method (EIM) approximation which has
been successfully applied to calculate various VCSEL
structures, and utilize the transfer-matrix method in the
calculation of equivalent laser cavity. In this study, ap-
plied to perform our VCSEL simulations was the VCSEL
modules in Crosslight PICS3D software which includes
quantum mechanical, electrical, thermal, and DBR cavity
optical effects, with stronger self-consistent interaction
than any other optoelectronic devices that were applied
to perform our VCSEL simulations. Considering that the
simulated VCSEL structure is symmetric, cylindrical co-
ordinate system, instead of the Cartesian coordinate sys-
tem, was used for the sake of saving simulation time.
The sophisticated Newton iteration formula was utilized
in the software to ensure the correct answers to be
found in nonlinear equations in the VCSEL module. In
this report, we have especially considered different kinds
of oxide aperture sizes and cavity lengths for improving
VCSEL device performance. The VCSEL A and B are de-
signed for 7-μm and 5-μm oxide aperture with 3λ/2 cavity
length, respectively. On the other hand, VCSEL C adopts
the design of 5-μm oxide aperture with λ/2 cavity length.

Results and Discussion
In VCSEL A and B, their cavity lengths are 3λ/2 but
have different oxide aperture diameters 7 μm (VCSEL A)
and 5 μm (VCSEL B), respectively. From simulation re-
sults, L-I curves are depicted in Fig. 2 a and b. We can
see the threshold current of VCSEL B (Ith 0.6 mA and
0.73 mA) is always lower than the VCSEL A (Ith 0.82 mA
and 0.94 mA) at 25 °C and 85 °C, respectively. Obviously,
the Ith becomes bigger along with increasing oxide aper-
ture size. To achieve the smallest possible mode-volume
in the vertical direction and increase the D-factor, a
short λ/2 optically thick cavity is used and then fixed at
the 5-μm oxide aperture in VCSEL C. From the L-I
curve, we can see the threshold current of VCSEL C (Ith
0.55 mA and 0.67 mA) are always lower than the VCSEL
B (Ith 0.6 mA and 0.73 mA) at 25 °C and 85 °C, respect-
ively, as shown in Fig. 3 a. In the experiment data of

Fig. 1 The schematic of the top emitting 850-nm VCSEL
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VCSEL C (real), L-I-V curves are shown in Fig. 3 b, the
Ith of VCSEL C (real) are 0.8 mA and 1.08mA at 25 °C
and 85 °C, respectively. In the real case, because the
thermal effect may induce the difference of Ith between
the real case and simulation, results can be expected.
According to resonance frequency (fr) and damping

rate function,
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where D is the D-factor, I is the current, Ith is the
threshold current, ηi is the internal quantum efficiency,
Г is the optical confinement factor, Vg is the group vel-
ocity, q is the elementary charge, Va is the volume of the

active (gain) region, ∂g
∂n is the differential gain, γ is the

damping factor, K is the K-factor, γo is the damping fac-
tor offset, τp is the photon lifetime, and ε is the gain
compression factor [28].
Thus, we can improve the frequency response of de-

vice performances by reducing the lifetime of photon
and the effective volume of the resonator and increasing
differential gain. Based on these considerations, we use
the same parameters for the next section to improve the
optical response. Figure 4 a–d shows the small-signal
modulation response of VCSEL A and VCSEL B at 25 °C
and 85 °C. From the simulation result of high-speed op-
tical response, it has a good 3-dB bandwidth from 18.4
GHz and 15.5 G Hz (VCSEL A) to 21.2 GHz and 19 GHz
(VCSEL B) and it also indicates the 3-dB bandwidth was
enhanced by approximately 15.2% and 22.5%, respect-
ively. Thus, attributed to the increasing confinement fac-
tor, the VCSEL devices have the lower threshold current
in the emission and the batter bandwidth in VCSEL can
be attributed to the confinement factor increased using
smaller oxide aperture size.

Fig. 2 The light-current characteristics for the simulation of VCSEL devices with 3λ/2 cavity length for a VCSEL A: 7 μm aperture diameter at 25 °C
and at 85 °C, and b VCSEL B: 5 μm aperture diameter at 25 °C and at 85 °C

Fig. 3 a The light-current characteristics for the simulation of VCSEL C: λ/2 cavity length, 5 μm aperture diameter at 25 °C and 85 °C. b The
measured light-current-voltage characteristics of VCSEL C at 25 °C and 85 °C
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In the following case, we keep the 5-μm oxide aperture
and shorten the cavity length to λ/2. Figure 5 a and b shows
the small-signal modulation response of VCSEL C at 25 °C
and 85 °C. From the simulation result of high-speed optical
response, it has a good 3-dB bandwidth from 21.2 GHz and
19GHz (VCSEL B) to 30.5GHz and 24.5GHz (VCSEL C)
and it also indicates the 3-dB bandwidth was enhanced by
approximately 43.9% and 28.9%, respectively. Thus, both
simulation results show that the VCSEL devices which have
the lower threshold current and larger bandwidth attributed

to the increasing confinement factor using shorter cavity
length.
Figure 6 shows simulated f3dB versus the square root of (I

− Ith). The slope of these data points can be expressed as

f3dB ¼ D�
ffiffiffiffiffiffiffiffiffiffi

I−I th
p

ð3Þ

The D-factor is an important parameter which related
to internal quantum efficiency and the differential gain

Fig. 4 Simulation of small-signal modulation response for VCSEL devices with 3λ/2 cavity length; thus, VCSEL A and B are with 7 μm and 5 μm aperture
diameter, respectively, for VCSEL A at a 25 °C and at b 85 °C, and for VCSEL B at c 25 °C and at d 85 °C.

Fig. 5 Simulation of small-signal modulation response for VCSEL C: λ/2 cavity length, 5 μm aperture diameter at a 25 °C and at b 85 °C
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of the quantum wells for VCSEL operating at high speed
[29]. Thus, the D-factor was 6.9, 7.3, and 11 GHz/mA1/2

at 25 °C for VCSEL A, B, and C devices, respectively. On
the other hand, the D-factor was 6.0, 6.7, and 9.4 GHz/
mA1/2 at 85 °C for VCSEL A, B, and C devices, respect-
ively. From our results, the D-factor is inversely propor-
tional to the oxide aperture diameter and cavity length.
And the larger D-factor will be along with smaller
threshold current. Furthermore, the VCSELs with
smaller oxide aperture diameters (5 μm) and shorter cav-
ity length (λ/2) are especially well-suited for data trans-
mission at low energy per bit [30–32]. We expect the
VCSEL can achieve error-free operation rate up to
50 Gb/s.
Next, we fabricated the VCSEL device and compared

the simulation result and real test data; next, we fabri-
cated the VCSEL device. In Fig. 6, the D-factor of
VCSEL C (real) was 8.5 and 8.3 GHz/mA1/2 at 25 °C and
85 °C, respectively. Figure 7 shows the measured small-
signal modulation response at 25 °C and 85 °C. As we

can see, the 3-dB bandwidth of measurement is 29.3 and
24.6 GHz at 25 °C and 85 °C, respectively. In the real de-
vice case, it was a little bit lower than the simulation
case VCSEL C. The difference may come from the ther-
mal effect and parasitic limitation due to device fabrica-
tion, as we mentioned earlier. Compared with others’
results, our simulation is closer to our own experiments
[21–23]. This points out that our VCSEL simulation re-
sult can be applied for the high-speed laser.

Conclusions
In conclusion, we optimized the oxide aperture and cavity
length of the VCSEL structure by the PICS3D simulation
program. Referring to these results, we fabricated 50-Gb/s
VCSEL devices. The results showed a decrease in threshold
current and improvement of 3-dB bandwidth in VCSEL de-
vices. Finally, the high-speed VCSEL devices (up to 50-Gb/s
data rate at 85 °C) had been demonstrated and successfully
to create PICS3D model for 50-Gb/s VCSEL device design.

Fig. 6 The 3-dB frequency versus the square root of (I-Ith) of the simulation for VCSEL A,VCSEL B, VCSEL C, VCSEL C (real) at a 25 °C and b 85 °C

Fig. 7 Measured small-signal modulation response for VCSEL C (real): λ/2 cavity length, 5 μm aperture diameter at a 25 °C and b 85 °C
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