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Abstract: Fabrication of the heterojunction composites photocatalyst has attained much attention for solar energy
conversion due to their high optimization of reduction-oxidation potential as a result of effective separation of
photogenerated electrons-holes pairs. In this review, the background of photocatalysis, mechanism of
photocatalysis, and the several researches on the heterostructure graphitic carbon nitride (g-C3N4) semiconductor
are discussed. The advantages of the heterostructure g-C3N4 over their precursors are also discussed. The
conclusion and future perspectives on this emerging research direction are given. This paper gives a useful
knowledge on the heterostructure g-C3N4 and their photocatalytic mechanisms and applications.

Impact Statements: The paper on g-C3N4 Nano-based photocatalysts is expected to enlighten scientists on
precise management and evaluating the environment, which may merit prospect research into developing suitable
mechanism for energy, wastewater treatment and environmental purification.

Keywords: Photocatalysis, Heterostructure, Graphitic carbon nitride, Pollutant degradation, Hydrogen Gas
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Introduction
Background of Photocatalytic Semiconductors
In 1972, Fujishima and Honda discovered the water pho-
tolysis on a TiO2 electrode [1] as the response to the
steady increase of energy shortage and environmental
pollution caused by industrialization and population
growth in 1970 [2]. Their discovery was recognized as
the landmark event that stimulated the investigation of
photonic energy conversion by photocatalytic methods
[2]. Due to population growth, high industrialization,
and improvements in agricultural technologies, till the
twenty-first century, energy shortage and environmental
pollution are still challenges [3]. In recent decades,
photocatalysis has become one of the most promising

technologies owing to its potential applications in solar
energy conversion to solve the worldwide energy short-
age and environmental pollution alleviation [4]. Photo-
catalysis is the process that involves photocatalyst. “A
photocatalyst is defined as a substance which is activated
by adsorbing a photon and is capable of accelerating a
reaction without being consumed” [5]. Photocatalysts
are invariably semiconductors. Several semiconductors
such as TiO2, ZnO, Fe2O3, CdS, and ZnS are used as
photocatalysts in environmental pollutants treatment
and solar fuel production such as methane (CH4), hydro-
gen (H2), formic acid (HCOOH), formaldehyde (CH2O),
and methanol (C2H5OH) [6]. Due to its photocatalytic
and hydrophilic high reactivity, reduced toxicity, chem-
ical stability, and lower costs [7], TiO2 has been mostly
studied as having the high ability to break down organic
pollutants and even achieve complete mineralization [8].
Due to its large band energy, TiO2 can only absorb solar
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energy in the UV regions which only constitutes 4% of
the total solar energy irradiated [9, 10]
For efficient performance, a photocatalyst semicon-

ductor requires a suitable band gap for harvesting light
[11], facile separation and transportation of charge car-
riers (electron and holes) [12], and proper valence band
(VB) and conduction band (CB) edge potential for redox
reaction being thermodynamically feasible [13]. Several
semiconductor modifications such as surface modifica-
tion, metal doping, and heterojunctions formations have
been taken to give the best photocatalytic activity of dif-
ferent photocatalyst semiconductors [14–16]. Also, the
plasmon-enhanced sensitization was found to be effect-
ive in improving the photocatalytic activity efficiency of
some photocatalyst [17, 18]. This is caused by the oscil-
lation of electrons in the metal nanoparticle as a result
of the induced electric field after solar irradiation, a term
referred to as the localized surface plasmon resonance
effects (LSPRs) [19]. In counteracting on the demerits of
most inorganic photocatalyst such as visible light
utilization, there has been a great increase of researches
on the photocatalytic graphitic carbon nitride (g-C3N4)
in recent decades due to its special structure and prop-
erties, such as its good chemical and thermal stability
under ambient conditions, low cost and non-toxicity,
and facile synthesis [20, 21]. Although some single g-
C3N4 semiconductor photocatalysts demonstrated high
photocatalytic efficiency on visible light illumination [22]
compared to other photocatalysts like TiO2 [23], they
suffer from high charger carrier (electron–hole pair) re-
combination which greatly reduce their photocatalytic
efficiency [24] The construction of heterostructured
photocatalyst systems comprising multicomponent or
multiphase is one of most effective strategies to balance
the harsh terms, owing to the tenable band structures
and efficient electron–hole separation and transporta-
tion [25], which endow them with suitable properties su-
perior to those of their individual components [26].
Several heterostructured semiconductor modifications
have been studied over the three decades.
This paper, however, centers on the ability and efficacy

of the prospective applications of construction of hetero-
structured carbon nitride to enhance the visible light-
responsive photocatalytic performance of the candidate
for energy, wastewater, and environmental treatment in
order to project future implementations to elucidate en-
vironmental problems and related.

Carbon Nitride
Presently, g-C3N4 is studied as a new-generation photo-
catalyst to recover the photocatalytic activity of trad-
itional photocatalysts like TiO2, ZnO, and WO3.
Graphitic carbon nitride (g-C3N4) is assumed to have a
tri-s-triazine nucleus with a 2D structure of nitrogen

heteroatom substituted graphite framework which in-
clude p-conjugated graphitic planes and sp2

hybridization of carbon and nitrogen atoms [27]. Bulky
carbon nitride can be synthesized through thermal con-
densation of nitrogen-rich (without a direct C-C bound)
precursors such as cyanamide, dicyandiamide, thiourea,
urea, and melamine. Also, it can be synthesised through
polymerization of nitrogen-rich and oxygen-free precur-
sors (comprising the pre-bonded C-N core structure) by
physical vapour deposition, chemical vapour deposition,
solvothermal method, and solid-state reactions. Having
the band gap of 2.7 eV and the conduction and valence
band position at − 1.4eV and 1.3 eV, respectively, versus
NHE (normal hydrogen electrode), g-C3N4 have shown
great ability to carry photocatalytic activity in the visible
light irradiation without the addition of any noble-metal
co-catalyst [28]. Apart from visible light utilization,
bulky carbon nitride is hampered by high-charge carrier
recombination which reduces its photocatalytic activity.
Different researchers have studied on the modification
of g-C3N4 to counteract the challenge of charge carrier
recombination and band engineering. Several modifica-
tions have been studied over decades including struc-
tural modification, doping, modification with
carbonaceous and plasmonic material, and heterojunc-
tion composite formation.

Structural Modification
Changing the morphology of the synthesized photocata-
lysts plays a significant effect in its photocatalytic activity
[29]. Optical, electronic, mechanical, magnetic, and
chemical properties of carbon nitride materials are
highly dependants on the change of size, composition,
dimension, and shape. Hard and soft templating
methods, template-free methods, and exfoliation strat-
egies are among the methods used to modify the struc-
ture of the synthesized carbon nitride photocatalysts
[30]. Templating modifies the physical properties of car-
bon nitride semiconductor materials by varying morph-
ology and introducing porosity. Template-free method
creates vacancies in carbon nitride photocatalysts result-
ing to introduction of additional energy levels or acting
as reactive sites, and thus profoundly changing the over-
all photocatalytic activity. Exfoliation modifies the bulky
carbon nitride into nano-sheet carbon nitrides which in-
crease the surface area for active sites, hence increasing
its photocatalytic activity. Also, carbon nitride can be
modified into nano-rods and nanotubes which all have
effects on the photocatalytic activity of the synthesised
photocatalyst.

Doping
One and the most popular modification of a single semi-
conductor is the metal/non-metal doping [31] and
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surface modification forming metal/semiconductor-het-
erostructured photocatalysts [32]. Different researchers
have studied doping g-C3N4 with different metals or non-
metals for band gap engineering and overcoming the chal-
lenge of charge carrier (electrons-holes pair) recombin-
ation [33]. Yan et al. [34] reported the study on the impact
of doped metal (Na, K, Ca, and Mg) on g-C3N4 for the
photocatalytic degradation of enrofloxacin (ENR), tetra-
cycline (TCN), and sulfamethoxazole (SMX) as represen-
tatives of common antibiotics under visible light
irradiation. In their study, it was observed that in all the
degradation of three representative antibiotics the degrad-
ation activity followed the same sequence of g-CN-K>g-
CN-Na>g-CN-Mg>g-CN-Ca>g-CN. This was attributed
by the decreased band gap of doped g-C3N4 from 2.57 to
2.29–2.46 eV as a result of a red shift caused by the doped
metal resulting to an extended visible light response and
high-charge carrier separation of the as-prepared photo-
catalytic semiconductor, hence increasing the production
of ·OH reactive species [34]. In the study done by Xu et.al
, it was also evident that doping Fe on the surface-
alkalinized g-C3N4 reduced the recombination of photo-
generated charge carriers (electron and holes) and the
band energy of which lead to high photocatalytic activity
of the doped g-C3N4 on the degradation of tetracycline
under visible light (λ ≥ 420) irradiation [35]. Jiang et.al
[36] synthesized the nitrogen (N) self-doped g-C3N4 nano-
sheets with tunable band structures for enhanced photo-
catalytic tetracycline degradation in the visible light
irradiation. It was evidently proved that doping nitrogen
(N) on g-C3N4 nanosheets increased the semiconductor
photocatalytic activity as a result of reduced charge re-
combination as proved by the photoluminescence (PL)
emission spectra study [36]. Ling et al. [37] reported the
study of the synergistic effect of non-metal (sulphur) dop-
ing on the photocatalytic property of g-C3N4 using the
first-principle calculations. The obtained results indicated
narrowing of the band gap and increased visible light re-
sponse on S-doped g-C3N4 photocatalyst [37]. The effect
of metal or non-metal doping on g-C3N4 was also revealed
in studies done by Guo et al. who used potassium (K) and
iron (Fe) [38], Fan et al. who used manganese (Mn) [39],
Xie et al., Zhu et al., and Wu et al. who used cobalt (Co)
[40–42]. Shu et al. using sodium (Na) synthesized doped
mesoporous g-C3N4 nanosheets for photocatalytic hydro-
gen production of which the results showed that the
doped nanosheets exhibited lower recombination of
photogenerated charge carrier (electron–hole pairs) than
bulk g-C3N4, hence resulting to excellent visible light
photocatalytic hydrogen evolution efficiency up to about
13 times that of bulk g-C3N4 [43]. All these prove that
doping g-C3N4 with metal ion or non-metal has a signifi-
cant improvement on the photocatalytic efficiency in the
visible light irradiation.

Modification with Other Carbonaceous Materials
Carbonaceous materials have a wide range of physical
and chemical properties derived from the spatial
organization of carbon atoms and their chemical cova-
lent bonds [44]. Carbonaceous materials such as carbon
nanotubes (CNTs), multiwalled carbon nanotubes
(MWCNTs), carbon dots (CDs), graphene, and reduced
graphene oxide have been widely incorporated in modi-
fying different photocatalyst semiconductors in order to
enhance their photocatalytic activity. Ma et al. [45] re-
ported the synthesis of an artificial Z-scheme visible
light photocatalytic system using the reduced grapheme
oxide as an electron mediator. In their report, results
showed that g-C3N4/RGO/Bi2MoO6 exhibited high
photocatalytic activity (k = 0.055 min−1) over degrad-
ation of rhodamine B dye as one of the common pollu-
tant [45]. Also, in 2017, Ma and coworkers reported the
synthesis of Bi2MoO6/CNTs/g-C3N4 with enhanced deb-
romination of 2, 4-dibromophenol under visible light.
The composite resulted into higher photocatalytic activ-
ity (k = 0.0078min−1) which was 3.61 times of g-C3N4 (k
= 0.00216 min−1) [46]. Xie et al. [47] reported the con-
struction of carbon dot-modified MoO3/g-C3N4 Z-
scheme photocatalyst with enhanced visible light photo-
catalytic activity for the degradation of tetracycline as
one of the common antibiotic pollutant found in waste
water. In their work, it was observed and proved that
the composite exhibited higher photocatalytic activity
where 88.4% of tetracycline was removed compared to
only 5.3% removal of g-C3N4 [47].

Heterostructure Graphitic Carbon Nitride Composite
The heterojunctions that are formed between the host
semiconductors provide an internal electric field that facil-
itates separation of the electron–hole pairs and induces
faster carrier migration [2]. It involve the combination of
two semiconductors to form the heterojunction semicon-
ductors.[48]. Several researches have proven that the het-
erojunction formation is the promising strategy to the
improvement of the g-C3N4 photocatalytic activity.
According to the band gap and electronic energy level

of the semiconductors, the heterojunction semicon-
ductor can be primarily divided into three different
cases: straddling alignment (type I), staggered alignment
(type II), and Z-scheme system. The band gap, the elec-
tron affinity (lowest potential of CB), and the work func-
tion (highest potential of VB) of the combined
semiconductors determine the dynamics of the electron
and hole in the semiconductor heterojunctions [32]

(a) Type I heterojunction semiconductor

In type-I heterojunction semiconductor, both VB and
CB edges of semiconductor 2 are localized within the
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energy gap of semiconductor 1, forming straddling band
alignment (Fig. 1). The VB and CB alignment play a sig-
nificant role in the determination of the physical proper-
ties of the generated charges and the photocatalytic
performance. This kind of heterojunction does not im-
prove photocatalytic activity of the prepared photocata-
lyst because of the accumulation of both charge carriers
on one semiconductor [49]. From Fig. 1, the photogener-
ated electrons (e−) are expected to move from the
SrZrO3 conduction band (CB) to SrTiO3 conduction
band (CB) due to reduction potential differences. Also,
the photogenerated holes (h+) generated in the valence
band (VB) of SrZrO3 will migrate to the valence band of
SrTiO3 due to the difference in their oxidation poten-
tials. Hence, both electrons and holes will accumulate in
SrTiO3 semiconductor causing high recombination to
take place.

(b) Type II heterojunction semiconductor

In type-II heterojunction semiconductor, both VB and
CB of semiconductor 1 are higher than that of semicon-
ductor 2 (Fig. 2). Electrons from semiconductor 1 mi-
grate to semiconductor 2 while the holes move from
semiconductor 2 to semiconductor 1. If both semicon-
ductors have sufficient intimate contacts, an efficient
charge separation will occur during light illumination.
Consequently, charge recombination is decreased, and
so charge carriers have a longer lifetime, which results in
higher photocatalyst activity [32]. Type II heterojunction
semiconductor suffer from steric hindrance of charge
transfer. When electron in the CB of semiconductor 1
migrates to the CB of semiconductor 2, there is a repul-
sion force created between coming electrons and exist-
ing electrons. Same applies when holes from the VB of
semiconductor 2 migrates to the VB of semiconductor 1.
In the steric hindrance created, there can be a small

amount reduction in the expected photocatalytic activity
of the as-prepared type II heterojunction photocatalyst.

(c) Z-Scheme heterojunction semiconductor

In the course of development and modifications of vis-
ible light-driven photocatalytic systems, Z-scheme was
originally introduced by Bard in 1979 [32]. The Z-
scheme heterojunction was developed to solve the steric
hindrance exerted in type II heterojunction. Currently,
there are three generations of the Z-scheme photocata-
lytic system (Fig. 3).

(i). First-generation Z-scheme heterojunction

It is also known as liquid-phase z-scheme photocata-
lytic system. It is built by combining two different semi-
conductors with a shuttle redox mediator (viz. an
electron acceptor/donor (A/D) pair) as seen in Fig. 4a. It
was first proposed by Bard et.al in 1979. In 1997, Abe et

Fig. 1 The systematic representation of the type I
heterojunction semiconductor

Fig. 2 The systematic representation of the type II heterojunction
semiconductor. Reproduced with permission [25]. Copyright 2015
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 3 The roadmap of the evolution of z-scheme photocatalytic
system. Reproduced with permission from [3] with slight
modifications. Copyright 2017 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim
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al. synthesized the liquid-phase Z-scheme semicon-
ductor using I−/IO3−, before Sayama et al. synthesised
the liquid-phase Z-scheme using Fe2+/Fe3+ in 2001 [3].
Liquid-phase Z-scheme photocatalytic system can only
be used for liquids. It also suffers from the backward re-
action that is caused by the use of redox mediators such
as I−/IO3-and Fe2+/Fe3+ [32].

(ii). Second-generation Z-scheme heterojunction
semiconductor

It is also known as all-solid-state (ASS) Z-scheme sys-
tem. In order to overcome the obvious problems identi-
fied in the first generation, Tada et al. in 2006
synthesised the all-solid-state CdS/Au/TiO2 Z-scheme
[32]. An ASS Z-scheme photocatalytic system is com-
posed of two different semiconductors and a noble-
metal nanoparticle (NP) as the electron mediator as seen
in Fig. 4b. The use of the noble metal solves the back-
ward reaction that was happening in the first generation
(liquid-phase Z-scheme). Noble metals are expensive
and very rare to obtain causing their wide application to
be limited. Also, noble metals have high ability to absorb
light. This affects the light absorbance of photocatalytic
semiconductors, and their photocatalytic activities are
also affected. In solving the light absorbance problem,
Wang et al. in 2009 synthesised the mediator-free ASS
Z-scheme [3].

(iii).Third-generation Z-scheme heterojunction
semiconductor

It is commonly known as direct Z-scheme semicon-
ductor. A direct Z-scheme photocatalyst consists of only
two semiconductors that have a direct contact at their
interface [32]. All the advantaged features in the previ-
ous two generation are inherited in direct Z-scheme

photocatalyst. Unlike a type II semiconductor, electrons
in the CB of semiconductor B migrate to recombine
with the holes generated in the VB of semiconductor A
forming a Z-transfer as shown in Fig. 5. In order to fa-
cilitate the easy Z-transfer of charge carriers, the partici-
pating semiconductors must have a close band energy
level with perfect CB and VB alignment [50]. Currently,
this is the known and suitable heterojunction system
with high charge carrier (electron and holes) separation
efficiency.

The Fundamental Mechanism of the
Photocatalytic Semiconductor
When the incident light photon with equal or large en-
ergy than the band gap energy strike the semiconductor,
the electrons in the valence band (VB) are photoexcited
and move to the conduction band (CB), leaving equal
number of the holes in the valence band (VB) [21]. The
photoexcited electron (e−) and holes (h+) in the CB and
VB, respectively, moves to the surface of the semicon-
ductor [51]. It is at the surface of the photocatalyst semi-
conductor where reduction and oxidation of the electron
acceptor and electron donor, respectively, take place as
seen in Fig. 6.
The photocatalytic mechanism is summarised by the

following Eqs. 1, 2 and 3

Semiconductorþ hv→e‐CBþ hþVB ð1Þ
e‐CBþ A→A− ð2Þ

hþVBþ D→ � Dþ ð3Þ
The doping effect, surface modification, and hetero-

junction formation have the direct effect on the move-
ment of the generated charge carriers (electron and
holes) of the synthesized photocatalyst. When the elec-
tron mediator atom is introduced in the semiconductor,

Fig. 4 (a) A systematic representation of first Z-scheme generation where A and D are the electron acceptor and donor respectively. (b) A
systematic representation of the second-generation Z-scheme (ASS). Reproduced with permission [3]. Copyright 2017 WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim
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the movement of charge carrier depends on whether the
mediator is an electron donor or acceptor. The dopant
not only controls the charge recombination, but it also
assists in band gap engineering of some wide band gape
semiconductors. In heterojunction composite photocata-
lyst, the charge carrier transfer depends on the nature
and properties of the participating semiconductors. In
type II heterojunction semiconductor reduction and oxi-
dation, reactions occur for semiconductor with a lower
reduction potential and semiconductor with a lower oxi-
dation potential, respectively. Due to electrostatic repul-
sion between electron–electron and hole–hole, the
charge carrier transfer in type II heterojunction is re-
stricted hence reducing photocatalytic activity of the
synthesized photocatalyst. In the Z-scheme heterojunc-
tion, the movement of the charge carrier follows the Z-
pattern where electrons remain on the semiconductor
with the higher reduction potential while holes remain
on semiconductor with the higher oxidation potential.

This paper place special emphasis on recently
researched heterostructure graphitic carbon nitride (g-
C3N4) looking at their characterizations and their appli-
cations in ambient conditions.

Characterization Methods for Heterostructure g-
C3N4
Morphology
The morphological structure of the synthesized photoca-
talyst plays a significant role in its photocatalytic activity
[52]. SEM, TEM, and XRD are used to study the morph-
ology of the as-prepared photocatalyst [53, 54]. XRD
shows different peaks that confirms that the formed struc-
tures are in agreement with the standard cards [10]. SEM
and TEM shows the morphology of the as-prepared
photocatalyst [55]. Figure 7A shows the XRD spectra of g-
C3N4 (h), Bi2MoO6 (a), and the g-C3N4/Bi2MoO6 com-
posites (b–g). As seen, the peaks at 27.40° and 13.04° are
corresponding to the (002) and (100) planes of g-C3N4
[56] while the peaks at 28.3°, 32.6°, 47.7°, and 55.4° are in
agreement with (131), (002), (060), and (331) planes of
Bi2MoO6, respectively [12] which shows the perfect for-
mation of the g-C3N4/Bi2MoO6 composite. The existence
of a uniform fringe interval (0.336 nm) in the TEM images
(Fig. 7B) is in agreement with the (002) lattice plane of g-
C3N4 while that of 0.249 nm is in agreement to the (151)
lattice plane of Bi2MoO6. In the same shape (Fig. 7C) as-
cribed by the elemental mapping of C-K, N-K indicates
the existence of g-C3N4 while the mapping of Bi-M, Mo-
L, and O-K shows the existence of Bi2MoO6 in the as-
prepared heterojunction. This proves that there were the
perfect formation of the heterojunction between g-C3N4

and Bi2MoO6.

X-Ray Photoelectron Spectroscopy (XPS) Characterization
The surface chemistry of the as-prepared composite has
the greatest impact on its photocatalytic activity. X-ray

Fig. 5 A comparison of the charge transfer between type II
heterojunction (a) and Z-scheme heterojunction (b). Reproduced
with permission [3]. Copyright 2017 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim

Fig. 6 A systematic depiction of the general mechanism of photocatalytic semiconductor. Reproduced with permission [29]. Copyright 2013
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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photoelectron spectroscopy (XPS) characterization has
been extensively used to determine the surface chemistry
of materials [57] by studying the changes in the elec-
tronic density on the different surfaces of a photocatalyst
through investigating the shift in the binding energies
[58]. A shift in the binding energy of a specific element
of the semiconductor is caused by the introduction of

the foreign materials which affects the electron migra-
tion on its surface [25, 31]
For instance, Longjun Song and coworkers confirmed

the hydrothermal synthesis of novel g-C3N4/BiOCl het-
erostructure nanodiscs for efficient visible light photode-
gradation of rhodamine B using XPS characterization. In
this study, all XPS spectra were calibrated using the C 1s

Fig. 7 (A) XRD of (b–g) g-C3N4/Bi2MoO6 composites with different g-C3N4 content (a) Bi2MoO6 (h) g-C3N4 (B) TEM images of (a) g-C3N4 (b)
Bi2MoO6 (c)g-C3N4/Bi2MoO6 composite (C) SEM image of (a) g-C3N4/Bi2MoO6 showing corresponding elemental (C, N, Bi, Mo, and O) mapping.
Reproduced with permission [35]. Copyright 2014 Royal Society of Chemistry

Fig. 8 a, b RhB degradation over various photocatalysts and c corresponding rate constants (k). Reproduced with permission [23]. Copyright 2014
Elservier B.V
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signal at 284.8 eV [59]. The sp2-bonded carbon in N-
containing aromatic rings (N–C=N) (Fig. 8b) were as-
cribed to the C 1s signals at 288.2 eV [60] while sp2-hy-
bridized aromatic nitrogen bonded to carbon atoms (C=
N–C) in triazine rings was attributed to 398.8 eV. This
confirms the presence of sp2-bonded graphitic carbon
nitride [60]. The existence of peaks at 159.4 and 164.5
eV is caused by Bi3+ in BiOCl while the peak at 530.2 eV
is attributed to the Bi–O bonds in (BiO)2+ of the BiOCl.
The weak peak at 404 eV is caused by the fact that g-
C3N4 is coupled with BiOCl through the p-electrons of
CN heterocycles. This confirms the coexistence of g-
C3N4/BiOCl composite.

Photocatalytic-Reduction Test
Not all the photogenerated electrons reaching the sur-
face of the photocatalyst have the ability to carry the
photocatalytic-reduction reaction. Only the photogener-
ated electrons with sufficient reduction potentials par-
ticipate fully in the reduction reaction. Equations 4, 5, 5,
6, 7 and 8 summarize the standard redox potentials for
various photocatalytic-reduction reactions.

2Hþ þ 2e‐®H2;
E0 ¼ ‐0:41V vs NHE at pH ¼ 7

ð4Þ

CO2 þ 2Hþ þ 2e‐→HCOOH;
E0 ¼ ‐0:61V vs NHE at pH ¼ 7

ð5Þ

CO2 þ 2Hþ þ 2e‐→COþH2O;
E0 ¼ ‐0:53V vs NHE at pH ¼ 7

ð6Þ

CO2 þ 4Hþ þ 4e‐→HCHOþH2O;
E0 ¼ ‐0:48V vs NHE at pH ¼ 7

ð7Þ

CO2 þ 6Hþ þ 6e‐→CH3OHþH2O;
E0 ¼ ‐0:38V vs NHE at pH ¼ 7

ð8Þ

CO2 þ 8Hþ þ 8e‐→CH4 þ 2H2O
E0 ¼ ‐0:24V vs NHE at pH ¼ 7

ð9Þ

The final products of the photocatalytic-reduction re-
action can be the viable test to confirm that the hetero-
junction photocatalyst was successfully formed.
For example, Chao et al. [61] reported the photocata-

lytic reduction of CO2 under BiOI/g-C3N4. In their re-
port, photoreduction of CO2 to CO and CH4 was
possible due to high electronegativity of the CB of the
as-prepared composite, CO2/CO (− 0.53 V) and CO2/
CH4 (− 0.24 V). But the photoreduction of CO2 to CH4

needs more illumination time to generate more electrons
and increase the electron density on CB of BiOI.

Photocatalytic Applications of Heterostructure g-
C3N4
Pollutant Degradation
The change of human life style is causing thousands of
both organic and inorganic pollutants enter the air,
water, and soil. Pollutants such as pesticides, industrial
chemicals, pharmaceutical chemicals, and heavy metals
are common pollutants in the environment [62–68].
These pollutants can be detrimental to the environment
and human health [69]. To eliminate these pollutants,
different technologies have been employed/involved.
These technologies include biological degradation, phys-
ical adsorption, filtration, and photocatalytic degradation
[70]. Due to its ability to utilize sustainable solar energy
for degradation of organic pollutants without causing
any side effects to the environment, semiconductor-
based photocatalytic degradation has captured the sub-
stantial attention [71]. Several semiconductors have been
synthesized for the degradation of organic pollutants [7].
For decades, TiO2 has emerged as the most common
researched semiconductor for several organic pollutant
degradation due to its photocatalytic properties, hydro-
philicity, high reactivity, reduced toxicity, chemical sta-
bility, and lower costs [72]. Recently, graphitic carbon
nitride has been the most scientific researched semicon-
ductor due to its narrow band gap of 2.7 eV which per-
mits it to absorb visible light directly without
modification. Graphitic carbon nitride (g-C3N4 ) exhibits
high thermal and chemical stability, owing to its tri-s-
triazine ring structure and high degree of condensation
[24] Although various graphitic carbon nitride semicon-
ductors have been studied for photocatalytic degradation
of pollutants, their photocatalytic performance remains
unsatisfactory suffering highly from charge (electron–
holes) recombination. To overcome the electron–hole
recombination in a single g-C3N4 semiconductor, differ-
ent researchers have made enormous efforts toward de-
veloping novel photocatalytic systems with high
photocatalytic activities [73]. The development of het-
erostructured graphitic carbon nitride photocatalysts
semiconductors has proven to be potential for use in en-
hancing the efficiency of photocatalytic pollutant degrad-
ation through the promotion of the separation of
photogenerated electron–hole pairs and maximizing the
redox potential of the photocatalytic system [59].
For instance, Haiping Li and coworkers reported the

solvothermal synthesis of g-C3N4/Bi2MoO6 heterostruc-
ture with enhanced visible light photocatalytic activity
for degradation of rhodamine B (RhB) pollutants in
aqueous solution using 1.829 g of as-prepared g-C3N4

which was added to 0.3234 g of Bi(NO3)3·5H2O in 10
mL of ethylene glycol followed by sonication for 30 min
before the addition of 0.0806g of Na2MoO4·2H2O and
stirred for 1 h. Using ethylenediamine, the pH was
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maintained to 7.0 throughout the reaction. The disper-
sion was heated in the polytetrafluoroethylene-lined
stainless autoclave at 160 °C for 6 h and then allowed to
cool to room temperature. The solid product was col-
lected by filtration, washed thoroughly with water and
ethanol, and dried at 80 °C before it undergone calcin-
ation at 400 °C for 1 h to eliminate remained organic
species [26].
In their findings, they reported that the photocatalytic

activity of g-C3N4/Bi2MoO6 (A8) was higher than those
of g-C3N4 and Bi2MoO6, where about 98% of RhB was
removed by g-C3N4/Bi2MoO6 composite, while less than
< 60% was removed by pure g-C3N4 (A0) or Bi2MoO6 as
seen in Fig. 8a, b. When the experimental data were fit-
ted in a pseudo-first order model (−ln(C/C0) = kt) to
quantify the reaction kinetic of photocatalytic RhB deg-
radation, the heterojunction g-C3N4/Bi2MoO6 (A8) ex-
hibited the maximum k value (0.046 min−1) which was
three times more than those of g-C3N4 (A0) or Bi2MoO6

(A100). This still proves that the heterojunction g-C3N4/
Bi2MoO6 has high ability to degrade dye pollutants in
aqueous than g-C3N4 and Bi2MoO6.
Furthermore, Lingjun Song and coworkers reported

the facile hydrothermal synthesis of novel g-C3N4/BiOCl
heterostructure nanodiscs for efficient visible light
photodegradation of rhodamine B. In the heterostruc-
ture composite synthesis, a well-dispersed suspension of
protonated g-C3N4 was prepared by dissolving a portion
of the as-prepared g-C3N4 in 6.5 mL of hydrochloric acid
under magnetic stirring followed by subsequently
addition of 5 mmol of Bi(NO3)3. 5H2O, KCl, and deion-
ized (DI) water (15 mL). The pH of the mixture was sub-
sequently adjusted to 6 with dilute NaOH solution. The
white suspension obtained after continuous vigorous
stirring for 2 h was heated at 140 °C for 12 h and
allowed to cool to room temperature. The precipitates
were collected by centrifugation, thoroughly washed
with DI water and dried at 80 °C in air to furnish the
target sample [76]. The effective separation of photogen-
erated electron–hole pairs, due to the charge transfer at
the interface between two types of semiconductors in
the composite, increased the photocatalytic activity of g-
C3N4/BiOCl (95%) than that of individual g-C3N4 (30%)
and BiOCl (52%).
Yan Gong and coworkers reported the synthesis of the

novel metal organic framework (ZIF-8)-derived
nitrogen-doped carbon (ZIF-NC) modified g-C3N4-
heterostructured composite by the facile thermal treat-
ment method where an appropriate amount of ZIF-CN
in a methanol solution was firstly placed in an ultrasonic
bath for 30 min to completely disperse the ZIF-NC be-
fore g-C3N4 powder was added and stirred for 24 h.
After volatilization of the methanol in water bath at 60°
C, the obtained powder was heated to 300° C for 2 h

under atmosphere (Fig. 9). In their report, photocatalytic
activity of ZIF-NC/g-C3N4 for the degradation of bisphe-
nol A (BPA) in aqueous solution reached the removal
rate of 97% after 60 min of irradiation with 0.5% ZIF-
NC content. Excessive addition of the ZIN-NC to 1%
over g-C3N4 surfaces hinder the light adsorption of g-
C3N4 which results in low generation of electron–hole
pairs on g-C3N4, hence resulting to decreased photocata-
lytic activity [58].
Xuli Miao and coworkers synthesized g-C3N4/AgBr

nanocomposite decorated with carbon dots as a highly
efficient visible light-driven photocatalyst by introduc-
tion of carbon dots (CDs) onto the surface of g-C3N4,
followed by in-situ growth of AgBr nanoparticles on
CD-modified g-C3N4 nanosheets (Fig. 10). After the
evaluation of as-prepared samples for the degradation of
RhB under visible light irradiation, they found that the
ternary composites of g-C3N4/CDs/AgBr show higher
photocatalytic activity than single AgBr, g-C3N4 with the
RhB degradation rate reaching 96% after 40 min of ir-
radiation [105].
Jiajia Wang and his coworkers reported the synthesis

of Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction
with enhanced photocatalytic degradation of ibuprofen
(IBF) under visible light irradiation. As reported, as-
prepared atomic scale g-C3N4 showed high photocata-
lytic activity (∼ 96.1%) compared to that of pure g-C3N4

(38.2%) and of pure m-B2WO6 (67.3%) under the same
experimental conditions. This also proves that there was
high separation of photogenerated charge carriers in
atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction thus
enhancing photocatalytic degradation efficiency of IBF.
Several other researches on the photocatalytic activ-

ities of the g-C3N4 heterojunction performances have
been conducted by different researchers on different pol-
lutants as summarised in Table 1.

Photocatalytic Hydrogen Gas (H2) Production
Depletion of the fossil fuel energy has made the produc-
tion of hydrogen gas (H2) which has high heat energy
value to receive much research attention recently [106].
Solar energy convention remains to be the promising
technology for water splitting mechanism to generate H2

because of its simplicity and clean reactions [107–109].
Different photocatalysts has been studied on the water
splitting for the H2 production (see Table 2).
For example, She and coworkers reported the synthe-

sis of 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. As re-
ported, H2 evolution activity was further enhanced in
the hybrids with α-Fe2O3 nanostructures, reaching
31400 μmol g−1 h−1 for α-Fe2O3/2D g-C3N4 (α-Fe2O3

loading 3.8 wt.%). Photocurrent experiments also con-
firmed the higher activity of α-Fe2O3/2D g-C3N4 (3.8 wt.
%) in comparison with samples containing ML g-
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C3N4and α-Fe2O3 [113]. With these results, it is evident
that heterostructured carbon nitride semiconductors
have high photocatalytic efficiency on hydrogen produc-
tion [109]. The photocatalytic hydrogen production by
other studies of g-C3N4 heterojunctions are summarized
in Table 2.
The photocatalytic hydrogen (H2) production is ham-

pered by the difficulty of separating the hydrogen and
oxygen-containing products (hydrogen storage mechan-
ism) which is caused by very close distance between
reduction-oxidation sites. This in turn result into diffi-
culties to separately deliver photogenerated electron and
holes to the reduction and oxidation site, respectively, in
the designed photocatalyst which might cause reverse
reaction of hydrogen- and oxygen-containing products

or even damages by explosion. In overcoming this chal-
lenge, studies have been made on how to feasibly separ-
ate produced hydrogen from oxygen-containing
products while maintaining the close distance between
reduction-oxidation site which is very essential photo-
generated charge transfer. In 2017, Li Yang and co-
workers synthesised sandwich structures of graphene
with combined photocatalytic hydrogen production and
storage ability [114]. In their study, the synthesized sand-
wiched graphene allows the penetration of only proton
to the reduction site to produce hydrogen inside the
sandwich. This not only to prevent the reverse reaction
but also to facilitate the safe storage of the generated
hydrogen reaching the storage rate of 5.2 wt% which is
very close to the US Department of Energy standards

Fig. 9 Schematic illustration of the formation of ZIF-NC/g-C3N4 composite. Reproduced with permission [24]. Copyright 2018 Elsevier B.V

Fig. 10 Schematic illustration of preparation process of the g-C3N4/CDs/AgBr nanocomposite. Reproduced with permission [86]. Copyright 2017
Elsevier B.V
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Table 1 Studies of g-C3N4 heterojunctions for various pollutants degradations

Photocatalyst Light source Application Performance Ref.

g-C3N4/Bi2MoO6 300-W Xenon lamp (λ > 420-nm cut-off filter) RhB degradation k = 6.484 × 10−2

min−1
[74]

g-C3N4/Bi2MoO6 50-W 410-nm LED light Methylene blue (MB) degradation k = 6.88 × 10−2

min−1
[75]

g-C3N4/RGO/
Bi2MoO6

500-W Xenon lamp (λ > 420-nm cut-off filter) RhB degradation k = 5.5 × 10−2

min−1
[45]

Bi2MoO6/CNTs/g-
C3N4

500-W Xenon lamp (λ > 420-nm cut-off filter) 2,4-Dibromophenol debromination and
degradation

k = 7.8 × 10−3

min−1
[46]

g-C3N4/BiOCl 300-W Xenon arc lamp (λ ≥ 400-nm cut-off filter) RhB degradation k = 1.99 × 10−1

min−1
[76]

g-C3N4/Bi2MoO6 400-W Metal halide lamp (λ ≥ 420-nm cut-off filter) RhB degradation k = 4.6 × 10−2

min−1
[26]

Bi2O3/g-C3N4 300-W Xenon lamp (λ > 400-nm cut-off filter) Phenol degradation k = 2.47 × 10−3

min−1
[77]

Bi2O3/g-C3N4 500-W Xenon lamp
(λ > 400-nm cut-off filter)

RhB degradation
Methylene blue degradation

k = 2.53 × 10−2

min−1

k = 1.01 × 10−2

min−1

[78]

BiVO4/g-C3N4 PLS-SXE300 Xenon lamp RhB degradation k = 9.307 × 10−2

min−1
[79]

Bi2O3/g-C3N4 35-W Xenon lamp Amido black 10B degradation k = 1.722 × 10−2

min−1
[80]

Bi2O3/g-C3N4 300-W Xenon lamp (λ > 420nm cut-off filter) Methylene blue degradation k = 6.3 × 10− min−1 [81]

WO3/g-C3N4 500-W Xenon lamp
(λ > 400nm cut-off filter)

Methylene blue degradation
Fuchsin (BF) degradation

k = 3.53 × 10−2

min−1

k = 2.38 × 10−2

min−1

[82]

500-W Xenon lamp 500-W Xenon lamp RhB degradation k = 1.08 × 10−2

min−1
[83]

WO3/g-C3N4 300-W Xenon lamp (λ > 400-nm cut-off) Methylene blue degradation k = 1.3933h−1 [84]

g-C3N4/MoO3 300-W Xenon lamp (λ > 400nm) Methylene blue degradation k = 8.837 × 10−1h−1 [85]

β-Bi2O3/g-C3N4 150-W Xenon lamp (420-nm cut-off filter) Methylene blue degradation k = 1.727 × 10−2

min−1
[86]

g-C3N4/Bi2WO6 300-W Xenon lamp (350–780-nm cut-off filter) 2,4-dichlorophenol dechlorination (2,4-DCP) k = 1.13 h−1 [87]

Ag3PO4/g-C3N4 300-W Xenon arc lamp (420-nm cut-off filter) k = 1.158 × 10−1 min−1 k = 1.158 × 10−1

min−1
[88]

MoO3/g-C3N4 350-W Xenon lamp (420-nm cut-off filter) Tetracycline degradation k = 2.31 × 10−2

min−1
[47]

BiVO4/g-C3N4 500-W Xenon lamp (λ > 420-nm cut-off filter) RhB degradation k = 3.42 × 10−1 h−1 [89]

WO3/g-C3N4 300-W Xenon lamp (420-nm cut-off filter) Ceftiofur sodium (CFS) degradation
Tetracycline hydrochloride (TC-HCl)
degradation

k = 1.64 × 10 2

min−1

k = 1.2 × 10−2

min−1

[90]

g-C3N4/TiO2 15 W, 365-nm UV lamp Formaldehyde (HCHO) degradation k = 7.36 × 10−2

min−1
[91]

Bi2O3/g-C3N4 300-W Xenon lamp(λ > 420nm) RhB degradation k = 7.46 × 10−2

min−1
[92]

g-C3N4/TiO2 3-W 365-nm UV lamp Brilliant red X3B degradation k = 5.1 × 10−2

min−1
[93]

Bi2O3/g-C3N4 500-W Xenon arc lamp (400-nm cut-off filter) RhB degradation k = 1.01 × 10−2

min−1
[78]

g-C3N4/Ag2CO3 300-W Xenon arc lamp (400-nm cut-off filter) RhB degradation k = 1.36 × 10−1

min−1
[94]

g-C3N4/Bi5O7I 300-W Xenon lamp (λ > 420-nm cut-off filter) RhB deghradation k = 1.97 × 10−1 [95]

Darkwah and Oswald Nanoscale Research Letters          (2019) 14:234 Page 11 of 17



(6.5 wt%). Also, Xijun Wang and coworkers synthesized
the carbon–quantum-dot/carbon nitride hybrid with
high ability of isolating hydrogen from oxygen in the
photocatalytic water splitting using the first-principles
calculation [115]. In this study, it was found that only
protons were allowed to penetrate the inner layer of gra-
phene to produce H2. The produced hydrogen gas was
then capsuled in the inner layer of the synthesised
photocatalyst. This also prevents the reverse reaction
and makes the availability of the produced hydrogen
(H2).

CO2 Reduction
The population growth and industrialization has been
detrimental the environment including the atmosphere
[116]. CO2 increase recently has remained to be the cru-
cial agenda in the universe [117, 118]. CO2 produced
from burning of fuel from domestic to industrial level
has contributed much on the atmospheric air pollution

hence resulting into the current global warming the
world is suffering today [119–121]. Different strategies
have been developed to cut down the production of
CO2. The SDG 7 pinpoint for the clean and renewable
energy as one way of reducing the production of CO2 in
the atmosphere [122, 123]. But increasing demand of
fuel and productions in the industries still make the con-
tribution of CO2 to be high (Table 3). Technologies have
been developed to degrade the produced CO2. Among
others, photocatalytic reactions have promised to be one
of the best technologies for the CO2 reduction.
Sheng Zhou and coworkers reported the facile in situ

synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2

heterojunction as an efficient photocatalyst for the se-
lective photoreduction of CO2 to CO. The composites of
graphitic carbon nitride and nitrogen-doped titanium di-
oxide composites (g-C3N4-N-TiO2) were in situ synthe-
sized by thermal treatment of the well-mixed urea and
Ti(OH)4 in an alumina crucible with a cover at different

Table 1 Studies of g-C3N4 heterojunctions for various pollutants degradations (Continued)

Photocatalyst Light source Application Performance Ref.

Methyl orange (MO) degration min−1

k = 8.4 × 10−2

min−1

g-C3N4/Bi2WO6 300-W Xenon lamp Ibuprofen degradation k = 5.2 × 10−2
min−1

[60]

V2O5/g-C3N4 250-W Xenon lamp (420-nm cut-off filter) RhB degradation k = 4.91 × 10−2

min−1
[96]

Al2O3/g-C3N4 350W Xenon lamp (400-nm cut-off filter) RhB degradation k = 2.57 × 10−2

min−−1
[97]

MoS2/g-C3N4 300-W Xenon lamp (λ > 420-nm cut-off filter) RhB degradation
Methyl orange degradation

k = 1.52 × 10−1
min−1

k = 1.61 × 10−2

min−1

[98]

CuO/g-C3N4 300-W Xenon lamp (λ > 420-nm cut-off filter) Salicylic acid degradation 94% degradation [99]

g-C3N4-Cu2O LED lamp Methyl orange degradation 84% degradation [100]

g-C3N4/BiOI Visible light RhB degradation k = 3.99 × 10−2

min−1
[101]

g-C3N4/TiO2 30-W visible light lamp Orange II degradation k = 3.11 × 10−2

min−1
[102]

Bi2MoO6/g-C3N4 300-W Xenon lamp (λ > 420-nm cut-off filter) Bacterial disinfection(E.Coli DH5α) k = 1.269h−1 [103]

g-C3N4/CeO2 50-W compact fluorescent lamp (λ > 400-nm cut-
off filter)

Methylene blue degradation k = 2.46 × 10−1h−1 [104]

Table 2 Hydrogen production study by different g-C3N4 heterostructures

Photocatalyst Source of light Application Performance Ref.

g-C3N4/Au/CdS 300-W Xenon lamp (420-nm cut-off filter) Hydrogen production 530 μmol after 5 h [110]

WO3/g-C3N4 Artificial solar light Hydrogen production 110 μmol h−1g−1 [107]

C,N-TiO2/g-C3N4 300-W Xenon arc lamp (400-nm cut-off filter) Hydrogen production 39.18 mmol h−1g−1 [111]

WO3/g-C3N4 300-W Xenon lamp (λ > 420-nm cut-off filter) Hydrogen production 1853 μmol h−1g−1 [106]

g-C3N4/WS2 300-W Xenon arc lamp (λ ≥ 420-nm cut-off filter) Hydrogen production 101 μmol h−1g−1 [112]

Bi2MoO6/g-C3N4 300-W Xenon lamp (λ > 420nm cut-off filter) Hydrogen production 563.4 μmol h−1g−1 [103]
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mass ratios. The mixture was heated to 550° C for 3 h
and then 580° C for 3 h at a heating rate of 5° C min−1

to obtain the product. The product was washed with ni-
tric acid (0.1M) and distilled water for several times to
remove residual alkaline and sulfate species (e.g., ammo-
nia and SO4

2−) adsorbed on the sample, and then dried
at 80° C overnight to get the final product.
In their report, photocatalytic of CO2 reduction was

carried out in a gas-closed circulation system operated
under simulated light irradiation with photocatalyst,
CO2, and water vapor sealed in the system. The hetero-
junction between g-C3N4 and nitrogen-doped TiO2

demonstrated enhanced catalytic performance reaching
the highest CO evolution amount (14.73 μmol) during
light irradiation compared with P25 (3.19 μmol) and g-
C3N4 (4.20 μmol) samples. The heterojunction between
g-C3N4 and nitrogen-doped TiO2 showed the high activ-
ity because it promotes the separation of light-induced
electrons and holes. These results prove that the here-
tostructured carbon nitride semiconductor has high
photocatalytic CO2 reduction as compared to their pre-
cursors [126]. More studies on the heterojunctions of g-
C3N4 for photocatalytic reduction of CO2 are summa-
rized in Table 3.

Photocatalyst Stability
The stability of photocatalysts is crucial for their prac-
tical application [59]. It shows how the photocatalysts
can be reused without or with little loss in their activities
[21]. In order to know the reusability of the photocata-
lyst, the degradation of the pollutant by the same com-
posite for several times/cycles are performed [127]
The as-synthesized g-C3N4/Bi2MoO6 heterojunction

photocatalyst exhibited excellent stability in the visible
light photochemical degradation reactions. Figure 11
shows that after six consecutive runs, no apparent de-
activation of the composite g-C3N4/Bi2MoO6 (A8) is
observed, and the RhB degradation efficiency declines
by < 1%.
Wang and coworkers [115] then designed a hybrid

structure of carbon-quantum-dots (CQDs) attaching to
a single-layered carbon nitride (C3N) material. These
scientists showed that the hybrid can harvest visible and
infrared light for water splitting. Also, Darkwah and Ao
also discussed how stable the carbon nitride can work
more efficiently in degradation of both organic and

inorganic compounds for wastewater treatment and re-
lated applications [22, 128, 129].

Future Viewpoint of Heterostructure g-C3N4

The future research of heterostructure g-C3N4 nano-
based photocatalyst may focus on the design and synthe-
sis of more effective nanostructures, which are respon-
sive to morphology monitoring, evaluating the
photocatalysis practicality, and the degradation behavior
and mechanism of more types of pollutants, especially
for non-dyed pollutants and then exploring the applica-
tions of diverse g-C3N4 nano-based particles in treating
wastewater, its effective application in solar energy
utilization, sensing applications by fully assessing their
photocatalytic ability, cost, energy consumption, and
reusability.
One of the key areas to consider for future studies

should mainly focus on employing new technologies or
combination of the existing techniques of increasing the
settling velocity of g-C3N4 to upturn the run-off rate
that could be used to improve the material for improv-
ing photocatalytic activities.

Conclusion
Although photocatalytic degradation is an ideal strategy
for cleaning environmental pollution, it remains challen-
ging to construct a highly efficient photocatalytic system
by steering the charge flow in a precise manner. Differ-
ent researches have proven the high photocatalytic

Table 3 Studies of g-C3N4 heterojunctions on Carbon dioxide (CO2) reduction

Photocatalyst Source of light Application Performance Ref.

g-C3N4/ZnO 300-W Xenon arc lamp CO2 reduction 0.6 μmol h−1g−1 CH3OH [124]

SnO2-X/g-C3N4 500-W Xenon lamp CO2 reduction 22.7 μmol h−1 g−1 CO, CH3OH, CH4 [125]

BiOI/g-C3N4 300-W Xenon arc lamp (λ > 400-nm cut-off filter) CO2 reduction 17.9 μmol g−1 CO [61]

Fig. 11 Cycling runs for photocatalytic degradation of RhB over g-
C3N4/Bi2MoO6 composite A8 under visible light irradiation.
Reproduced with permission [23]. Copyright 2014 Elsevier B.V
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activity of the heterostructured semiconductors over
pollutants degradation, hydrogen gas evolution, and car-
bon dioxide reduction. Among others, heterostructured
carbon nitride (CN) semiconductors in recent decades
have shown the anonymous photocatalytic activity to-
wards organic pollutants, hydrogen production, and car-
bon dioxide. Reasonably, g-C3N4 has revealed to be one
of the best candidates suitable for developing and assem-
bling state-of-the-art composite photocatalysts. There-
fore, there is slight doubt that the considerable
advancement of g-C3N4 nano-based particle will endure
to develop in the near future. Hence, more researches
should consider its modification structures, mechanisms,
and the degradative abilities of this candidate
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